|
--- |
|
language: zh |
|
widget: |
|
- text: "天下熙熙," |
|
- text: "天气不错," |
|
--- |
|
|
|
<h1 align="center"> |
|
CPM-Generate-distill |
|
</h1> |
|
|
|
CPM(Chinese Pre-Trained Language Models), which has 2.6B parameters, made by the research team of Beijing Zhiyuan Institute of artificial intelligence and Tsinghua University @TsinghuaAI. |
|
|
|
[repo: CPM-Generate](https://github.com/TsinghuaAI/CPM-Generate) |
|
The One Thing You Need to Know is this model is not uploaded by official, the conver script is [here](https://github.com/mymusise/CPM-TF2Transformer/blob/main/transfor_CMP.ipynb) |
|
|
|
And the `CPM-Generate-distill` is the distill model of `CPM`. |
|
|
|
|
|
# How to use |
|
|
|
How to use this model directly from the 🤗/transformers library: |
|
|
|
```python |
|
from transformers import XLNetTokenizer, TFGPT2LMHeadModel |
|
from transformers import TextGenerationPipeline |
|
import jieba |
|
# add spicel process |
|
class XLNetTokenizer(XLNetTokenizer): |
|
translator = str.maketrans(" \n", "\u2582\u2583") |
|
def _tokenize(self, text, *args, **kwargs): |
|
text = [x.translate(self.translator) for x in jieba.cut(text, cut_all=False)] |
|
text = " ".join(text) |
|
return super()._tokenize(text, *args, **kwargs) |
|
def _decode(self, *args, **kwargs): |
|
text = super()._decode(*args, **kwargs) |
|
text = text.replace(' ', '').replace('\u2582', ' ').replace('\u2583', '\n') |
|
return text |
|
|
|
tokenizer = XLNetTokenizer.from_pretrained('mymusise/CPM-Generate-distill') |
|
model = TFGPT2LMHeadModel.from_pretrained("mymusise/CPM-Generate-distill") |
|
|
|
text_generater = TextGenerationPipeline(model, tokenizer) |
|
|
|
print(text_generater("天下熙熙,", max_length=15, top_k=1, use_cache=True, prefix='')) |
|
``` |
|
|
|
![avatar](https://github.com/mymusise/CPM-TF2Transformer/raw/main/example-cpm-distill.jpeg) |
|
|