|
--- |
|
license: mit |
|
base_model: facebook/bart-large-xsum |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: text_shortening_model_v60 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# text_shortening_model_v60 |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co./facebook/bart-large-xsum) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7251 |
|
- Rouge1: 0.7246 |
|
- Rouge2: 0.5572 |
|
- Rougel: 0.6745 |
|
- Rougelsum: 0.6724 |
|
- Bert precision: 0.9227 |
|
- Bert recall: 0.9242 |
|
- Bert f1-score: 0.923 |
|
- Average word count: 8.4018 |
|
- Max word count: 16 |
|
- Min word count: 4 |
|
- Average token count: 16.1562 |
|
- % shortened texts with length > 12: 7.5893 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Bert f1-score | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:-------------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:| |
|
| 1.4241 | 1.0 | 49 | 0.7533 | 0.7094 | 0.5458 | 0.6655 | 0.6641 | 0.9182 | 0.9214 | 0.9193 | 8.3884 | 17 | 5 | 15.3661 | 6.25 | |
|
| 0.5792 | 2.0 | 98 | 0.7279 | 0.7058 | 0.5397 | 0.6587 | 0.6582 | 0.9201 | 0.9193 | 0.9192 | 8.3393 | 17 | 4 | 15.9062 | 5.3571 | |
|
| 0.4392 | 3.0 | 147 | 0.7251 | 0.7246 | 0.5572 | 0.6745 | 0.6724 | 0.9227 | 0.9242 | 0.923 | 8.4018 | 16 | 4 | 16.1562 | 7.5893 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.1 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|