kriskrishna
commited on
Commit
•
a062573
1
Parent(s):
3f99aac
End of training
Browse files- README.md +79 -0
- all_results.json +6 -6
- eval_results.json +6 -6
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: motheecreator/vit-Facial-Expression-Recognition
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: vit-Facial-Expression-Recognition
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.9320388349514563
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# vit-Facial-Expression-Recognition
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [motheecreator/vit-Facial-Expression-Recognition](https://huggingface.co/motheecreator/vit-Facial-Expression-Recognition) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.1672
|
36 |
+
- Accuracy: 0.9320
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 3e-05
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 8
|
60 |
+
- total_train_batch_size: 256
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: cosine
|
63 |
+
- lr_scheduler_warmup_steps: 1000
|
64 |
+
- num_epochs: 50
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
70 |
+
| 0.7209 | 21.6216 | 100 | 0.5301 | 0.8155 |
|
71 |
+
| 0.0966 | 43.2432 | 200 | 0.1672 | 0.9320 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.45.1
|
77 |
+
- Pytorch 2.4.0+cu118
|
78 |
+
- Datasets 2.21.0
|
79 |
+
- Tokenizers 0.20.0
|
all_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_loss":
|
5 |
-
"eval_runtime":
|
6 |
-
"eval_samples_per_second":
|
7 |
-
"eval_steps_per_second": 0.
|
8 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 43.24324324324324,
|
3 |
+
"eval_accuracy": 0.9320388349514563,
|
4 |
+
"eval_loss": 0.16715261340141296,
|
5 |
+
"eval_runtime": 5.9264,
|
6 |
+
"eval_samples_per_second": 17.38,
|
7 |
+
"eval_steps_per_second": 0.675
|
8 |
}
|
eval_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_loss":
|
5 |
-
"eval_runtime":
|
6 |
-
"eval_samples_per_second":
|
7 |
-
"eval_steps_per_second": 0.
|
8 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 43.24324324324324,
|
3 |
+
"eval_accuracy": 0.9320388349514563,
|
4 |
+
"eval_loss": 0.16715261340141296,
|
5 |
+
"eval_runtime": 5.9264,
|
6 |
+
"eval_samples_per_second": 17.38,
|
7 |
+
"eval_steps_per_second": 0.675
|
8 |
}
|