metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: weather_classification_ViT
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9679266895761741
- name: Precision
type: precision
value: 0.9679235596755258
- name: Recall
type: recall
value: 0.9679266895761741
- name: F1
type: f1
value: 0.9678827379290899
weather_classification_ViT
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1268
- Accuracy: 0.9679
- Precision: 0.9679
- Recall: 0.9679
- F1: 0.9679
- Auc: 0.9974
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc |
---|---|---|---|---|---|---|---|---|
0.2811 | 0.2288 | 100 | 0.3139 | 0.8958 | 0.9147 | 0.8958 | 0.8970 | 0.9903 |
0.1396 | 0.4577 | 200 | 0.2454 | 0.9278 | 0.9307 | 0.9278 | 0.9282 | 0.9919 |
0.3761 | 0.6865 | 300 | 0.2952 | 0.9072 | 0.9117 | 0.9072 | 0.9071 | 0.9889 |
0.2365 | 0.9153 | 400 | 0.1797 | 0.9444 | 0.9447 | 0.9444 | 0.9445 | 0.9940 |
0.2528 | 1.1442 | 500 | 0.2470 | 0.9278 | 0.9307 | 0.9278 | 0.9278 | 0.9924 |
0.2364 | 1.3730 | 600 | 0.2448 | 0.9261 | 0.9306 | 0.9261 | 0.9264 | 0.9934 |
0.34 | 1.6018 | 700 | 0.1986 | 0.9404 | 0.9409 | 0.9404 | 0.9405 | 0.9929 |
0.2001 | 1.8307 | 800 | 0.1525 | 0.9542 | 0.9548 | 0.9542 | 0.9539 | 0.9960 |
0.0958 | 2.0595 | 900 | 0.1783 | 0.9507 | 0.9515 | 0.9507 | 0.9505 | 0.9952 |
0.1862 | 2.2883 | 1000 | 0.1654 | 0.9553 | 0.9558 | 0.9553 | 0.9551 | 0.9952 |
0.1021 | 2.5172 | 1100 | 0.1654 | 0.9462 | 0.9472 | 0.9462 | 0.9459 | 0.9958 |
0.1178 | 2.7460 | 1200 | 0.1591 | 0.9525 | 0.9536 | 0.9525 | 0.9523 | 0.9960 |
0.0474 | 2.9748 | 1300 | 0.1299 | 0.9633 | 0.9635 | 0.9633 | 0.9633 | 0.9975 |
0.046 | 3.2037 | 1400 | 0.1384 | 0.9628 | 0.9628 | 0.9628 | 0.9627 | 0.9972 |
0.0294 | 3.4325 | 1500 | 0.1388 | 0.9645 | 0.9644 | 0.9645 | 0.9644 | 0.9969 |
0.1833 | 3.6613 | 1600 | 0.1346 | 0.9633 | 0.9634 | 0.9633 | 0.9633 | 0.9971 |
0.0548 | 3.8902 | 1700 | 0.1268 | 0.9679 | 0.9679 | 0.9679 | 0.9679 | 0.9974 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1