metadata
library_name: transformers
base_model: motheecreator/vit-Facial-Expression-Recognition
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-Facial-Expression-Recognition
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9320388349514563
vit-Facial-Expression-Recognition
This model is a fine-tuned version of motheecreator/vit-Facial-Expression-Recognition on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1672
- Accuracy: 0.9320
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7209 | 21.6216 | 100 | 0.5301 | 0.8155 |
0.0966 | 43.2432 | 200 | 0.1672 | 0.9320 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.20.0