--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: zh datasets: - lmqg/qg_zhquad pipeline_tag: text2text-generation tags: - answer extraction widget: - text: "南安普敦的警察服务由汉普郡警察提供。 南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。 该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。 此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。 在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。" example_title: "Answering Extraction Example 1" model-index: - name: lmqg/mt5-base-zhquad-ae results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_zhquad type: default args: default metrics: - name: BLEU4 (Answer Extraction) type: bleu4_answer_extraction value: 79.86 - name: ROUGE-L (Answer Extraction) type: rouge_l_answer_extraction value: 94.53 - name: METEOR (Answer Extraction) type: meteor_answer_extraction value: 68.41 - name: BERTScore (Answer Extraction) type: bertscore_answer_extraction value: 99.48 - name: MoverScore (Answer Extraction) type: moverscore_answer_extraction value: 97.97 - name: AnswerF1Score (Answer Extraction) type: answer_f1_score__answer_extraction value: 92.68 - name: AnswerExactMatch (Answer Extraction) type: answer_exact_match_answer_extraction value: 92.62 --- # Model Card of `lmqg/mt5-base-zhquad-ae` This model is fine-tuned version of [google/mt5-base](https://huggingface.co./google/mt5-base) for answer extraction on the [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [google/mt5-base](https://huggingface.co./google/mt5-base) - **Language:** zh - **Training data:** [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="zh", model="lmqg/mt5-base-zhquad-ae") # model prediction answers = model.generate_a("南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近南安普敦中央火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mt5-base-zhquad-ae") output = pipe("南安普敦的警察服务由汉普郡警察提供。 南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。 该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。 此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。 在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。") ``` ## Evaluation - ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co./lmqg/mt5-base-zhquad-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_zhquad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:-----------------------------------------------------------------| | AnswerExactMatch | 92.62 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | | AnswerF1Score | 92.68 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | | BERTScore | 99.48 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | | Bleu_1 | 90.95 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | | Bleu_2 | 87.44 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | | Bleu_3 | 83.75 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | | Bleu_4 | 79.86 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | | METEOR | 68.41 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | | MoverScore | 97.97 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | | ROUGE_L | 94.53 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_zhquad - dataset_name: default - input_types: ['paragraph_sentence'] - output_types: ['answer'] - prefix_types: None - model: google/mt5-base - max_length: 512 - max_length_output: 32 - epoch: 18 - batch: 8 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 8 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co./lmqg/mt5-base-zhquad-ae/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```