--- pipeline_tag: token-classification widget: - text: سن نجورسن؟ example_title: Example 1 - text: من سنی سویرم. example_title: Example 2 - text: سن شاهین قیزین چوخ سئویرسن. example_title: Example 3 - text: آلما آلیب گلرم، سن هئچ بیر شی آلما. example_title: Example 4 language: - az metrics: - accuracy - f1 --- # POS Tagger - Type: Fine-tuned BERT-based Part-of-Speech (POS) tagging model - Description: This model has been fine-tuned using [AzerBERT](https://huggingface.co./language-ml-lab/AzerBert) for part-of-speech tagging tasks in Iranian Azerbaijani text. It can be used to annotate text with 11 POS tags, which is essential for various downstream NLP applications. ## How to use ```python # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("token-classification", model="language-ml-lab/postagger-azb") ``` ```python # Load model directly from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("language-ml-lab/postagger-azb") model = AutoModelForTokenClassification.from_pretrained("language-ml-lab/postagger-azb") ```