See axolotl config
axolotl version: 0.6.0
base_model: PrimeIntellect/INTELLECT-1-Instruct
trust_remote_code: true
model_type: AutoModelForCausalLM
tokenizer_config: meta-llama/Llama-3.1-8B-Instruct
#model_type: LlamaForCausalLM
#tokenizer_type: llama3
gpu_memory_limit:
deepspeed: deepspeed_configs/zero2.json
load_in_8bit:
load_in_4bit:
strict: false
chat_template: llama3
datasets:
- path: neginashz/rationale-llama-chat-dataset
type: chat_template
chat_template: llama3
field_messages: messages
message_field_role: role
message_field_content: content
roles:
system:
- system
user:
- user
assistant:
- assistant
#roles_to_train: ["assistant"] # default
# Optional[str]. Which EOS tokens to train on in the conversation. Possible values are:
# - all: train on all EOS tokens
# - turn (default): train on the EOS token at the end of each trainable turn
# - last: train on the last EOS token in the conversation
#train_on_eos: turn
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./star-sft-intellect-6
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: star-sft-intellect-instruct-6
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_checkpointing: true
#gradient_clipping: true
gradient_accumulation_steps: 1
#batch_size: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps:
eval_steps:
save_steps:
evals_per_epoch: 8
saves_per_epoch: 2
eval_max_new_tokens: 128
debug:
weight_decay:
fsdp:
fsdp_config:
hub_model_id: neginashz/star-sft-intellect-instruct-6
hub_strategy:
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: false
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token": <|eot_id|>
star-sft-intellect-instruct-6
This model is a fine-tuned version of PrimeIntellect/INTELLECT-1-Instruct on the neginashz/rationale-llama-chat-dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.3380
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 3
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4428 | 0.1261 | 14 | 0.4024 |
0.433 | 0.2523 | 28 | 0.3939 |
0.4197 | 0.3784 | 42 | 0.3799 |
0.4083 | 0.5045 | 56 | 0.3679 |
0.357 | 0.6306 | 70 | 0.3534 |
0.3623 | 0.7568 | 84 | 0.3435 |
0.3645 | 0.8829 | 98 | 0.3380 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for neginashz/star-sft-intellect-instruct-6
Base model
PrimeIntellect/INTELLECT-1
Finetuned
PrimeIntellect/INTELLECT-1-Instruct