--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-4_H-128_A-2 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_uncased_L-4_H-128_A-2_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7573529411764706 - name: F1 type: f1 value: 0.840064620355412 --- # bert_uncased_L-4_H-128_A-2_mrpc This model is a fine-tuned version of [google/bert_uncased_L-4_H-128_A-2](https://huggingface.co./google/bert_uncased_L-4_H-128_A-2) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5327 - Accuracy: 0.7574 - F1: 0.8401 - Combined Score: 0.7987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6437 | 1.0 | 15 | 0.6181 | 0.6838 | 0.8122 | 0.7480 | | 0.6197 | 2.0 | 30 | 0.6047 | 0.6912 | 0.8158 | 0.7535 | | 0.595 | 3.0 | 45 | 0.5877 | 0.6985 | 0.8161 | 0.7573 | | 0.582 | 4.0 | 60 | 0.5687 | 0.7279 | 0.8284 | 0.7782 | | 0.5617 | 5.0 | 75 | 0.5594 | 0.7279 | 0.8295 | 0.7787 | | 0.5409 | 6.0 | 90 | 0.5550 | 0.7132 | 0.8208 | 0.7670 | | 0.5213 | 7.0 | 105 | 0.5417 | 0.7255 | 0.8245 | 0.7750 | | 0.4968 | 8.0 | 120 | 0.5530 | 0.7328 | 0.8310 | 0.7819 | | 0.4741 | 9.0 | 135 | 0.5580 | 0.7353 | 0.8333 | 0.7843 | | 0.4545 | 10.0 | 150 | 0.5390 | 0.7549 | 0.8397 | 0.7973 | | 0.4366 | 11.0 | 165 | 0.5327 | 0.7574 | 0.8401 | 0.7987 | | 0.4206 | 12.0 | 180 | 0.5350 | 0.7598 | 0.8424 | 0.8011 | | 0.397 | 13.0 | 195 | 0.5649 | 0.7549 | 0.8447 | 0.7998 | | 0.3873 | 14.0 | 210 | 0.5602 | 0.7623 | 0.8482 | 0.8052 | | 0.3725 | 15.0 | 225 | 0.5622 | 0.7525 | 0.8399 | 0.7962 | | 0.3506 | 16.0 | 240 | 0.5588 | 0.7525 | 0.8374 | 0.7949 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3