mt5-base-zhquad-ae / README.md
asahi417's picture
commit files to HF hub
cb578da
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: zh
datasets:
- lmqg/qg_zhquad
pipeline_tag: text2text-generation
tags:
- answer extraction
widget:
- text: "南安普敦的警察服务由汉普郡警察提供。 南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。 <hl> 该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。 <hl> 此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。 在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。"
example_title: "Answering Extraction Example 1"
model-index:
- name: lmqg/mt5-base-zhquad-ae
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_zhquad
type: default
args: default
metrics:
- name: BLEU4 (Answer Extraction)
type: bleu4_answer_extraction
value: 79.86
- name: ROUGE-L (Answer Extraction)
type: rouge_l_answer_extraction
value: 94.53
- name: METEOR (Answer Extraction)
type: meteor_answer_extraction
value: 68.41
- name: BERTScore (Answer Extraction)
type: bertscore_answer_extraction
value: 99.48
- name: MoverScore (Answer Extraction)
type: moverscore_answer_extraction
value: 97.97
- name: AnswerF1Score (Answer Extraction)
type: answer_f1_score__answer_extraction
value: 92.68
- name: AnswerExactMatch (Answer Extraction)
type: answer_exact_match_answer_extraction
value: 92.62
---
# Model Card of `lmqg/mt5-base-zhquad-ae`
This model is fine-tuned version of [google/mt5-base](https://huggingface.co./google/mt5-base) for answer extraction on the [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/mt5-base](https://huggingface.co./google/mt5-base)
- **Language:** zh
- **Training data:** [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="zh", model="lmqg/mt5-base-zhquad-ae")
# model prediction
answers = model.generate_a("南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近南安普敦中央火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-base-zhquad-ae")
output = pipe("南安普敦的警察服务由汉普郡警察提供。 南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。 <hl> 该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。 <hl> 此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。 在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")
```
## Evaluation
- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co./lmqg/mt5-base-zhquad-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_zhquad.default.json)
| | Score | Type | Dataset |
|:-----------------|--------:|:--------|:-----------------------------------------------------------------|
| AnswerExactMatch | 92.62 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| AnswerF1Score | 92.68 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| BERTScore | 99.48 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| Bleu_1 | 90.95 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| Bleu_2 | 87.44 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| Bleu_3 | 83.75 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| Bleu_4 | 79.86 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| METEOR | 68.41 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| MoverScore | 97.97 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| ROUGE_L | 94.53 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_zhquad
- dataset_name: default
- input_types: ['paragraph_sentence']
- output_types: ['answer']
- prefix_types: None
- model: google/mt5-base
- max_length: 512
- max_length_output: 32
- epoch: 18
- batch: 8
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 8
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co./lmqg/mt5-base-zhquad-ae/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```