paul
commited on
Commit
·
cb74788
1
Parent(s):
f2489e4
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
model-index:
|
13 |
+
- name: google-vit-base-patch16-224-cartoon-face-recognition
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Image Classification
|
17 |
+
type: image-classification
|
18 |
+
dataset:
|
19 |
+
name: imagefolder
|
20 |
+
type: imagefolder
|
21 |
+
config: default
|
22 |
+
split: train
|
23 |
+
args: default
|
24 |
+
metrics:
|
25 |
+
- name: Accuracy
|
26 |
+
type: accuracy
|
27 |
+
value: 0.9004629629629629
|
28 |
+
- name: Precision
|
29 |
+
type: precision
|
30 |
+
value: 0.9066341895316832
|
31 |
+
- name: Recall
|
32 |
+
type: recall
|
33 |
+
value: 0.9004629629629629
|
34 |
+
- name: F1
|
35 |
+
type: f1
|
36 |
+
value: 0.8984296743444529
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# google-vit-base-patch16-224-cartoon-face-recognition
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.3707
|
47 |
+
- Accuracy: 0.9005
|
48 |
+
- Precision: 0.9066
|
49 |
+
- Recall: 0.9005
|
50 |
+
- F1: 0.8984
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 0.00012
|
70 |
+
- train_batch_size: 64
|
71 |
+
- eval_batch_size: 64
|
72 |
+
- seed: 42
|
73 |
+
- gradient_accumulation_steps: 4
|
74 |
+
- total_train_batch_size: 256
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- lr_scheduler_warmup_ratio: 0.1
|
78 |
+
- num_epochs: 20
|
79 |
+
|
80 |
+
### Training results
|
81 |
+
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
+
| No log | 0.89 | 6 | 0.5459 | 0.8611 | 0.8683 | 0.8611 | 0.8577 |
|
85 |
+
| 0.0812 | 1.89 | 12 | 0.4703 | 0.8796 | 0.8833 | 0.8796 | 0.8764 |
|
86 |
+
| 0.0812 | 2.89 | 18 | 0.4430 | 0.8935 | 0.8969 | 0.8935 | 0.8906 |
|
87 |
+
| 0.0307 | 3.89 | 24 | 0.4045 | 0.8819 | 0.8849 | 0.8819 | 0.8767 |
|
88 |
+
| 0.0091 | 4.89 | 30 | 0.3672 | 0.9005 | 0.9025 | 0.9005 | 0.8980 |
|
89 |
+
| 0.0091 | 5.89 | 36 | 0.3841 | 0.9028 | 0.9125 | 0.9028 | 0.9011 |
|
90 |
+
| 0.0043 | 6.89 | 42 | 0.3926 | 0.9005 | 0.9073 | 0.9005 | 0.8972 |
|
91 |
+
| 0.0043 | 7.89 | 48 | 0.3786 | 0.8958 | 0.9005 | 0.8958 | 0.8931 |
|
92 |
+
| 0.0031 | 8.89 | 54 | 0.3791 | 0.9028 | 0.9091 | 0.9028 | 0.9007 |
|
93 |
+
| 0.002 | 9.89 | 60 | 0.3677 | 0.9028 | 0.9106 | 0.9028 | 0.9001 |
|
94 |
+
| 0.002 | 10.89 | 66 | 0.3740 | 0.9028 | 0.9099 | 0.9028 | 0.9007 |
|
95 |
+
| 0.0027 | 11.89 | 72 | 0.3869 | 0.8981 | 0.9043 | 0.8981 | 0.8956 |
|
96 |
+
| 0.0027 | 12.89 | 78 | 0.3801 | 0.8981 | 0.9021 | 0.8981 | 0.8954 |
|
97 |
+
| 0.004 | 13.89 | 84 | 0.3674 | 0.9051 | 0.9113 | 0.9051 | 0.9028 |
|
98 |
+
| 0.0024 | 14.89 | 90 | 0.3620 | 0.9051 | 0.9096 | 0.9051 | 0.9027 |
|
99 |
+
| 0.0024 | 15.89 | 96 | 0.3670 | 0.9028 | 0.9089 | 0.9028 | 0.9006 |
|
100 |
+
| 0.0021 | 16.89 | 102 | 0.3827 | 0.9005 | 0.9065 | 0.9005 | 0.8980 |
|
101 |
+
| 0.0021 | 17.89 | 108 | 0.3748 | 0.8981 | 0.9049 | 0.8981 | 0.8958 |
|
102 |
+
| 0.0022 | 18.89 | 114 | 0.3825 | 0.9028 | 0.9101 | 0.9028 | 0.9006 |
|
103 |
+
| 0.0019 | 19.89 | 120 | 0.3707 | 0.9005 | 0.9066 | 0.9005 | 0.8984 |
|
104 |
+
|
105 |
+
|
106 |
+
### Framework versions
|
107 |
+
|
108 |
+
- Transformers 4.24.0.dev0
|
109 |
+
- Pytorch 1.11.0+cu102
|
110 |
+
- Datasets 2.6.1
|
111 |
+
- Tokenizers 0.13.1
|