methane6923's picture
Model save
bd85d01 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: weather_classification_ViT
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9679266895761741
          - name: Precision
            type: precision
            value: 0.9679235596755258
          - name: Recall
            type: recall
            value: 0.9679266895761741
          - name: F1
            type: f1
            value: 0.9678827379290899

weather_classification_ViT

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1268
  • Accuracy: 0.9679
  • Precision: 0.9679
  • Recall: 0.9679
  • F1: 0.9679
  • Auc: 0.9974

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Auc
0.2811 0.2288 100 0.3139 0.8958 0.9147 0.8958 0.8970 0.9903
0.1396 0.4577 200 0.2454 0.9278 0.9307 0.9278 0.9282 0.9919
0.3761 0.6865 300 0.2952 0.9072 0.9117 0.9072 0.9071 0.9889
0.2365 0.9153 400 0.1797 0.9444 0.9447 0.9444 0.9445 0.9940
0.2528 1.1442 500 0.2470 0.9278 0.9307 0.9278 0.9278 0.9924
0.2364 1.3730 600 0.2448 0.9261 0.9306 0.9261 0.9264 0.9934
0.34 1.6018 700 0.1986 0.9404 0.9409 0.9404 0.9405 0.9929
0.2001 1.8307 800 0.1525 0.9542 0.9548 0.9542 0.9539 0.9960
0.0958 2.0595 900 0.1783 0.9507 0.9515 0.9507 0.9505 0.9952
0.1862 2.2883 1000 0.1654 0.9553 0.9558 0.9553 0.9551 0.9952
0.1021 2.5172 1100 0.1654 0.9462 0.9472 0.9462 0.9459 0.9958
0.1178 2.7460 1200 0.1591 0.9525 0.9536 0.9525 0.9523 0.9960
0.0474 2.9748 1300 0.1299 0.9633 0.9635 0.9633 0.9633 0.9975
0.046 3.2037 1400 0.1384 0.9628 0.9628 0.9628 0.9627 0.9972
0.0294 3.4325 1500 0.1388 0.9645 0.9644 0.9645 0.9644 0.9969
0.1833 3.6613 1600 0.1346 0.9633 0.9634 0.9633 0.9633 0.9971
0.0548 3.8902 1700 0.1268 0.9679 0.9679 0.9679 0.9679 0.9974

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1