jonatasgrosman's picture
update model card README.md
8d717e5
|
raw
history blame
2.36 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_11_0
metrics:
  - wer
model-index:
  - name: whisper-large-es-cv11-2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_11_0
          type: common_voice_11_0
          config: es
          split: validation[:1000]
          args: es
        metrics:
          - name: Wer
            type: wer
            value: 3.7010962486171173

whisper-large-es-cv11-2

This model is a fine-tuned version of openai/whisper-large-v2 on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1320
  • Wer: 3.7011
  • Cer: 1.0555

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.1837 0.32 1000 0.1669 4.2442 1.2488
0.1343 0.64 2000 0.1444 4.0833 1.2084
0.1312 0.96 3000 0.1362 3.9324 1.1933
0.1206 1.28 4000 0.1333 3.8520 1.1748
0.1143 1.6 5000 0.1321 3.6508 1.0572
0.1202 1.92 6000 0.1291 3.8017 1.1311
0.0856 2.24 7000 0.1325 3.7011 1.0841
0.1005 2.56 8000 0.1320 3.7011 1.0555

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2