File size: 7,853 Bytes
64c8d57 4ec952b 64c8d57 13e39b0 8e68401 f0a3613 13e39b0 ef79141 13e39b0 ef79141 13e39b0 ef79141 13e39b0 ef79141 13e39b0 f0a3613 4ec952b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
---
license: mit
model-index:
- name: ALMA-13B-R
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 55.55
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=haoranxu/ALMA-13B-R
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 79.45
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=haoranxu/ALMA-13B-R
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.52
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=haoranxu/ALMA-13B-R
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 36.09
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=haoranxu/ALMA-13B-R
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.3
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=haoranxu/ALMA-13B-R
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.0
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=haoranxu/ALMA-13B-R
name: Open LLM Leaderboard
---
**[ALMA-R](https://arxiv.org/abs/2401.08417)** builds upon [ALMA models](https://arxiv.org/abs/2309.11674), with further LoRA fine-tuning with our proposed **Contrastive Preference Optimization (CPO)** as opposed to the Supervised Fine-tuning used in ALMA. CPO fine-tuning requires our [triplet preference data](https://huggingface.co./datasets/haoranxu/ALMA-R-Preference) for preference learning. ALMA-R now can matches or even exceeds GPT-4 or WMT winners!
```
@misc{xu2024contrastive,
title={Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation},
author={Haoran Xu and Amr Sharaf and Yunmo Chen and Weiting Tan and Lingfeng Shen and Benjamin Van Durme and Kenton Murray and Young Jin Kim},
year={2024},
eprint={2401.08417},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{xu2023paradigm,
title={A Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models},
author={Haoran Xu and Young Jin Kim and Amr Sharaf and Hany Hassan Awadalla},
year={2023},
eprint={2309.11674},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
# Download ALMA(-R) Models and Dataset 🚀
We release six translation models presented in the paper:
- ALMA-7B
- ALMA-7B-LoRA
- **ALMA-7B-R (NEW!)**: Further LoRA fine-tuning upon ALMA-7B-LoRA with contrastive preference optimization.
- ALMA-13B
- ALMA-13B-LoRA
- **ALMA-13B-R (NEW!)**: Further LoRA fine-tuning upon ALMA-13B-LoRA with contrastive preference optimization (BEST MODEL!).
Model checkpoints are released at huggingface:
| Models | Base Model Link | LoRA Link |
|:-------------:|:---------------:|:---------:|
| ALMA-7B | [haoranxu/ALMA-7B](https://huggingface.co./haoranxu/ALMA-7B) | - |
| ALMA-7B-LoRA | [haoranxu/ALMA-7B-Pretrain](https://huggingface.co./haoranxu/ALMA-7B-Pretrain) | [haoranxu/ALMA-7B-Pretrain-LoRA](https://huggingface.co./haoranxu/ALMA-7B-Pretrain-LoRA) |
| **ALMA-7B-R (NEW!)** | [haoranxu/ALMA-7B-R (LoRA merged)](https://huggingface.co./haoranxu/ALMA-7B-R) | - |
| ALMA-13B | [haoranxu/ALMA-13B](https://huggingface.co./haoranxu/ALMA-13B) | - |
| ALMA-13B-LoRA | [haoranxu/ALMA-13B-Pretrain](https://huggingface.co./haoranxu/ALMA-13B-Pretrain) | [haoranxu/ALMA-13B-Pretrain-LoRA](https://huggingface.co./haoranxu/ALMA-13B-Pretrain-LoRA) |
| **ALMA-13B-R (NEW!)** | [haoranxu/ALMA-13B-R (LoRA merged)](https://huggingface.co./haoranxu/ALMA-13B-R) | - |
**Note that `ALMA-7B-Pretrain` and `ALMA-13B-Pretrain` are NOT translation models. They only experience stage 1 monolingual fine-tuning (20B tokens for the 7B model and 12B tokens for the 13B model), and should be utilized in conjunction with their LoRA models.**
Datasets used by ALMA and ALMA-R are also released at huggingface now (NEW!)
| Datasets | Train / Validation| Test |
|:-------------:|:---------------:|:---------:|
| Human-Written Parallel Data (ALMA) | [train and validation](https://huggingface.co./datasets/haoranxu/ALMA-Human-Parallel) | [WMT'22](https://huggingface.co./datasets/haoranxu/WMT22-Test) |
| Triplet Preference Data | [train](https://huggingface.co./datasets/haoranxu/ALMA-R-Preference) | [WMT'22](https://huggingface.co./datasets/haoranxu/WMT22-Test) and [WMT'23](https://huggingface.co./datasets/haoranxu/WMT23-Test) |
A quick start to use our best system (ALMA-13B-R) for translation. An example of translating "我爱机器翻译。" into English:
```
import torch
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
# Load base model and LoRA weights
model = AutoModelForCausalLM.from_pretrained("haoranxu/ALMA-13B-R", torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("haoranxu/ALMA-13B-R", padding_side='left')
# Add the source sentence into the prompt template
prompt="Translate this from Chinese to English:\nChinese: 我爱机器翻译。\nEnglish:"
input_ids = tokenizer(prompt, return_tensors="pt", padding=True, max_length=40, truncation=True).input_ids.cuda()
# Translation
with torch.no_grad():
generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9)
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
print(outputs)
```
Please find more details in our [GitHub repository](https://github.com/fe1ixxu/ALMA)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_haoranxu__ALMA-13B-R)
| Metric |Value|
|---------------------------------|----:|
|Avg. |49.32|
|AI2 Reasoning Challenge (25-Shot)|55.55|
|HellaSwag (10-Shot) |79.45|
|MMLU (5-Shot) |49.52|
|TruthfulQA (0-shot) |36.09|
|Winogrande (5-shot) |75.30|
|GSM8k (5-shot) | 0.00|
|