metadata
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
datasets:
- launch/open_question_type
metrics:
- f1
model-index:
- name: roberta-large-question-classifier
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: launch/open_question_type
type: launch/open_question_type
config: default
split: validation
args: default
metrics:
- name: F1 (macro avg.)
type: f1
value: 0.8123190611646329
- task:
name: Text Classification
type: text-classification
dataset:
name: launch/open_question_type
type: launch/open_question_type
config: default
split: test
args: default
metrics:
- name: F1 (macro avg.)
type: f1
value: 0.8
widget:
- text: >-
When two bacteria exchange genetic information, what is the process
called?
language:
- en
arxiv: 2107.00152
roberta-large-question-classifier
This model classifies questions according to the question-type ontology defined in following paper: Controllable Open-ended Question Generation with A New Question Type Ontology (Cao & Wang, ACL-IJCNLP 2021). It is a fine-tuned roberta-large on the open_question_type dataset. It achieves the following results on the test set:
precision recall f1-score support
cause 0.91 0.93 0.92 91
comparison 0.62 0.83 0.71 30
concept 0.85 0.65 0.74 54
consequence 0.80 0.73 0.76 11
disjunction 0.80 0.78 0.79 36
example 0.83 0.85 0.84 139
extent 0.82 0.94 0.87 48
judgmental 0.68 0.56 0.62 94
procedural 0.86 0.88 0.87 85
verification 0.79 0.86 0.83 72
accuracy 0.81 660
macro avg 0.80 0.80 0.80 660
weighted avg 0.81 0.81 0.81 660
Training procedure
Script: https://gist.github.com/jantrienes/329479bdad6b2a239cfcea83b9159a8a
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
1.9467 | 1.0 | 233 | 1.3099 | 0.4050 |
0.6381 | 2.0 | 466 | 0.5586 | 0.7785 |
0.628 | 3.0 | 699 | 0.6419 | 0.7831 |
0.4487 | 4.0 | 932 | 0.5770 | 0.8094 |
0.3319 | 5.0 | 1165 | 0.7713 | 0.7953 |
0.2095 | 6.0 | 1398 | 0.8799 | 0.8018 |
0.1355 | 7.0 | 1631 | 1.0646 | 0.7961 |
0.0956 | 8.0 | 1864 | 1.2175 | 0.7999 |
0.0687 | 9.0 | 2097 | 1.3647 | 0.7892 |
0.0371 | 10.0 | 2330 | 1.3809 | 0.7987 |
0.0303 | 11.0 | 2563 | 1.3591 | 0.8123 |
0.0263 | 12.0 | 2796 | 1.5317 | 0.8100 |
0.0144 | 13.0 | 3029 | 1.5726 | 0.7959 |
0.0436 | 14.0 | 3262 | 1.6160 | 0.7988 |
0.0048 | 15.0 | 3495 | 1.6826 | 0.7957 |
0.0001 | 16.0 | 3728 | 1.6913 | 0.7957 |
0.0001 | 17.0 | 3961 | 1.7076 | 0.7995 |
0.0034 | 18.0 | 4194 | 1.8018 | 0.7960 |
0.0228 | 19.0 | 4427 | 1.7457 | 0.7916 |
0.0083 | 20.0 | 4660 | 1.9279 | 0.7869 |
0.0001 | 21.0 | 4893 | 1.8367 | 0.7915 |
0.0003 | 22.0 | 5126 | 1.8620 | 0.7842 |
0.0002 | 23.0 | 5359 | 1.9192 | 0.7828 |
0.0 | 24.0 | 5592 | 1.9081 | 0.7927 |
0.0003 | 25.0 | 5825 | 1.9822 | 0.7813 |
0.0059 | 26.0 | 6058 | 1.8737 | 0.7954 |
0.0 | 27.0 | 6291 | 1.8793 | 0.7929 |
0.0 | 28.0 | 6524 | 1.8905 | 0.7940 |
0.0 | 29.0 | 6757 | 1.8971 | 0.7940 |
0.0002 | 30.0 | 6990 | 1.9002 | 0.7954 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3