File size: 6,711 Bytes
cb578da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: zh
datasets:
- lmqg/qg_zhquad
pipeline_tag: text2text-generation
tags:
- answer extraction
widget:
- text: "南安普敦的警察服务由汉普郡警察提供。 南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。 <hl> 该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。 <hl> 此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。 在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。"
example_title: "Answering Extraction Example 1"
model-index:
- name: lmqg/mt5-base-zhquad-ae
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_zhquad
type: default
args: default
metrics:
- name: BLEU4 (Answer Extraction)
type: bleu4_answer_extraction
value: 79.86
- name: ROUGE-L (Answer Extraction)
type: rouge_l_answer_extraction
value: 94.53
- name: METEOR (Answer Extraction)
type: meteor_answer_extraction
value: 68.41
- name: BERTScore (Answer Extraction)
type: bertscore_answer_extraction
value: 99.48
- name: MoverScore (Answer Extraction)
type: moverscore_answer_extraction
value: 97.97
- name: AnswerF1Score (Answer Extraction)
type: answer_f1_score__answer_extraction
value: 92.68
- name: AnswerExactMatch (Answer Extraction)
type: answer_exact_match_answer_extraction
value: 92.62
---
# Model Card of `lmqg/mt5-base-zhquad-ae`
This model is fine-tuned version of [google/mt5-base](https://huggingface.co./google/mt5-base) for answer extraction on the [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/mt5-base](https://huggingface.co./google/mt5-base)
- **Language:** zh
- **Training data:** [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="zh", model="lmqg/mt5-base-zhquad-ae")
# model prediction
answers = model.generate_a("南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近南安普敦中央火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-base-zhquad-ae")
output = pipe("南安普敦的警察服务由汉普郡警察提供。 南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。 <hl> 该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。 <hl> 此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。 在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")
```
## Evaluation
- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co./lmqg/mt5-base-zhquad-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_zhquad.default.json)
| | Score | Type | Dataset |
|:-----------------|--------:|:--------|:-----------------------------------------------------------------|
| AnswerExactMatch | 92.62 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| AnswerF1Score | 92.68 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| BERTScore | 99.48 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| Bleu_1 | 90.95 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| Bleu_2 | 87.44 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| Bleu_3 | 83.75 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| Bleu_4 | 79.86 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| METEOR | 68.41 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| MoverScore | 97.97 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
| ROUGE_L | 94.53 | default | [lmqg/qg_zhquad](https://huggingface.co./datasets/lmqg/qg_zhquad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_zhquad
- dataset_name: default
- input_types: ['paragraph_sentence']
- output_types: ['answer']
- prefix_types: None
- model: google/mt5-base
- max_length: 512
- max_length_output: 32
- epoch: 18
- batch: 8
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 8
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co./lmqg/mt5-base-zhquad-ae/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|