classify-articles / README.md
jamesbaskerville's picture
jamesbaskerville/classify-article-titles
0a830b4 verified
metadata
library_name: transformers
license: apache-2.0
base_model: albert/albert-base-v2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: classify-articles
    results: []

classify-articles

This model is a fine-tuned version of albert/albert-base-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3819
  • Accuracy: 0.9070
  • F1: 0.9061
  • Precision: 0.9126
  • Recall: 0.9070
  • Accuracy Label Economy: 0.9429
  • Accuracy Label Politics: 0.9574
  • Accuracy Label Science: 0.9362
  • Accuracy Label Sports: 0.96
  • Accuracy Label Technology: 0.6944

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Accuracy Label Economy Accuracy Label Politics Accuracy Label Science Accuracy Label Sports Accuracy Label Technology
1.3703 1.3072 100 1.3775 0.4930 0.4238 0.6100 0.4930 0.8 0.0213 0.7021 0.72 0.2222
0.4329 2.6144 200 0.4495 0.8977 0.9004 0.9134 0.8977 0.9429 0.8936 0.9149 0.96 0.75

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1
  • Datasets 2.21.0
  • Tokenizers 0.19.1