Edit model card

weather_classification_ViT

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1268
  • Accuracy: 0.9679
  • Precision: 0.9679
  • Recall: 0.9679
  • F1: 0.9679
  • Auc: 0.9974

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Auc
0.2811 0.2288 100 0.3139 0.8958 0.9147 0.8958 0.8970 0.9903
0.1396 0.4577 200 0.2454 0.9278 0.9307 0.9278 0.9282 0.9919
0.3761 0.6865 300 0.2952 0.9072 0.9117 0.9072 0.9071 0.9889
0.2365 0.9153 400 0.1797 0.9444 0.9447 0.9444 0.9445 0.9940
0.2528 1.1442 500 0.2470 0.9278 0.9307 0.9278 0.9278 0.9924
0.2364 1.3730 600 0.2448 0.9261 0.9306 0.9261 0.9264 0.9934
0.34 1.6018 700 0.1986 0.9404 0.9409 0.9404 0.9405 0.9929
0.2001 1.8307 800 0.1525 0.9542 0.9548 0.9542 0.9539 0.9960
0.0958 2.0595 900 0.1783 0.9507 0.9515 0.9507 0.9505 0.9952
0.1862 2.2883 1000 0.1654 0.9553 0.9558 0.9553 0.9551 0.9952
0.1021 2.5172 1100 0.1654 0.9462 0.9472 0.9462 0.9459 0.9958
0.1178 2.7460 1200 0.1591 0.9525 0.9536 0.9525 0.9523 0.9960
0.0474 2.9748 1300 0.1299 0.9633 0.9635 0.9633 0.9633 0.9975
0.046 3.2037 1400 0.1384 0.9628 0.9628 0.9628 0.9627 0.9972
0.0294 3.4325 1500 0.1388 0.9645 0.9644 0.9645 0.9644 0.9969
0.1833 3.6613 1600 0.1346 0.9633 0.9634 0.9633 0.9633 0.9971
0.0548 3.8902 1700 0.1268 0.9679 0.9679 0.9679 0.9679 0.9974

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for methane6923/weather_classification_ViT

Finetuned
(1694)
this model

Evaluation results