File size: 3,955 Bytes
cb74788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: google-vit-base-patch16-224-cartoon-face-recognition
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9004629629629629
    - name: Precision
      type: precision
      value: 0.9066341895316832
    - name: Recall
      type: recall
      value: 0.9004629629629629
    - name: F1
      type: f1
      value: 0.8984296743444529
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# google-vit-base-patch16-224-cartoon-face-recognition

This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3707
- Accuracy: 0.9005
- Precision: 0.9066
- Recall: 0.9005
- F1: 0.8984

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.00012
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log        | 0.89  | 6    | 0.5459          | 0.8611   | 0.8683    | 0.8611 | 0.8577 |
| 0.0812        | 1.89  | 12   | 0.4703          | 0.8796   | 0.8833    | 0.8796 | 0.8764 |
| 0.0812        | 2.89  | 18   | 0.4430          | 0.8935   | 0.8969    | 0.8935 | 0.8906 |
| 0.0307        | 3.89  | 24   | 0.4045          | 0.8819   | 0.8849    | 0.8819 | 0.8767 |
| 0.0091        | 4.89  | 30   | 0.3672          | 0.9005   | 0.9025    | 0.9005 | 0.8980 |
| 0.0091        | 5.89  | 36   | 0.3841          | 0.9028   | 0.9125    | 0.9028 | 0.9011 |
| 0.0043        | 6.89  | 42   | 0.3926          | 0.9005   | 0.9073    | 0.9005 | 0.8972 |
| 0.0043        | 7.89  | 48   | 0.3786          | 0.8958   | 0.9005    | 0.8958 | 0.8931 |
| 0.0031        | 8.89  | 54   | 0.3791          | 0.9028   | 0.9091    | 0.9028 | 0.9007 |
| 0.002         | 9.89  | 60   | 0.3677          | 0.9028   | 0.9106    | 0.9028 | 0.9001 |
| 0.002         | 10.89 | 66   | 0.3740          | 0.9028   | 0.9099    | 0.9028 | 0.9007 |
| 0.0027        | 11.89 | 72   | 0.3869          | 0.8981   | 0.9043    | 0.8981 | 0.8956 |
| 0.0027        | 12.89 | 78   | 0.3801          | 0.8981   | 0.9021    | 0.8981 | 0.8954 |
| 0.004         | 13.89 | 84   | 0.3674          | 0.9051   | 0.9113    | 0.9051 | 0.9028 |
| 0.0024        | 14.89 | 90   | 0.3620          | 0.9051   | 0.9096    | 0.9051 | 0.9027 |
| 0.0024        | 15.89 | 96   | 0.3670          | 0.9028   | 0.9089    | 0.9028 | 0.9006 |
| 0.0021        | 16.89 | 102  | 0.3827          | 0.9005   | 0.9065    | 0.9005 | 0.8980 |
| 0.0021        | 17.89 | 108  | 0.3748          | 0.8981   | 0.9049    | 0.8981 | 0.8958 |
| 0.0022        | 18.89 | 114  | 0.3825          | 0.9028   | 0.9101    | 0.9028 | 0.9006 |
| 0.0019        | 19.89 | 120  | 0.3707          | 0.9005   | 0.9066    | 0.9005 | 0.8984 |


### Framework versions

- Transformers 4.24.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.6.1
- Tokenizers 0.13.1