lewtun's picture
lewtun HF staff
Add evaluation results on cnn_dailymail dataset
d384f25
|
raw
history blame
2.08 kB
---
tags:
- summarization
- en
- seq2seq
- mbart
- Abstractive Summarization
- generated_from_trainer
datasets:
- cnn_dailymail
model-index:
- name: mbert-finetune-en-cnn
results:
- task:
type: summarization
name: Summarization
dataset:
name: cnn_dailymail
type: cnn_dailymail
config: 3.0.0
split: train
metrics:
- name: ROUGE-1
type: rouge
value: 41.3565
verified: true
- name: ROUGE-2
type: rouge
value: 20.9762
verified: true
- name: ROUGE-L
type: rouge
value: 30.5179
verified: true
- name: ROUGE-LSUM
type: rouge
value: 38.6104
verified: true
- name: loss
type: loss
value: 2.0099785327911377
verified: true
- name: gen_len
type: gen_len
value: 79.3514
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbert-finetune-en-cnn
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co./facebook/mbart-large-50) on the cnn_dailymail dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5577
- Rouge-1: 37.69
- Rouge-2: 16.47
- Rouge-l: 35.53
- Gen Len: 79.93
- Bertscore: 74.92
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 5
- label_smoothing_factor: 0.1
### Training results
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1