update Readme
Browse filesSigned-off-by: mymusise <[email protected]>
README.md
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: zh
|
3 |
+
widget:
|
4 |
+
- text: "天下熙熙,"
|
5 |
+
- text: "天气不错,"
|
6 |
+
---
|
7 |
+
|
8 |
+
<h1 align="center">
|
9 |
+
CPM-Generate-distill
|
10 |
+
</h1>
|
11 |
+
|
12 |
+
CPM(Chinese Pre-Trained Language Models), which has 2.6B parameters, made by the research team of Beijing Zhiyuan Institute of artificial intelligence and Tsinghua University @TsinghuaAI.
|
13 |
+
|
14 |
+
[repo: CPM-Generate](https://github.com/TsinghuaAI/CPM-Generate)
|
15 |
+
The One Thing You Need to Know is this model is not uploaded by official, the conver script is [here](https://github.com/mymusise/CPM-TF2Transformer/blob/main/transfor_CMP.ipynb)
|
16 |
+
|
17 |
+
And the `CPM-Generate-distill` is the distill model of `CPM`.
|
18 |
+
|
19 |
+
|
20 |
+
# How to use
|
21 |
+
|
22 |
+
How to use this model directly from the 🤗/transformers library:
|
23 |
+
|
24 |
+
```python
|
25 |
+
from transformers import XLNetTokenizer, TFGPT2LMHeadModel
|
26 |
+
from transformers import TextGenerationPipeline
|
27 |
+
import jieba
|
28 |
+
# add spicel process
|
29 |
+
class XLNetTokenizer(XLNetTokenizer):
|
30 |
+
translator = str.maketrans(" \n", "\u2582\u2583")
|
31 |
+
def _tokenize(self, text, *args, **kwargs):
|
32 |
+
text = [x.translate(self.translator) for x in jieba.cut(text, cut_all=False)]
|
33 |
+
text = " ".join(text)
|
34 |
+
return super()._tokenize(text, *args, **kwargs)
|
35 |
+
def _decode(self, *args, **kwargs):
|
36 |
+
text = super()._decode(*args, **kwargs)
|
37 |
+
text = text.replace(' ', '').replace('\u2582', ' ').replace('\u2583', '\n')
|
38 |
+
return text
|
39 |
+
|
40 |
+
tokenizer = XLNetTokenizer.from_pretrained('mymusise/CPM-Generate-distill')
|
41 |
+
model = TFGPT2LMHeadModel.from_pretrained("mymusise/CPM-Generate-distill")
|
42 |
+
|
43 |
+
text_generater = TextGenerationPipeline(model, tokenizer)
|
44 |
+
|
45 |
+
print(text_generater("天下熙熙,", max_length=15, top_k=1, use_cache=True, prefix=''))
|
46 |
+
```
|
47 |
+
|
48 |
+
![avatar](https://github.com/mymusise/CPM-TF2Transformer/raw/main/example-cpm-distill.jpeg)
|