paul
update model card README.md
cb74788
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: google-vit-base-patch16-224-cartoon-face-recognition
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9004629629629629
          - name: Precision
            type: precision
            value: 0.9066341895316832
          - name: Recall
            type: recall
            value: 0.9004629629629629
          - name: F1
            type: f1
            value: 0.8984296743444529

google-vit-base-patch16-224-cartoon-face-recognition

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3707
  • Accuracy: 0.9005
  • Precision: 0.9066
  • Recall: 0.9005
  • F1: 0.8984

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00012
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0.89 6 0.5459 0.8611 0.8683 0.8611 0.8577
0.0812 1.89 12 0.4703 0.8796 0.8833 0.8796 0.8764
0.0812 2.89 18 0.4430 0.8935 0.8969 0.8935 0.8906
0.0307 3.89 24 0.4045 0.8819 0.8849 0.8819 0.8767
0.0091 4.89 30 0.3672 0.9005 0.9025 0.9005 0.8980
0.0091 5.89 36 0.3841 0.9028 0.9125 0.9028 0.9011
0.0043 6.89 42 0.3926 0.9005 0.9073 0.9005 0.8972
0.0043 7.89 48 0.3786 0.8958 0.9005 0.8958 0.8931
0.0031 8.89 54 0.3791 0.9028 0.9091 0.9028 0.9007
0.002 9.89 60 0.3677 0.9028 0.9106 0.9028 0.9001
0.002 10.89 66 0.3740 0.9028 0.9099 0.9028 0.9007
0.0027 11.89 72 0.3869 0.8981 0.9043 0.8981 0.8956
0.0027 12.89 78 0.3801 0.8981 0.9021 0.8981 0.8954
0.004 13.89 84 0.3674 0.9051 0.9113 0.9051 0.9028
0.0024 14.89 90 0.3620 0.9051 0.9096 0.9051 0.9027
0.0024 15.89 96 0.3670 0.9028 0.9089 0.9028 0.9006
0.0021 16.89 102 0.3827 0.9005 0.9065 0.9005 0.8980
0.0021 17.89 108 0.3748 0.8981 0.9049 0.8981 0.8958
0.0022 18.89 114 0.3825 0.9028 0.9101 0.9028 0.9006
0.0019 19.89 120 0.3707 0.9005 0.9066 0.9005 0.8984

Framework versions

  • Transformers 4.24.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.6.1
  • Tokenizers 0.13.1