|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: weather_classification_ViT |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9679266895761741 |
|
- name: Precision |
|
type: precision |
|
value: 0.9679235596755258 |
|
- name: Recall |
|
type: recall |
|
value: 0.9679266895761741 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9678827379290899 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# weather_classification_ViT |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1268 |
|
- Accuracy: 0.9679 |
|
- Precision: 0.9679 |
|
- Recall: 0.9679 |
|
- F1: 0.9679 |
|
- Auc: 0.9974 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| |
|
| 0.2811 | 0.2288 | 100 | 0.3139 | 0.8958 | 0.9147 | 0.8958 | 0.8970 | 0.9903 | |
|
| 0.1396 | 0.4577 | 200 | 0.2454 | 0.9278 | 0.9307 | 0.9278 | 0.9282 | 0.9919 | |
|
| 0.3761 | 0.6865 | 300 | 0.2952 | 0.9072 | 0.9117 | 0.9072 | 0.9071 | 0.9889 | |
|
| 0.2365 | 0.9153 | 400 | 0.1797 | 0.9444 | 0.9447 | 0.9444 | 0.9445 | 0.9940 | |
|
| 0.2528 | 1.1442 | 500 | 0.2470 | 0.9278 | 0.9307 | 0.9278 | 0.9278 | 0.9924 | |
|
| 0.2364 | 1.3730 | 600 | 0.2448 | 0.9261 | 0.9306 | 0.9261 | 0.9264 | 0.9934 | |
|
| 0.34 | 1.6018 | 700 | 0.1986 | 0.9404 | 0.9409 | 0.9404 | 0.9405 | 0.9929 | |
|
| 0.2001 | 1.8307 | 800 | 0.1525 | 0.9542 | 0.9548 | 0.9542 | 0.9539 | 0.9960 | |
|
| 0.0958 | 2.0595 | 900 | 0.1783 | 0.9507 | 0.9515 | 0.9507 | 0.9505 | 0.9952 | |
|
| 0.1862 | 2.2883 | 1000 | 0.1654 | 0.9553 | 0.9558 | 0.9553 | 0.9551 | 0.9952 | |
|
| 0.1021 | 2.5172 | 1100 | 0.1654 | 0.9462 | 0.9472 | 0.9462 | 0.9459 | 0.9958 | |
|
| 0.1178 | 2.7460 | 1200 | 0.1591 | 0.9525 | 0.9536 | 0.9525 | 0.9523 | 0.9960 | |
|
| 0.0474 | 2.9748 | 1300 | 0.1299 | 0.9633 | 0.9635 | 0.9633 | 0.9633 | 0.9975 | |
|
| 0.046 | 3.2037 | 1400 | 0.1384 | 0.9628 | 0.9628 | 0.9628 | 0.9627 | 0.9972 | |
|
| 0.0294 | 3.4325 | 1500 | 0.1388 | 0.9645 | 0.9644 | 0.9645 | 0.9644 | 0.9969 | |
|
| 0.1833 | 3.6613 | 1600 | 0.1346 | 0.9633 | 0.9634 | 0.9633 | 0.9633 | 0.9971 | |
|
| 0.0548 | 3.8902 | 1700 | 0.1268 | 0.9679 | 0.9679 | 0.9679 | 0.9679 | 0.9974 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|