--- license: mit base_model: facebook/bart-large-xsum tags: - generated_from_trainer metrics: - rouge model-index: - name: text_shortening_model_v60 results: [] --- # text_shortening_model_v60 This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co./facebook/bart-large-xsum) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7251 - Rouge1: 0.7246 - Rouge2: 0.5572 - Rougel: 0.6745 - Rougelsum: 0.6724 - Bert precision: 0.9227 - Bert recall: 0.9242 - Bert f1-score: 0.923 - Average word count: 8.4018 - Max word count: 16 - Min word count: 4 - Average token count: 16.1562 - % shortened texts with length > 12: 7.5893 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Bert f1-score | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:-------------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:| | 1.4241 | 1.0 | 49 | 0.7533 | 0.7094 | 0.5458 | 0.6655 | 0.6641 | 0.9182 | 0.9214 | 0.9193 | 8.3884 | 17 | 5 | 15.3661 | 6.25 | | 0.5792 | 2.0 | 98 | 0.7279 | 0.7058 | 0.5397 | 0.6587 | 0.6582 | 0.9201 | 0.9193 | 0.9192 | 8.3393 | 17 | 4 | 15.9062 | 5.3571 | | 0.4392 | 3.0 | 147 | 0.7251 | 0.7246 | 0.5572 | 0.6745 | 0.6724 | 0.9227 | 0.9242 | 0.923 | 8.4018 | 16 | 4 | 16.1562 | 7.5893 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3