haoranxu commited on
Commit
13e39b0
·
verified ·
1 Parent(s): be7bb9b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -0
README.md CHANGED
@@ -1,3 +1,59 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+ **[ALMA-R](https://arxiv.org/abs/2401.08417)** builds upon [ALMA models](https://arxiv.org/abs/2309.11674), with further LoRA fine-tuning with our proposed **Contrastive Preference Optimization (CPO)** as opposed to the Supervised Fine-tuning used in ALMA. CPO fine-tuning requires our [triplet preference data](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) for preference learning. ALMA-R now can matches or even exceeds GPT-4 or WMT winners!
5
+
6
+
7
+ # Download ALMA(-R) Models and Dataset 🚀
8
+
9
+ We release six translation models presented in the paper:
10
+ - ALMA-7B
11
+ - ALMA-7B-LoRA
12
+ - **ALMA-7B-R (NEW!)**: Further LoRA fine-tuning upon ALMA-7B-LoRA with contrastive preference optimization.
13
+ - ALMA-13B
14
+ - ALMA-13B-LoRA
15
+ - **ALMA-13B-R (NEW!)**: Further LoRA fine-tuning upon ALMA-13B-LoRA with contrastive preference optimization (BEST MODEL!).
16
+
17
+ *We have also provided the WMT'22 and WMT'23 translation outputs from ALMA-13B-LoRA and ALMA-13B-R in the `outputs` directory. These outputs also includes our outputs of baselines and can be directly accessed and used for subsequent evaluations.*
18
+
19
+ Model checkpoints are released at huggingface:
20
+ | Models | Base Model Link | LoRA Link |
21
+ |:-------------:|:---------------:|:---------:|
22
+ | ALMA-7B | [haoranxu/ALMA-7B](https://huggingface.co/haoranxu/ALMA-7B) | - |
23
+ | ALMA-7B-LoRA | [haoranxu/ALMA-7B-Pretrain](https://huggingface.co/haoranxu/ALMA-7B-Pretrain) | [haoranxu/ALMA-7B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-7B-Pretrain-LoRA) |
24
+ | **ALMA-7B-R (NEW!)** | [haoranxu/ALMA-7B-Pretrain](https://huggingface.co/haoranxu/ALMA-7B-Pretrain) | [haoranxu/ALMA-7B-R](https://huggingface.co/haoranxu/ALMA-7B-R) |
25
+ | ALMA-13B | [haoranxu/ALMA-13B](https://huggingface.co/haoranxu/ALMA-13B) | - |
26
+ | ALMA-13B-LoRA | [haoranxu/ALMA-13B-Pretrain](https://huggingface.co/haoranxu/ALMA-13B-Pretrain) | [haoranxu/ALMA-13B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-13B-Pretrain-LoRA) |
27
+ | **ALMA-13B-R (NEW!)** | [haoranxu/ALMA-13B-Pretrain](https://huggingface.co/haoranxu/ALMA-13B-Pretrain) | [haoranxu/ALMA-13B-R](https://huggingface.co/haoranxu/ALMA-13B-R) |
28
+
29
+ **Note that `ALMA-7B-Pretrain` and `ALMA-13B-Pretrain` are NOT translation models. They only experience stage 1 monolingual fine-tuning (20B tokens for the 7B model and 12B tokens for the 13B model), and should be utilized in conjunction with their LoRA models.**
30
+
31
+ Datasets used by ALMA and ALMA-R are also released at huggingface now (NEW!)
32
+ | Datasets | Train / Validation| Test |
33
+ |:-------------:|:---------------:|:---------:|
34
+ | Human-Written Parallel Data (ALMA) | [train and validation](https://huggingface.co/datasets/haoranxu/ALMA-Human-Parallel) | [WMT'22](https://huggingface.co/datasets/haoranxu/WMT22-Test) |
35
+ | Triplet Preference Data | [train](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) | [WMT'22](https://huggingface.co/datasets/haoranxu/WMT22-Test) and [WMT'23](https://huggingface.co/datasets/haoranxu/WMT23-Test) |
36
+
37
+
38
+ A quick start to use our best system (ALMA-13B-R) for translation. An example of translating "我爱机器翻译。" into English:
39
+ ```
40
+ import torch
41
+ from peft import PeftModel
42
+ from transformers import AutoModelForCausalLM
43
+ from transformers import LlamaTokenizer
44
+
45
+ # Load base model and LoRA weights
46
+ model = AutoModelForCausalLM.from_pretrained("haoranxu/ALMA-13B-Pretrain", torch_dtype=torch.float16, device_map="auto")
47
+ model = PeftModel.from_pretrained(model, "haoranxu/ALMA-13B-R")
48
+ tokenizer = LlamaTokenizer.from_pretrained("haoranxu/ALMA-13B-Pretrain", padding_side='left')
49
+
50
+ # Add the source sentence into the prompt template
51
+ prompt="Translate this from Chinese to English:\nChinese: 我爱机器翻译。\nEnglish:"
52
+ input_ids = tokenizer(prompt, return_tensors="pt", padding=True, max_length=40, truncation=True).input_ids.cuda()
53
+
54
+ # Translation
55
+ with torch.no_grad():
56
+ generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9)
57
+ outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
58
+ print(outputs)
59
+ ```