|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_11_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-large-es-cv11-2 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_11_0 |
|
type: common_voice_11_0 |
|
config: es |
|
split: validation[:1000] |
|
args: es |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 3.7010962486171173 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-large-es-cv11-2 |
|
|
|
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co./openai/whisper-large-v2) on the common_voice_11_0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1320 |
|
- Wer: 3.7011 |
|
- Cer: 1.0555 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2000 |
|
- training_steps: 20000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 0.1837 | 0.32 | 1000 | 0.1669 | 4.2442 | 1.2488 | |
|
| 0.1343 | 0.64 | 2000 | 0.1444 | 4.0833 | 1.2084 | |
|
| 0.1312 | 0.96 | 3000 | 0.1362 | 3.9324 | 1.1933 | |
|
| 0.1206 | 1.28 | 4000 | 0.1333 | 3.8520 | 1.1748 | |
|
| 0.1143 | 1.6 | 5000 | 0.1321 | 3.6508 | 1.0572 | |
|
| 0.1202 | 1.92 | 6000 | 0.1291 | 3.8017 | 1.1311 | |
|
| 0.0856 | 2.24 | 7000 | 0.1325 | 3.7011 | 1.0841 | |
|
| 0.1005 | 2.56 | 8000 | 0.1320 | 3.7011 | 1.0555 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.7.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|