|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: albert/albert-base-v2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: classify-articles |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# classify-articles |
|
|
|
This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co./albert/albert-base-v2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3819 |
|
- Accuracy: 0.9070 |
|
- F1: 0.9061 |
|
- Precision: 0.9126 |
|
- Recall: 0.9070 |
|
- Accuracy Label Economy: 0.9429 |
|
- Accuracy Label Politics: 0.9574 |
|
- Accuracy Label Science: 0.9362 |
|
- Accuracy Label Sports: 0.96 |
|
- Accuracy Label Technology: 0.6944 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Economy | Accuracy Label Politics | Accuracy Label Science | Accuracy Label Sports | Accuracy Label Technology | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:----------------------:|:-----------------------:|:----------------------:|:---------------------:|:-------------------------:| |
|
| 1.3703 | 1.3072 | 100 | 1.3775 | 0.4930 | 0.4238 | 0.6100 | 0.4930 | 0.8 | 0.0213 | 0.7021 | 0.72 | 0.2222 | |
|
| 0.4329 | 2.6144 | 200 | 0.4495 | 0.8977 | 0.9004 | 0.9134 | 0.8977 | 0.9429 | 0.8936 | 0.9149 | 0.96 | 0.75 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|