--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: whisper-large-es-cv11-2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: es split: validation[:1000] args: es metrics: - name: Wer type: wer value: 3.7010962486171173 --- # whisper-large-es-cv11-2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co./openai/whisper-large-v2) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1320 - Wer: 3.7011 - Cer: 1.0555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.1837 | 0.32 | 1000 | 0.1669 | 4.2442 | 1.2488 | | 0.1343 | 0.64 | 2000 | 0.1444 | 4.0833 | 1.2084 | | 0.1312 | 0.96 | 3000 | 0.1362 | 3.9324 | 1.1933 | | 0.1206 | 1.28 | 4000 | 0.1333 | 3.8520 | 1.1748 | | 0.1143 | 1.6 | 5000 | 0.1321 | 3.6508 | 1.0572 | | 0.1202 | 1.92 | 6000 | 0.1291 | 3.8017 | 1.1311 | | 0.0856 | 2.24 | 7000 | 0.1325 | 3.7011 | 1.0841 | | 0.1005 | 2.56 | 8000 | 0.1320 | 3.7011 | 1.0555 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2