roberta-large-question-classifier

This model classifies questions according to the question-type ontology defined in following paper: Controllable Open-ended Question Generation with A New Question Type Ontology (Cao & Wang, ACL-IJCNLP 2021). It is a fine-tuned roberta-large on the open_question_type dataset. It achieves the following results on the test set:

              precision    recall  f1-score   support
       cause       0.91      0.93      0.92        91
  comparison       0.62      0.83      0.71        30
     concept       0.85      0.65      0.74        54
 consequence       0.80      0.73      0.76        11
 disjunction       0.80      0.78      0.79        36
     example       0.83      0.85      0.84       139
      extent       0.82      0.94      0.87        48
  judgmental       0.68      0.56      0.62        94
  procedural       0.86      0.88      0.87        85
verification       0.79      0.86      0.83        72
    accuracy                           0.81       660
   macro avg       0.80      0.80      0.80       660
weighted avg       0.81      0.81      0.81       660

Training procedure

Script: https://gist.github.com/jantrienes/329479bdad6b2a239cfcea83b9159a8a

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 512
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss F1
1.9467 1.0 233 1.3099 0.4050
0.6381 2.0 466 0.5586 0.7785
0.628 3.0 699 0.6419 0.7831
0.4487 4.0 932 0.5770 0.8094
0.3319 5.0 1165 0.7713 0.7953
0.2095 6.0 1398 0.8799 0.8018
0.1355 7.0 1631 1.0646 0.7961
0.0956 8.0 1864 1.2175 0.7999
0.0687 9.0 2097 1.3647 0.7892
0.0371 10.0 2330 1.3809 0.7987
0.0303 11.0 2563 1.3591 0.8123
0.0263 12.0 2796 1.5317 0.8100
0.0144 13.0 3029 1.5726 0.7959
0.0436 14.0 3262 1.6160 0.7988
0.0048 15.0 3495 1.6826 0.7957
0.0001 16.0 3728 1.6913 0.7957
0.0001 17.0 3961 1.7076 0.7995
0.0034 18.0 4194 1.8018 0.7960
0.0228 19.0 4427 1.7457 0.7916
0.0083 20.0 4660 1.9279 0.7869
0.0001 21.0 4893 1.8367 0.7915
0.0003 22.0 5126 1.8620 0.7842
0.0002 23.0 5359 1.9192 0.7828
0.0 24.0 5592 1.9081 0.7927
0.0003 25.0 5825 1.9822 0.7813
0.0059 26.0 6058 1.8737 0.7954
0.0 27.0 6291 1.8793 0.7929
0.0 28.0 6524 1.8905 0.7940
0.0 29.0 6757 1.8971 0.7940
0.0002 30.0 6990 1.9002 0.7954

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
56
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jantrienes/roberta-large-question-classifier

Finetuned
(282)
this model

Dataset used to train jantrienes/roberta-large-question-classifier

Evaluation results