roberta-large-question-classifier
This model classifies questions according to the question-type ontology defined in following paper: Controllable Open-ended Question Generation with A New Question Type Ontology (Cao & Wang, ACL-IJCNLP 2021). It is a fine-tuned roberta-large on the open_question_type dataset. It achieves the following results on the test set:
precision recall f1-score support
cause 0.91 0.93 0.92 91
comparison 0.62 0.83 0.71 30
concept 0.85 0.65 0.74 54
consequence 0.80 0.73 0.76 11
disjunction 0.80 0.78 0.79 36
example 0.83 0.85 0.84 139
extent 0.82 0.94 0.87 48
judgmental 0.68 0.56 0.62 94
procedural 0.86 0.88 0.87 85
verification 0.79 0.86 0.83 72
accuracy 0.81 660
macro avg 0.80 0.80 0.80 660
weighted avg 0.81 0.81 0.81 660
Training procedure
Script: https://gist.github.com/jantrienes/329479bdad6b2a239cfcea83b9159a8a
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
1.9467 | 1.0 | 233 | 1.3099 | 0.4050 |
0.6381 | 2.0 | 466 | 0.5586 | 0.7785 |
0.628 | 3.0 | 699 | 0.6419 | 0.7831 |
0.4487 | 4.0 | 932 | 0.5770 | 0.8094 |
0.3319 | 5.0 | 1165 | 0.7713 | 0.7953 |
0.2095 | 6.0 | 1398 | 0.8799 | 0.8018 |
0.1355 | 7.0 | 1631 | 1.0646 | 0.7961 |
0.0956 | 8.0 | 1864 | 1.2175 | 0.7999 |
0.0687 | 9.0 | 2097 | 1.3647 | 0.7892 |
0.0371 | 10.0 | 2330 | 1.3809 | 0.7987 |
0.0303 | 11.0 | 2563 | 1.3591 | 0.8123 |
0.0263 | 12.0 | 2796 | 1.5317 | 0.8100 |
0.0144 | 13.0 | 3029 | 1.5726 | 0.7959 |
0.0436 | 14.0 | 3262 | 1.6160 | 0.7988 |
0.0048 | 15.0 | 3495 | 1.6826 | 0.7957 |
0.0001 | 16.0 | 3728 | 1.6913 | 0.7957 |
0.0001 | 17.0 | 3961 | 1.7076 | 0.7995 |
0.0034 | 18.0 | 4194 | 1.8018 | 0.7960 |
0.0228 | 19.0 | 4427 | 1.7457 | 0.7916 |
0.0083 | 20.0 | 4660 | 1.9279 | 0.7869 |
0.0001 | 21.0 | 4893 | 1.8367 | 0.7915 |
0.0003 | 22.0 | 5126 | 1.8620 | 0.7842 |
0.0002 | 23.0 | 5359 | 1.9192 | 0.7828 |
0.0 | 24.0 | 5592 | 1.9081 | 0.7927 |
0.0003 | 25.0 | 5825 | 1.9822 | 0.7813 |
0.0059 | 26.0 | 6058 | 1.8737 | 0.7954 |
0.0 | 27.0 | 6291 | 1.8793 | 0.7929 |
0.0 | 28.0 | 6524 | 1.8905 | 0.7940 |
0.0 | 29.0 | 6757 | 1.8971 | 0.7940 |
0.0002 | 30.0 | 6990 | 1.9002 | 0.7954 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jantrienes/roberta-large-question-classifier
Base model
FacebookAI/roberta-largeDataset used to train jantrienes/roberta-large-question-classifier
Evaluation results
- F1 (macro avg.) on launch/open_question_typevalidation set self-reported0.812
- F1 (macro avg.) on launch/open_question_typetest set self-reported0.800