|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: google/bert_uncased_L-4_H-128_A-2 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: bert_uncased_L-4_H-128_A-2_mrpc |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE MRPC |
|
type: glue |
|
args: mrpc |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7573529411764706 |
|
- name: F1 |
|
type: f1 |
|
value: 0.840064620355412 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_uncased_L-4_H-128_A-2_mrpc |
|
|
|
This model is a fine-tuned version of [google/bert_uncased_L-4_H-128_A-2](https://huggingface.co./google/bert_uncased_L-4_H-128_A-2) on the GLUE MRPC dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5327 |
|
- Accuracy: 0.7574 |
|
- F1: 0.8401 |
|
- Combined Score: 0.7987 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 10 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| |
|
| 0.6437 | 1.0 | 15 | 0.6181 | 0.6838 | 0.8122 | 0.7480 | |
|
| 0.6197 | 2.0 | 30 | 0.6047 | 0.6912 | 0.8158 | 0.7535 | |
|
| 0.595 | 3.0 | 45 | 0.5877 | 0.6985 | 0.8161 | 0.7573 | |
|
| 0.582 | 4.0 | 60 | 0.5687 | 0.7279 | 0.8284 | 0.7782 | |
|
| 0.5617 | 5.0 | 75 | 0.5594 | 0.7279 | 0.8295 | 0.7787 | |
|
| 0.5409 | 6.0 | 90 | 0.5550 | 0.7132 | 0.8208 | 0.7670 | |
|
| 0.5213 | 7.0 | 105 | 0.5417 | 0.7255 | 0.8245 | 0.7750 | |
|
| 0.4968 | 8.0 | 120 | 0.5530 | 0.7328 | 0.8310 | 0.7819 | |
|
| 0.4741 | 9.0 | 135 | 0.5580 | 0.7353 | 0.8333 | 0.7843 | |
|
| 0.4545 | 10.0 | 150 | 0.5390 | 0.7549 | 0.8397 | 0.7973 | |
|
| 0.4366 | 11.0 | 165 | 0.5327 | 0.7574 | 0.8401 | 0.7987 | |
|
| 0.4206 | 12.0 | 180 | 0.5350 | 0.7598 | 0.8424 | 0.8011 | |
|
| 0.397 | 13.0 | 195 | 0.5649 | 0.7549 | 0.8447 | 0.7998 | |
|
| 0.3873 | 14.0 | 210 | 0.5602 | 0.7623 | 0.8482 | 0.8052 | |
|
| 0.3725 | 15.0 | 225 | 0.5622 | 0.7525 | 0.8399 | 0.7962 | |
|
| 0.3506 | 16.0 | 240 | 0.5588 | 0.7525 | 0.8374 | 0.7949 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.20.3 |
|
|