File size: 1,206 Bytes
4fcf02f
 
 
a80586a
cd0b75e
a80586a
cd0b75e
22a60fa
cd0b75e
af717f0
 
a80586a
 
 
 
 
735fa23
 
a80586a
 
735fa23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
---
pipeline_tag: token-classification
widget:
- text: سن نجورسن؟
  example_title: Example 1
- text: من سنی سویرم.
  example_title: Example 2
- text: سن شاهین قیزین چوخ سئویرسن.
  example_title: Example 3
- text: آلما آلیب گلرم، سن هئچ بیر شی آلما.
  example_title: Example 4
language:
- az
metrics:
- accuracy
- f1
---
# POS Tagger
- Type: Fine-tuned BERT-based Part-of-Speech (POS) tagging model
- Description: This model has been fine-tuned using [AzerBERT](https://huggingface.co./language-ml-lab/AzerBert) for part-of-speech tagging tasks in Iranian Azerbaijani text. It can be used to annotate text with 11 POS tags, which is essential for various downstream NLP applications.

## How to use
```python
# Use a pipeline as a high-level helper
from transformers import pipeline

pipe = pipeline("token-classification", model="language-ml-lab/postagger-azb")
```

```python
# Load model directly
from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("language-ml-lab/postagger-azb")
model = AutoModelForTokenClassification.from_pretrained("language-ml-lab/postagger-azb")
```