ldos's picture
End of training
3f1ea5a
metadata
license: mit
base_model: facebook/bart-large-xsum
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: text_shortening_model_v60
    results: []

text_shortening_model_v60

This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7251
  • Rouge1: 0.7246
  • Rouge2: 0.5572
  • Rougel: 0.6745
  • Rougelsum: 0.6724
  • Bert precision: 0.9227
  • Bert recall: 0.9242
  • Bert f1-score: 0.923
  • Average word count: 8.4018
  • Max word count: 16
  • Min word count: 4
  • Average token count: 16.1562
  • % shortened texts with length > 12: 7.5893

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Bert f1-score Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.4241 1.0 49 0.7533 0.7094 0.5458 0.6655 0.6641 0.9182 0.9214 0.9193 8.3884 17 5 15.3661 6.25
0.5792 2.0 98 0.7279 0.7058 0.5397 0.6587 0.6582 0.9201 0.9193 0.9192 8.3393 17 4 15.9062 5.3571
0.4392 3.0 147 0.7251 0.7246 0.5572 0.6745 0.6724 0.9227 0.9242 0.923 8.4018 16 4 16.1562 7.5893

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3