gokulsrinivasagan's picture
End of training
5d42281 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: google/bert_uncased_L-4_H-128_A-2
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: bert_uncased_L-4_H-128_A-2_mrpc
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE MRPC
          type: glue
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7573529411764706
          - name: F1
            type: f1
            value: 0.840064620355412

bert_uncased_L-4_H-128_A-2_mrpc

This model is a fine-tuned version of google/bert_uncased_L-4_H-128_A-2 on the GLUE MRPC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5327
  • Accuracy: 0.7574
  • F1: 0.8401
  • Combined Score: 0.7987

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.6437 1.0 15 0.6181 0.6838 0.8122 0.7480
0.6197 2.0 30 0.6047 0.6912 0.8158 0.7535
0.595 3.0 45 0.5877 0.6985 0.8161 0.7573
0.582 4.0 60 0.5687 0.7279 0.8284 0.7782
0.5617 5.0 75 0.5594 0.7279 0.8295 0.7787
0.5409 6.0 90 0.5550 0.7132 0.8208 0.7670
0.5213 7.0 105 0.5417 0.7255 0.8245 0.7750
0.4968 8.0 120 0.5530 0.7328 0.8310 0.7819
0.4741 9.0 135 0.5580 0.7353 0.8333 0.7843
0.4545 10.0 150 0.5390 0.7549 0.8397 0.7973
0.4366 11.0 165 0.5327 0.7574 0.8401 0.7987
0.4206 12.0 180 0.5350 0.7598 0.8424 0.8011
0.397 13.0 195 0.5649 0.7549 0.8447 0.7998
0.3873 14.0 210 0.5602 0.7623 0.8482 0.8052
0.3725 15.0 225 0.5622 0.7525 0.8399 0.7962
0.3506 16.0 240 0.5588 0.7525 0.8374 0.7949

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3