kriskrishna commited on
Commit
a062573
1 Parent(s): 3f99aac

End of training

Browse files
Files changed (3) hide show
  1. README.md +79 -0
  2. all_results.json +6 -6
  3. eval_results.json +6 -6
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: motheecreator/vit-Facial-Expression-Recognition
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: vit-Facial-Expression-Recognition
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9320388349514563
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # vit-Facial-Expression-Recognition
32
+
33
+ This model is a fine-tuned version of [motheecreator/vit-Facial-Expression-Recognition](https://huggingface.co/motheecreator/vit-Facial-Expression-Recognition) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.1672
36
+ - Accuracy: 0.9320
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 3e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 8
60
+ - total_train_batch_size: 256
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: cosine
63
+ - lr_scheduler_warmup_steps: 1000
64
+ - num_epochs: 50
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|
70
+ | 0.7209 | 21.6216 | 100 | 0.5301 | 0.8155 |
71
+ | 0.0966 | 43.2432 | 200 | 0.1672 | 0.9320 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.45.1
77
+ - Pytorch 2.4.0+cu118
78
+ - Datasets 2.21.0
79
+ - Tokenizers 0.20.0
all_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
- "epoch": 8.64864864864865,
3
- "eval_accuracy": 0.44660194174757284,
4
- "eval_loss": 1.8702455759048462,
5
- "eval_runtime": 6.0614,
6
- "eval_samples_per_second": 16.993,
7
- "eval_steps_per_second": 0.66
8
  }
 
1
  {
2
+ "epoch": 43.24324324324324,
3
+ "eval_accuracy": 0.9320388349514563,
4
+ "eval_loss": 0.16715261340141296,
5
+ "eval_runtime": 5.9264,
6
+ "eval_samples_per_second": 17.38,
7
+ "eval_steps_per_second": 0.675
8
  }
eval_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
- "epoch": 8.64864864864865,
3
- "eval_accuracy": 0.44660194174757284,
4
- "eval_loss": 1.8702455759048462,
5
- "eval_runtime": 6.0614,
6
- "eval_samples_per_second": 16.993,
7
- "eval_steps_per_second": 0.66
8
  }
 
1
  {
2
+ "epoch": 43.24324324324324,
3
+ "eval_accuracy": 0.9320388349514563,
4
+ "eval_loss": 0.16715261340141296,
5
+ "eval_runtime": 5.9264,
6
+ "eval_samples_per_second": 17.38,
7
+ "eval_steps_per_second": 0.675
8
  }