--- library_name: transformers base_model: motheecreator/vit-Facial-Expression-Recognition tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-Facial-Expression-Recognition results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9320388349514563 --- # vit-Facial-Expression-Recognition This model is a fine-tuned version of [motheecreator/vit-Facial-Expression-Recognition](https://huggingface.co./motheecreator/vit-Facial-Expression-Recognition) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1672 - Accuracy: 0.9320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.7209 | 21.6216 | 100 | 0.5301 | 0.8155 | | 0.0966 | 43.2432 | 200 | 0.1672 | 0.9320 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.20.0