--- library_name: transformers license: apache-2.0 base_model: albert/albert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: classify-articles results: [] --- # classify-articles This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co./albert/albert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3819 - Accuracy: 0.9070 - F1: 0.9061 - Precision: 0.9126 - Recall: 0.9070 - Accuracy Label Economy: 0.9429 - Accuracy Label Politics: 0.9574 - Accuracy Label Science: 0.9362 - Accuracy Label Sports: 0.96 - Accuracy Label Technology: 0.6944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Economy | Accuracy Label Politics | Accuracy Label Science | Accuracy Label Sports | Accuracy Label Technology | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:----------------------:|:-----------------------:|:----------------------:|:---------------------:|:-------------------------:| | 1.3703 | 1.3072 | 100 | 1.3775 | 0.4930 | 0.4238 | 0.6100 | 0.4930 | 0.8 | 0.0213 | 0.7021 | 0.72 | 0.2222 | | 0.4329 | 2.6144 | 200 | 0.4495 | 0.8977 | 0.9004 | 0.9134 | 0.8977 | 0.9429 | 0.8936 | 0.9149 | 0.96 | 0.75 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1 - Datasets 2.21.0 - Tokenizers 0.19.1