--- language: zh widget: - text: "天下熙熙," - text: "天气不错," ---

CPM-Generate-distill

CPM(Chinese Pre-Trained Language Models), which has 2.6B parameters, made by the research team of Beijing Zhiyuan Institute of artificial intelligence and Tsinghua University @TsinghuaAI. [repo: CPM-Generate](https://github.com/TsinghuaAI/CPM-Generate) The One Thing You Need to Know is this model is not uploaded by official, the conver script is [here](https://github.com/mymusise/CPM-TF2Transformer/blob/main/transfor_CMP.ipynb) And the `CPM-Generate-distill` is the distill model of `CPM`. # How to use How to use this model directly from the 🤗/transformers library: ```python from transformers import XLNetTokenizer, TFGPT2LMHeadModel from transformers import TextGenerationPipeline import jieba # add spicel process class XLNetTokenizer(XLNetTokenizer): translator = str.maketrans(" \n", "\u2582\u2583") def _tokenize(self, text, *args, **kwargs): text = [x.translate(self.translator) for x in jieba.cut(text, cut_all=False)] text = " ".join(text) return super()._tokenize(text, *args, **kwargs) def _decode(self, *args, **kwargs): text = super()._decode(*args, **kwargs) text = text.replace(' ', '').replace('\u2582', ' ').replace('\u2583', '\n') return text tokenizer = XLNetTokenizer.from_pretrained('mymusise/CPM-Generate-distill') model = TFGPT2LMHeadModel.from_pretrained("mymusise/CPM-Generate-distill") text_generater = TextGenerationPipeline(model, tokenizer) print(text_generater("天下熙熙,", max_length=15, top_k=1, use_cache=True, prefix='')) ``` ![avatar](https://github.com/mymusise/CPM-TF2Transformer/raw/main/example-cpm-distill.jpeg)