File size: 4,670 Bytes
e8c0878
 
 
 
 
 
4486a84
e8c0878
 
 
 
 
 
 
 
 
4486a84
 
e8c0878
 
 
 
4486a84
e8c0878
4486a84
 
 
 
 
 
 
 
 
 
 
 
 
a9472eb
e363b70
 
a9472eb
 
9b77608
e8c0878
 
 
 
 
9b77608
 
4486a84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8c0878
 
 
c231549
 
e8c0878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4486a84
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
datasets:
- launch/open_question_type
metrics:
- f1
model-index:
- name: roberta-large-question-classifier
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: launch/open_question_type
      type: launch/open_question_type
      config: default
      split: validation
      args: default
    metrics:
    - name: F1 (macro avg.)
      type: f1
      value: 0.8123190611646329
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: launch/open_question_type
      type: launch/open_question_type
      config: default
      split: test
      args: default
    metrics:
    - name: F1 (macro avg.)
      type: f1
      value: 0.8
widget:
- text: When two bacteria exchange genetic information, what is the process called?
language:
- en
arxiv: 2107.00152
---


# roberta-large-question-classifier

This model classifies questions according to the question-type ontology defined in following paper: [Controllable Open-ended Question Generation with A New Question Type Ontology](https://aclanthology.org/2021.acl-long.502/) (Cao & Wang, ACL-IJCNLP 2021).
It is a fine-tuned [roberta-large](https://huggingface.co./roberta-large) on the [open_question_type](https://huggingface.co./datasets/launch/open_question_type) dataset. 
It achieves the following results on the test set:

```
              precision    recall  f1-score   support
       cause       0.91      0.93      0.92        91
  comparison       0.62      0.83      0.71        30
     concept       0.85      0.65      0.74        54
 consequence       0.80      0.73      0.76        11
 disjunction       0.80      0.78      0.79        36
     example       0.83      0.85      0.84       139
      extent       0.82      0.94      0.87        48
  judgmental       0.68      0.56      0.62        94
  procedural       0.86      0.88      0.87        85
verification       0.79      0.86      0.83        72
    accuracy                           0.81       660
   macro avg       0.80      0.80      0.80       660
weighted avg       0.81      0.81      0.81       660
```

## Training procedure

Script: https://gist.github.com/jantrienes/329479bdad6b2a239cfcea83b9159a8a

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.9467        | 1.0   | 233  | 1.3099          | 0.4050 |
| 0.6381        | 2.0   | 466  | 0.5586          | 0.7785 |
| 0.628         | 3.0   | 699  | 0.6419          | 0.7831 |
| 0.4487        | 4.0   | 932  | 0.5770          | 0.8094 |
| 0.3319        | 5.0   | 1165 | 0.7713          | 0.7953 |
| 0.2095        | 6.0   | 1398 | 0.8799          | 0.8018 |
| 0.1355        | 7.0   | 1631 | 1.0646          | 0.7961 |
| 0.0956        | 8.0   | 1864 | 1.2175          | 0.7999 |
| 0.0687        | 9.0   | 2097 | 1.3647          | 0.7892 |
| 0.0371        | 10.0  | 2330 | 1.3809          | 0.7987 |
| 0.0303        | 11.0  | 2563 | 1.3591          | 0.8123 |
| 0.0263        | 12.0  | 2796 | 1.5317          | 0.8100 |
| 0.0144        | 13.0  | 3029 | 1.5726          | 0.7959 |
| 0.0436        | 14.0  | 3262 | 1.6160          | 0.7988 |
| 0.0048        | 15.0  | 3495 | 1.6826          | 0.7957 |
| 0.0001        | 16.0  | 3728 | 1.6913          | 0.7957 |
| 0.0001        | 17.0  | 3961 | 1.7076          | 0.7995 |
| 0.0034        | 18.0  | 4194 | 1.8018          | 0.7960 |
| 0.0228        | 19.0  | 4427 | 1.7457          | 0.7916 |
| 0.0083        | 20.0  | 4660 | 1.9279          | 0.7869 |
| 0.0001        | 21.0  | 4893 | 1.8367          | 0.7915 |
| 0.0003        | 22.0  | 5126 | 1.8620          | 0.7842 |
| 0.0002        | 23.0  | 5359 | 1.9192          | 0.7828 |
| 0.0           | 24.0  | 5592 | 1.9081          | 0.7927 |
| 0.0003        | 25.0  | 5825 | 1.9822          | 0.7813 |
| 0.0059        | 26.0  | 6058 | 1.8737          | 0.7954 |
| 0.0           | 27.0  | 6291 | 1.8793          | 0.7929 |
| 0.0           | 28.0  | 6524 | 1.8905          | 0.7940 |
| 0.0           | 29.0  | 6757 | 1.8971          | 0.7940 |
| 0.0002        | 30.0  | 6990 | 1.9002          | 0.7954 |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3