|
--- |
|
pipeline_tag: token-classification |
|
widget: |
|
- text: سن نجورسن؟ |
|
example_title: Example 1 |
|
- text: من سنی سویرم. |
|
example_title: Example 2 |
|
- text: سن شاهین قیزین چوخ سئویرسن. |
|
example_title: Example 3 |
|
- text: آلما آلیب گلرم، سن هئچ بیر شی آلما. |
|
example_title: Example 4 |
|
language: |
|
- az |
|
metrics: |
|
- accuracy |
|
- f1 |
|
--- |
|
# POS Tagger |
|
- Type: Fine-tuned BERT-based Part-of-Speech (POS) tagging model |
|
- Description: This model has been fine-tuned using [AzerBERT](https://huggingface.co./language-ml-lab/AzerBert) for part-of-speech tagging tasks in Iranian Azerbaijani text. It can be used to annotate text with 11 POS tags, which is essential for various downstream NLP applications. |
|
|
|
## How to use |
|
```python |
|
# Use a pipeline as a high-level helper |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("token-classification", model="language-ml-lab/postagger-azb") |
|
``` |
|
|
|
```python |
|
# Load model directly |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("language-ml-lab/postagger-azb") |
|
model = AutoModelForTokenClassification.from_pretrained("language-ml-lab/postagger-azb") |
|
``` |