leaderboard-pr-bot commited on
Commit
4ec952b
·
verified ·
1 Parent(s): f0a3613

Adding Evaluation Results

Browse files

This is an automated PR created with https://huggingface.co./spaces/Weyaxi/open-llm-leaderboard-results-pr

The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.

If you encounter any issues, please report them to https://huggingface.co./spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions

Files changed (1) hide show
  1. README.md +117 -1
README.md CHANGED
@@ -1,5 +1,108 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
  **[ALMA-R](https://arxiv.org/abs/2401.08417)** builds upon [ALMA models](https://arxiv.org/abs/2309.11674), with further LoRA fine-tuning with our proposed **Contrastive Preference Optimization (CPO)** as opposed to the Supervised Fine-tuning used in ALMA. CPO fine-tuning requires our [triplet preference data](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) for preference learning. ALMA-R now can matches or even exceeds GPT-4 or WMT winners!
5
  ```
@@ -72,4 +175,17 @@ outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
72
  print(outputs)
73
  ```
74
 
75
- Please find more details in our [GitHub repository](https://github.com/fe1ixxu/ALMA)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ model-index:
4
+ - name: ALMA-13B-R
5
+ results:
6
+ - task:
7
+ type: text-generation
8
+ name: Text Generation
9
+ dataset:
10
+ name: AI2 Reasoning Challenge (25-Shot)
11
+ type: ai2_arc
12
+ config: ARC-Challenge
13
+ split: test
14
+ args:
15
+ num_few_shot: 25
16
+ metrics:
17
+ - type: acc_norm
18
+ value: 55.55
19
+ name: normalized accuracy
20
+ source:
21
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=haoranxu/ALMA-13B-R
22
+ name: Open LLM Leaderboard
23
+ - task:
24
+ type: text-generation
25
+ name: Text Generation
26
+ dataset:
27
+ name: HellaSwag (10-Shot)
28
+ type: hellaswag
29
+ split: validation
30
+ args:
31
+ num_few_shot: 10
32
+ metrics:
33
+ - type: acc_norm
34
+ value: 79.45
35
+ name: normalized accuracy
36
+ source:
37
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=haoranxu/ALMA-13B-R
38
+ name: Open LLM Leaderboard
39
+ - task:
40
+ type: text-generation
41
+ name: Text Generation
42
+ dataset:
43
+ name: MMLU (5-Shot)
44
+ type: cais/mmlu
45
+ config: all
46
+ split: test
47
+ args:
48
+ num_few_shot: 5
49
+ metrics:
50
+ - type: acc
51
+ value: 49.52
52
+ name: accuracy
53
+ source:
54
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=haoranxu/ALMA-13B-R
55
+ name: Open LLM Leaderboard
56
+ - task:
57
+ type: text-generation
58
+ name: Text Generation
59
+ dataset:
60
+ name: TruthfulQA (0-shot)
61
+ type: truthful_qa
62
+ config: multiple_choice
63
+ split: validation
64
+ args:
65
+ num_few_shot: 0
66
+ metrics:
67
+ - type: mc2
68
+ value: 36.09
69
+ source:
70
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=haoranxu/ALMA-13B-R
71
+ name: Open LLM Leaderboard
72
+ - task:
73
+ type: text-generation
74
+ name: Text Generation
75
+ dataset:
76
+ name: Winogrande (5-shot)
77
+ type: winogrande
78
+ config: winogrande_xl
79
+ split: validation
80
+ args:
81
+ num_few_shot: 5
82
+ metrics:
83
+ - type: acc
84
+ value: 75.3
85
+ name: accuracy
86
+ source:
87
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=haoranxu/ALMA-13B-R
88
+ name: Open LLM Leaderboard
89
+ - task:
90
+ type: text-generation
91
+ name: Text Generation
92
+ dataset:
93
+ name: GSM8k (5-shot)
94
+ type: gsm8k
95
+ config: main
96
+ split: test
97
+ args:
98
+ num_few_shot: 5
99
+ metrics:
100
+ - type: acc
101
+ value: 0.0
102
+ name: accuracy
103
+ source:
104
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=haoranxu/ALMA-13B-R
105
+ name: Open LLM Leaderboard
106
  ---
107
  **[ALMA-R](https://arxiv.org/abs/2401.08417)** builds upon [ALMA models](https://arxiv.org/abs/2309.11674), with further LoRA fine-tuning with our proposed **Contrastive Preference Optimization (CPO)** as opposed to the Supervised Fine-tuning used in ALMA. CPO fine-tuning requires our [triplet preference data](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) for preference learning. ALMA-R now can matches or even exceeds GPT-4 or WMT winners!
108
  ```
 
175
  print(outputs)
176
  ```
177
 
178
+ Please find more details in our [GitHub repository](https://github.com/fe1ixxu/ALMA)
179
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
180
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_haoranxu__ALMA-13B-R)
181
+
182
+ | Metric |Value|
183
+ |---------------------------------|----:|
184
+ |Avg. |49.32|
185
+ |AI2 Reasoning Challenge (25-Shot)|55.55|
186
+ |HellaSwag (10-Shot) |79.45|
187
+ |MMLU (5-Shot) |49.52|
188
+ |TruthfulQA (0-shot) |36.09|
189
+ |Winogrande (5-shot) |75.30|
190
+ |GSM8k (5-shot) | 0.00|
191
+