lewtun's picture
lewtun HF staff
Add evaluation results on cnn_dailymail dataset
d384f25
|
raw
history blame
2.08 kB
metadata
tags:
  - summarization
  - en
  - seq2seq
  - mbart
  - Abstractive Summarization
  - generated_from_trainer
datasets:
  - cnn_dailymail
model-index:
  - name: mbert-finetune-en-cnn
    results:
      - task:
          type: summarization
          name: Summarization
        dataset:
          name: cnn_dailymail
          type: cnn_dailymail
          config: 3.0.0
          split: train
        metrics:
          - name: ROUGE-1
            type: rouge
            value: 41.3565
            verified: true
          - name: ROUGE-2
            type: rouge
            value: 20.9762
            verified: true
          - name: ROUGE-L
            type: rouge
            value: 30.5179
            verified: true
          - name: ROUGE-LSUM
            type: rouge
            value: 38.6104
            verified: true
          - name: loss
            type: loss
            value: 2.0099785327911377
            verified: true
          - name: gen_len
            type: gen_len
            value: 79.3514
            verified: true

mbert-finetune-en-cnn

This model is a fine-tuned version of facebook/mbart-large-50 on the cnn_dailymail dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5577
  • Rouge-1: 37.69
  • Rouge-2: 16.47
  • Rouge-l: 35.53
  • Gen Len: 79.93
  • Bertscore: 74.92

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • num_epochs: 5
  • label_smoothing_factor: 0.1

Training results

Framework versions

  • Transformers 4.20.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1