Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,6 @@
|
|
2 |
license: mit
|
3 |
---
|
4 |
**[ALMA-R](https://arxiv.org/abs/2401.08417)** builds upon [ALMA models](https://arxiv.org/abs/2309.11674), with further LoRA fine-tuning with our proposed **Contrastive Preference Optimization (CPO)** as opposed to the Supervised Fine-tuning used in ALMA. CPO fine-tuning requires our [triplet preference data](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) for preference learning. ALMA-R now can matches or even exceeds GPT-4 or WMT winners!
|
5 |
-
|
6 |
```
|
7 |
@misc{xu2024contrastive,
|
8 |
title={Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation},
|
@@ -28,10 +27,10 @@ Model checkpoints are released at huggingface:
|
|
28 |
|:-------------:|:---------------:|:---------:|
|
29 |
| ALMA-7B | [haoranxu/ALMA-7B](https://huggingface.co/haoranxu/ALMA-7B) | - |
|
30 |
| ALMA-7B-LoRA | [haoranxu/ALMA-7B-Pretrain](https://huggingface.co/haoranxu/ALMA-7B-Pretrain) | [haoranxu/ALMA-7B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-7B-Pretrain-LoRA) |
|
31 |
-
| **ALMA-7B-R (NEW!)** | [haoranxu/ALMA-7B-
|
32 |
| ALMA-13B | [haoranxu/ALMA-13B](https://huggingface.co/haoranxu/ALMA-13B) | - |
|
33 |
| ALMA-13B-LoRA | [haoranxu/ALMA-13B-Pretrain](https://huggingface.co/haoranxu/ALMA-13B-Pretrain) | [haoranxu/ALMA-13B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-13B-Pretrain-LoRA) |
|
34 |
-
| **ALMA-13B-R (NEW!)** | [haoranxu/ALMA-13B-
|
35 |
|
36 |
**Note that `ALMA-7B-Pretrain` and `ALMA-13B-Pretrain` are NOT translation models. They only experience stage 1 monolingual fine-tuning (20B tokens for the 7B model and 12B tokens for the 13B model), and should be utilized in conjunction with their LoRA models.**
|
37 |
|
@@ -45,14 +44,12 @@ Datasets used by ALMA and ALMA-R are also released at huggingface now (NEW!)
|
|
45 |
A quick start to use our best system (ALMA-13B-R) for translation. An example of translating "我爱机器翻译。" into English:
|
46 |
```
|
47 |
import torch
|
48 |
-
from peft import PeftModel
|
49 |
from transformers import AutoModelForCausalLM
|
50 |
-
from transformers import
|
51 |
|
52 |
# Load base model and LoRA weights
|
53 |
-
model = AutoModelForCausalLM.from_pretrained("haoranxu/ALMA-13B-
|
54 |
-
|
55 |
-
tokenizer = LlamaTokenizer.from_pretrained("haoranxu/ALMA-13B-Pretrain", padding_side='left')
|
56 |
|
57 |
# Add the source sentence into the prompt template
|
58 |
prompt="Translate this from Chinese to English:\nChinese: 我爱机器翻译。\nEnglish:"
|
|
|
2 |
license: mit
|
3 |
---
|
4 |
**[ALMA-R](https://arxiv.org/abs/2401.08417)** builds upon [ALMA models](https://arxiv.org/abs/2309.11674), with further LoRA fine-tuning with our proposed **Contrastive Preference Optimization (CPO)** as opposed to the Supervised Fine-tuning used in ALMA. CPO fine-tuning requires our [triplet preference data](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) for preference learning. ALMA-R now can matches or even exceeds GPT-4 or WMT winners!
|
|
|
5 |
```
|
6 |
@misc{xu2024contrastive,
|
7 |
title={Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation},
|
|
|
27 |
|:-------------:|:---------------:|:---------:|
|
28 |
| ALMA-7B | [haoranxu/ALMA-7B](https://huggingface.co/haoranxu/ALMA-7B) | - |
|
29 |
| ALMA-7B-LoRA | [haoranxu/ALMA-7B-Pretrain](https://huggingface.co/haoranxu/ALMA-7B-Pretrain) | [haoranxu/ALMA-7B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-7B-Pretrain-LoRA) |
|
30 |
+
| **ALMA-7B-R (NEW!)** | [haoranxu/ALMA-7B-R (LoRA merged)](https://huggingface.co/haoranxu/ALMA-7B-R) | - |
|
31 |
| ALMA-13B | [haoranxu/ALMA-13B](https://huggingface.co/haoranxu/ALMA-13B) | - |
|
32 |
| ALMA-13B-LoRA | [haoranxu/ALMA-13B-Pretrain](https://huggingface.co/haoranxu/ALMA-13B-Pretrain) | [haoranxu/ALMA-13B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-13B-Pretrain-LoRA) |
|
33 |
+
| **ALMA-13B-R (NEW!)** | [haoranxu/ALMA-13B-R (LoRA merged)](https://huggingface.co/haoranxu/ALMA-13B-R) | - |
|
34 |
|
35 |
**Note that `ALMA-7B-Pretrain` and `ALMA-13B-Pretrain` are NOT translation models. They only experience stage 1 monolingual fine-tuning (20B tokens for the 7B model and 12B tokens for the 13B model), and should be utilized in conjunction with their LoRA models.**
|
36 |
|
|
|
44 |
A quick start to use our best system (ALMA-13B-R) for translation. An example of translating "我爱机器翻译。" into English:
|
45 |
```
|
46 |
import torch
|
|
|
47 |
from transformers import AutoModelForCausalLM
|
48 |
+
from transformers import AutoTokenizer
|
49 |
|
50 |
# Load base model and LoRA weights
|
51 |
+
model = AutoModelForCausalLM.from_pretrained("haoranxu/ALMA-13B-R", torch_dtype=torch.float16, device_map="auto")
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained("haoranxu/ALMA-13B-R", padding_side='left')
|
|
|
53 |
|
54 |
# Add the source sentence into the prompt template
|
55 |
prompt="Translate this from Chinese to English:\nChinese: 我爱机器翻译。\nEnglish:"
|