|
|
|
--- |
|
license: cc-by-4.0 |
|
metrics: |
|
- bleu4 |
|
- meteor |
|
- rouge-l |
|
- bertscore |
|
- moverscore |
|
language: zh |
|
datasets: |
|
- lmqg/qg_zhquad |
|
pipeline_tag: text2text-generation |
|
tags: |
|
- answer extraction |
|
widget: |
|
- text: "南安普敦的警察服务由汉普郡警察提供。 南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。 <hl> 该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。 <hl> 此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。 在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。" |
|
example_title: "Answering Extraction Example 1" |
|
model-index: |
|
- name: lmqg/mt5-base-zhquad-ae |
|
results: |
|
- task: |
|
name: Text2text Generation |
|
type: text2text-generation |
|
dataset: |
|
name: lmqg/qg_zhquad |
|
type: default |
|
args: default |
|
metrics: |
|
- name: BLEU4 (Answer Extraction) |
|
type: bleu4_answer_extraction |
|
value: 79.86 |
|
- name: ROUGE-L (Answer Extraction) |
|
type: rouge_l_answer_extraction |
|
value: 94.53 |
|
- name: METEOR (Answer Extraction) |
|
type: meteor_answer_extraction |
|
value: 68.41 |
|
- name: BERTScore (Answer Extraction) |
|
type: bertscore_answer_extraction |
|
value: 99.48 |
|
- name: MoverScore (Answer Extraction) |
|
type: moverscore_answer_extraction |
|
value: 97.97 |
|
- name: AnswerF1Score (Answer Extraction) |
|
type: answer_f1_score__answer_extraction |
|
value: 92.68 |
|
- name: AnswerExactMatch (Answer Extraction) |
|
type: answer_exact_match_answer_extraction |
|
value: 92.62 |
|
--- |
|
|
|
# Model Card of `lmqg/mt5-base-zhquad-ae` |
|
This model is fine-tuned version of [google/mt5-base](https://huggingface.co./google/mt5-base) for answer extraction on the [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). |
|
|
|
|
|
### Overview |
|
- **Language model:** [google/mt5-base](https://huggingface.co./google/mt5-base) |
|
- **Language:** zh |
|
- **Training data:** [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) (default) |
|
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/) |
|
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) |
|
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) |
|
|
|
### Usage |
|
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) |
|
```python |
|
from lmqg import TransformersQG |
|
|
|
# initialize model |
|
model = TransformersQG(language="zh", model="lmqg/mt5-base-zhquad-ae") |
|
|
|
# model prediction |
|
answers = model.generate_a("南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近南安普敦中央火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。") |
|
|
|
``` |
|
|
|
- With `transformers` |
|
```python |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("text2text-generation", "lmqg/mt5-base-zhquad-ae") |
|
output = pipe("南安普敦的警察服务由汉普郡警察提供。 南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。 <hl> 该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。 <hl> 此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。 在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。") |
|
|
|
``` |
|
|
|
## Evaluation |
|
|
|
|
|
- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co./lmqg/mt5-base-zhquad-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_zhquad.default.json) |
|
|
|
| | Score | Type | Dataset | |
|
|:-----------------|--------:|:--------|:-----------------------------------------------------------------| |
|
| AnswerExactMatch | 92.62 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
| AnswerF1Score | 92.68 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
| BERTScore | 99.48 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
| Bleu_1 | 90.95 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
| Bleu_2 | 87.44 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
| Bleu_3 | 83.75 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
| Bleu_4 | 79.86 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
| METEOR | 68.41 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
| MoverScore | 97.97 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
| ROUGE_L | 94.53 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | |
|
|
|
|
|
|
|
## Training hyperparameters |
|
|
|
The following hyperparameters were used during fine-tuning: |
|
- dataset_path: lmqg/qg_zhquad |
|
- dataset_name: default |
|
- input_types: ['paragraph_sentence'] |
|
- output_types: ['answer'] |
|
- prefix_types: None |
|
- model: google/mt5-base |
|
- max_length: 512 |
|
- max_length_output: 32 |
|
- epoch: 18 |
|
- batch: 8 |
|
- lr: 0.0001 |
|
- fp16: False |
|
- random_seed: 1 |
|
- gradient_accumulation_steps: 8 |
|
- label_smoothing: 0.15 |
|
|
|
The full configuration can be found at [fine-tuning config file](https://huggingface.co./lmqg/mt5-base-zhquad-ae/raw/main/trainer_config.json). |
|
|
|
## Citation |
|
``` |
|
@inproceedings{ushio-etal-2022-generative, |
|
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", |
|
author = "Ushio, Asahi and |
|
Alva-Manchego, Fernando and |
|
Camacho-Collados, Jose", |
|
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", |
|
month = dec, |
|
year = "2022", |
|
address = "Abu Dhabi, U.A.E.", |
|
publisher = "Association for Computational Linguistics", |
|
} |
|
|
|
``` |
|
|