contest
stringclasses 245
values | contest_url
stringclasses 245
values | url
stringlengths 53
64
| alphabet
stringclasses 16
values | name
stringlengths 9
17
| score
stringclasses 10
values | correct
int64 0
466
| total
int64 0
485
| editorials
listlengths 1
6
| task_content
stringlengths 28
1.49k
|
---|---|---|---|---|---|---|---|---|---|
OMC148 | https://onlinemathcontest.com/contests/omc148 | https://onlinemathcontest.com/contests/omc148/tasks/4902 | B | OMC148(B) | 100 | 353 | 358 | [
{
"content": "ãé解ã®æ¡ä»¶ã¯ $b^2=4ac$ ãšèšããããããïŒãããš $4a^2+c^2=b^2$ ãã $4a^2-4ac+c^2=(2a-c)^2=0$ïŒãã£ãŠ $a+c=12$ ããã³ $2a=c$ ã«ãã $(a,b,c)=(4,\\pm 8\\sqrt{2},8)$ ã§ããïŒæ±ããå€ã¯ $\\mathbf {131072}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/4902"
}
] | ãå®æ° $a,b,c$ ã以äžã®æ¡ä»¶ãã¿ãããŸãïŒ
$$a\neq0, \quad a+c=12, \quad 4a^2+c^2=b^2.$$
$x$ ã® $2$ 次æ¹çšåŒ $ax^2+bx+c=0$ ãé解ããã€ãšãïŒ$(abc)^2$ ãæ±ããŠãã ããïŒ |
OMC148 | https://onlinemathcontest.com/contests/omc148 | https://onlinemathcontest.com/contests/omc148/tasks/4606 | C | OMC148(C) | 300 | 238 | 316 | [
{
"content": "ãå®æ° $a_k$, $a_{k+1}$ ã $a_k+\\dfrac{1}{a_k}=a_{k+1}+\\dfrac{1}{a_{k+1}}$ ãã¿ããããšã¯ïŒ$a_k=a_{k+1}$ ãŸã㯠$a_k=\\dfrac{1}{a_{k+1}}$ ã§ããããšãšåå€ã§ããïŒãã£ãŠ $a_1$ ãã $a_{3939}$ ã¯ãã¹ãŠ $a_1$ ãŸã㯠$\\dfrac{1}{a_1}$ ã§ããããïŒãã®ãã¡ $a_1$ ã®æ°ã $n$ åãšãããšïŒ$a_1=1$ ã®ãšã㯠$n$ ã¯ããã€ãšããŠãããïŒïŒ\r\n$$a_1n+ \\frac{3939-n}{a_1}=3939$$\r\nã§ããïŒãã㯠$(n(a_1+1)-3939)(a_1-1)=0$ ãšåå€ã§ããããïŒæ¡ä»¶ãã¿ãã $a_1$ 㯠$(3939ã®çŽæ°)-1$ ã§è¡šãããã®ã $1$ ã§ããïŒ$3939=3\\times13\\times101$ ããïŒ$3939$ ã®çŽæ°ã®åæ°ã¯ $2^3=8$ åïŒçŽæ°ã®ç·å㯠$4\\times14\\times102=5712$ ãªã®ã§ïŒæ±ããç·å㯠$5712-8+1=\\mathbf {5705}$ ãšãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/4606"
}
] | ãæ£ã®å®æ°ãããªãæ°å $\\{a_n\\}\_{n=1,2,..3939}$ ã¯ïŒä»»æã® $1$ ä»¥äž $3938$ 以äžã®æŽæ° $k$ ã«ã€ããŠ
$$a_k+\dfrac{1}{a_k}=a_{k+1}+\dfrac{1}{a_{k+1}}$$
ãã¿ãããŸãïŒããã« $a_1+a_2+\cdots+a_{3939}=3939$ ã§ãããšãïŒ$a_1$ ãšããŠãããã**æ£ã®æŽæ°å€**ã®ç·åãæ±ããŠãã ããïŒ |
OMC148 | https://onlinemathcontest.com/contests/omc148 | https://onlinemathcontest.com/contests/omc148/tasks/5748 | D | OMC148(D) | 300 | 165 | 262 | [
{
"content": "ãäžè¬ã« $2022$ ã $N$ ã«çœ®ãããïŒç·ç©ã $3$ ã§å²ã£ãäœãã $1,2$ ã§ããçµããããã $X_N,Y_N$ åãããšããïŒ\\\r\nããã®ãšãïŒ$7, 13$ 㯠$3$ ã§å²ã£ãŠ $1$ äœãïŒ$2, 5, 11$ 㯠$3$ ã§å²ã£ãŠ $2$ äœãããšããïŒä»¥äžã®ããã«æŒžååŒãç«ãŠãããïŒ\r\n$$X_{N+1}=2X_N+3Y_N, \\quad Y_{N+1}=3X_N+2Y_N$$\r\n$X_1=2,Y_1=3$ ãšããããŠããã解ãã° $X_N=\\dfrac{5^N+(-1)^N}{2}$ ãšãªãïŒFermatã®å°å®çãã以äžã®ããã«èšç®ã§ããïŒ\r\n$$X_{2022} \\equiv \\dfrac{5^{2022}+1}{2} \\equiv \\dfrac{5^6+1}{2} \\equiv \\textbf{1762} \\pmod{2017}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/5748"
},
{
"content": "æ¡ä»¶ãæºããçµã®åæ°ã¯ïŒ$2, 5, 7, 11, 13$ ã®äžãã $2022$ åããããã®æ°ãéžã¶éžã³æ¹ã®ãã¡ïŒ$2, 5, 11$ ãåèšå¶æ°åéžã°ãããã®ã®æ°ã§ãã. ããã¯ïŒ$f(x)=(3x+2)^{2022}$ ã®å¶æ°æ¬¡ã®ä¿æ°ã®ç·åã«çããïŒä»¥äžã®ããã«æ±ãããã.\r\n$$\\dfrac{f(1)+f(-1)}{2}\\equiv \\dfrac{5^{2022}+(-1)^{2022}}{2}\\equiv \\dfrac{5^{2022}+1}{2}\\equiv \\dfrac{5^6+1}{2}\\equiv \\textbf{1762} \\pmod{2017}$$\r\n(ãã ãïŒfermatã®å°å®çãçšãã. )",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/5748/201"
},
{
"content": "ã$13$ 以äžã®çŽ æ°ã®ãã¡ïŒ$7,13$ 㯠$3$ ã§å²ã£ãŠ $1$ äœãïŒ$2,5,11$ 㯠$3$ ã§å²ã£ãŠ $2$ äœãã®ã§ïŒ$a_1,a_2,\\ldots,a_{2022}$ ã®ãã¡ïŒ$7,13$ ãåèšå¶æ°åïŒ$2,5,11$ ãåèšå¶æ°ååºçŸããã°ããïŒããããïŒ\r\n$$N = \\sum_{k=0}^{1011} {}\\_{2022}\\mathrm{C}\\_{2k} \\cdot 2^{2k} \\cdot 3^{2022-2k} $$\r\nãšæ±ããããïŒããã§ïŒæçåŒ\r\n$$\\frac{1}{2} \\lbrace(x+y)^{2n} + (x-y)^{2n}\\rbrace = \\sum_{k=0}^{n} {}\\_{2n}\\mathrm{C}\\_{2k} x^{2k} y^{2n-2k}$$\r\nã« $x = 2 , y = 3 , n = 1011$ ã代å
¥ããããšã§\r\n$$N = \\frac{1}{2} \\lbrace 5^{2022} + (-1)^{2022} \\rbrace$$\r\nãåŸãããïŒãã£ãŠïŒFermatã®å°å®çãçšããŠïŒæ±ãããã®ã¯ $\\mathbf{1762}$ ãšåããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/5748/202"
}
] | ã$13$ 以äžã®çŽ æ°ã®çµ $(a_1, a_2, âŠ, a_{2022})$ ã§ãã£ãŠïŒ
$$\prod_{k=1}^{2022} a_k \equiv 1 \pmod 3$$
ãã¿ãããã®ã¯ $N$ åååšããã®ã§ïŒ$N$ ãçŽ æ° $2017$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ |
OMC148 | https://onlinemathcontest.com/contests/omc148 | https://onlinemathcontest.com/contests/omc148/tasks/4190 | E | OMC148(E) | 500 | 34 | 86 | [
{
"content": "ã$F_1 = F_2 = 1$ ãã€ä»»æã®æŽæ° $n$ ã«å¯Ÿã㊠$F_{n+2} = F_{n+1} + F_{n}$ ãæºããããã«æ°å $\\\\{F_n\\\\}$ ãå®ãããšïŒ$$f(n,m) = (-1)^{n+m}F_{n-m-2} + F_{m+2}$$ ã§ããããšãåž°çŽçã«ç¢ºãããããïŒåŸã£ãŠïŒ$F_{-n} = (-1)^{n+1}F_{n}$ ã«æ°ãã€ããã°ïŒ\r\n$$(-1)^{a}F_{7880-a} + F_{a+2} = F_{3943} - F_{3939}$$\r\nãæºããæ£ã®æŽæ° $a$ ãæ±ããã°è¯ãããšãåããïŒ$a$ ã $3942$ 以äžãŸã㯠$3936$ 以äžã®ãšãïŒ\r\n$$|(-1)^aF_{7880-a} + F_{a+2}| \\ge |F_{a+2} - F_{|7880 - a|}| \\ge F_{3944} - F_{3938} \\gt F_{3943} - F_{3939}$$\r\nããäžé©ã§ããããïŒãã以å€ã®å Žåã«ã€ããŠããããèšç®ããããšã§ïŒé©ããã®ã¯ $a = 3938,3940,3941$ ã§ããããšãåããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf{11819}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/4190"
}
] | ãæ£ã®æŽæ° $2$ ã€ã®çµã«å¯ŸããŠå®çŸ©ããæŽæ°å€ããšãé¢æ° $f$ ã¯ïŒä»»æã®æ£ã®æŽæ° $n, m$ ã«å¯ŸããŠä»¥äžãã¿ãããŸãïŒ
- $f(n, m) + f(n, m+1) = f(n, m+2)$
- $f(n,1) + 1 = f(n+1, 2)$
- $f(n,2) + 2 = f(n+1, 3)$
- $f(1,1) = f(1,2) = 1$
ãã®ãšãïŒ$f(7882,a) = f(4,3941)$ ãšãªãããæ£ã®æŽæ° $a$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC148 | https://onlinemathcontest.com/contests/omc148 | https://onlinemathcontest.com/contests/omc148/tasks/5909 | F | OMC148(F) | 500 | 11 | 54 | [
{
"content": "ãåè§åœ¢ $AXYP$ ã¯é·æ¹åœ¢ã§ããããšã«æ°ãã€ããã°ïŒ\r\n$$\\sin \\angle XIY=\\sin \\angle PYQ=\\sin \\angle PAQ$$\r\nã§ããã®ã§ïŒ$IX=4x, IY=5x, XY=3x$ ãšãããïŒãŸãïŒ$\\angle AIO=90^\\circ$ ã§ãããã $AI=IX=4x$ ã§ããïŒåŸã£ãŠïŒæ¹ã¹ãã®å®çãã\r\n$$QI=\\dfrac{AIÃIX}{IY}=\\dfrac{16x}{5}$$\r\nã§ããã®ã§ïŒ\r\n$$PI-QI=IY-QI=\\dfrac{9x}{5}=1$$\r\nããããïŒ$x=\\dfrac{5}{9}$ ã§ããïŒ\r\nããã§ïŒ$$PX=AY=\\sqrt{AX^2+XY^2}=\\sqrt{73}x$$ ã§ããïŒãŸãïŒ$BC$ ã®äžç¹ã $M$ ãšãããšïŒ$P, O, M, X$ ã¯åäžçŽç·äžã«ããããïŒ$XI^2=XB^2=XM\\times XP$ ã§ããïŒãããã£ãŠïŒäžè§åœ¢ $XIM$ ãš $XPI$ ã¯çžäŒŒã§ããããïŒ$$PI:IM=PX:IX=\\sqrt{73}:4.$$ ãã£ãŠïŒ$$IM=\\dfrac{4}{\\sqrt{73}}Ã5x=\\dfrac{20x}{\\sqrt{73}}$$ ãåŸãããïŒãŸãïŒ$$XM=\\dfrac{XI^2}{XP}=\\dfrac{16}{\\sqrt{73}}x$$ ã§ããïŒãããã£ãŠïŒ$$BM^2=PMÃMX=\\dfrac{57x}{\\sqrt{73}}Ã\\dfrac{16x}{\\sqrt{73}}=\\dfrac{912x^2}{73}$$ ã§ããããïŒäžç·å®çãã\r\n$$IB^2+IC^2=2(BM^2+IM^2)=\\dfrac{2624}{73}x^2=\\dfrac{2624}{73}Ã\\dfrac{25}{81}=\\dfrac{65600}{5913}$$\r\nãšãªãïŒãã£ãŠè§£çãã¹ãå€ã¯ $\\textbf{71513}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/5909"
},
{
"content": "ã$\\angle AIO = 90^\\circ$ ããã³åè§åœ¢ $AXYP$ ãé·æ¹åœ¢ã§ããããšãå©çšããŠ\r\n$$ IY = PI = 5x,\\qquad XY = 3x,\\qquad IX = AI = 4x $$\r\nãšããããšãããŸã§ã¯[å
¬åŒè§£èª¬](.\\/)ãšåãïŒããã« $IO = \\dfrac32\\\\,x$ ããïŒ$\\triangle ABC$ ã®å€æ¥åã®ååŸã $\\dfrac{\\sqrt{73}}2\\\\,x$ ã§ããããšãåããïŒãŸã $x = \\dfrac59$ ã¯ïŒå
¬åŒè§£èª¬ã®æ¹ã¹ãã«æ°ãä»ããªããŠãïŒæ±ããããšã¯ã§ããïŒ\r\n<details><summary>æ¹ã¹ãã䜿ããªãæ¹æ³<\\/summary>\r\n\r\nã$Q$ ãã $IO$ ã«äžããåç·ã®è¶³ã $H$ ãšããŠïŒ$\\triangle IXY$ ãš $\\triangle QHI$ ã®çžäŒŒãã\r\n$$\\begin{aligned}\r\n&\\frac{73}4\\\\,x^2 = OQ^2 = QH^2 + (HI + IO)^2 = \\left(\\frac45\\\\,QI\\right)^2 + \\left(\\frac35\\\\,QI + \\frac32\\\\,x\\right)^2 = QI^2 + \\frac95\\\\,x\\times QI + \\frac94\\\\,x^2\\\\\\\\\r\n&\\mathopen{}\\Longrightarrow\\\\;\\left(QI + 5x\\right)\\left(QI - \\frac{16}5\\\\,x\\right) = 0 \\qquad\\therefore 1 = PI - QI = 5x - \\frac{16}5\\\\, x = \\frac95\\\\, x\\\\;\\Longrightarrow\\\\; x = \\frac59.\r\n\\end{aligned}$$\r\n<\\/details>\r\n\r\nããã㊠$BX = CX = IX\\\\;(=4x)$ ãšãªãããšã¯æåäºå®ã§ïŒ$\\alpha \\coloneqq \\angle BXO = \\angle CXO,$ã$\\beta \\coloneqq \\angle IXO$ \r\nãšãããš\r\n$$ \\cos \\alpha = \\frac{BX\\/2}{OX} = \\frac4{\\sqrt{73}},\\qquad \\cos \\beta = \\frac{IX}{OX} = \\frac8{\\sqrt{73}},$$\r\n$$ \\begin{aligned}\r\nIB ^2 + IC^2\\\\!\\\\! &\\stackrel{\\phantom{ãã}}{=} \\left(2 \\times 4x \\sin\\frac{\\alpha - \\beta}2\\right)^2 + \\left(2 \\times 4x \\sin\\frac{\\alpha + \\beta}2\\right)^2 \\\\\\\\\r\n&\\stackrel{\\text{åè§}}{=}64x^2\\left(\\frac{1-\\cos(\\alpha - \\beta)}2 + \\frac{1-\\cos(\\alpha + \\beta)}2\\right) \\\\\\\\\r\n&\\stackrel{\\text{ç©å}}{=} 64x^2\\left(1 - \\cos \\alpha \\cos \\beta\\right) = 64 \\times \\left(\\frac59\\right)^2 \\left(1 - \\frac4{\\sqrt{73}} \\times \\frac8{\\sqrt{73}}\\right) = \\frac{65600}{5913}.\r\n\\end{aligned} $$\r\nããªãã¡çã㯠$\\bm{71513}$ïŒ",
"text": "äžè§é¢æ°",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/5909/203"
}
] | ãéè§äžè§åœ¢ $ABC$ ã«ã€ããŠïŒãã®å€æ¥åã $\Gamma$ïŒå
å¿ã $I$ïŒå€å¿ã $O$ ãšãïŒçŽç· $AI, AO$ ãš $\Gamma$ ã®äº€ç¹ããããã $X, Y(\neq A)$ ãšããŸã. ããã«ïŒçŽç· $XO, YI$ ãš $\Gamma$ ã®äº€ç¹ããããã $P(\neq X), Q(\neq Y)$ ãšãããšïŒä»¥äžãæç«ããŸããïŒ
$$\sin \angle PAQ=\dfrac{3}{5},\quad \angle AIO=90^\circ,\quad PI-QI=1.$$
ãã®ãšãïŒ$IB^2+IC^2$ ã®å€ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ãæ±ããŠãã ããïŒ |
OMC147 (for beginners) | https://onlinemathcontest.com/contests/omc147 | https://onlinemathcontest.com/contests/omc147/tasks/229 | A | OMC147(A) | 100 | 413 | 428 | [
{
"content": "ãé äœãäžãã£ã人ã¯å¿
ãååšãïŒã〠$200$ 人以äžã§ããïŒ\\\r\nãéã«ïŒ$1$ æ¥ç®çµäºæç¹ã« $i$ äœã ã£ã人ã $A_i$ ãšããã°ïŒ$200$ 以äžã®æ£æŽæ° $n$ ã«å¯Ÿã $2$ æ¥ç®ã®æ瞟ã $1$ äœããé ã«\r\n$$A_{n+1},A_{n+2},\\cdots,A_{n+200},A_{1},A_{2},\\cdots,A_{n},A_{n+201},\\cdots,A_{400}$$\r\nã§ããå Žåãèããããšã§ïŒã¡ããã© $n$ 人ã®é äœãäžããç¶æ³ãåŸãããïŒ\\\r\nã以äžããïŒè§£çãã¹ãå€ã¯ $1+2+\\cdots+200=\\textbf{20100}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc147/editorial/229"
}
] | ãããã³ã³ãã¹ã㯠$2$ æ¥éãããªãïŒ$400$ 人ãåå ããŸããïŒ$1$ æ¥ç®çµäºæç¹ãš $2$ æ¥ç®çµäºæç¹ã®æ瞟ãæ¯èŒãããšãã«ïŒé äœã®äžãã£ã人ãã¡ããã© $200$ 人ãããšãïŒé äœã®äžãã£ã人ã®æ°ãšããŠããããå€ã®ç·åã解çããŠãã ããïŒ\
ããã ãïŒåæ¥çµäºæç¹ã§ $2$ 人以äžãåãé äœã«ãªãããšã¯ç¡ããã®ãšããŸãïŒ |
OMC147 (for beginners) | https://onlinemathcontest.com/contests/omc147 | https://onlinemathcontest.com/contests/omc147/tasks/223 | B | OMC147(B) | 200 | 325 | 359 | [
{
"content": "ã$D$ ã¯äžè§åœ¢ $ABE$ ã®å€å¿ã§ããããïŒ$BD=DE=EC=4$ ãåŸãïŒãã£ãŠïŒå¯Ÿç§°æ§ã«ãã $ADE$ ã¯æ£äžè§åœ¢ã§ããããšããããããïŒäžè§åœ¢ $ABC$ ã® $BC$ ãåºèŸºãšãããšãã®é«ã㯠$2\\sqrt{3}$ ã§ããïŒåŸã£ãŠïŒé¢ç©ã¯ \r\n$$12\\times2\\sqrt3\\div2=12\\sqrt{3}=\\sqrt{\\textbf{432}}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc147/editorial/223"
}
] | ã$AB=AC$ ãªãäºç蟺äžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $BC$ äžã® $2$ ç¹ $D,E$ ã
$$AD=BD=4,\quad CE=DE,\quad \angle BAE=90^\circ$$
ãã¿ãããšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMC147 (for beginners) | https://onlinemathcontest.com/contests/omc147 | https://onlinemathcontest.com/contests/omc147/tasks/296 | C | OMC147(C) | 200 | 347 | 354 | [
{
"content": "ãæ¡ä»¶ã«ãã $P$ ã® $x$ 座æšã¯ $Q$ ã® $x$ 座æšãã倧ããããšã«çæããïŒçŽç· $PR$ ãš $x$ 軞ãšã®äº€ç¹ã $A$ïŒçŽç· $QR$ ãš $y$ 軞ã®äº€ç¹ã $B$ ãšããã°ïŒäžè§åœ¢ $OAP$ ããã³äžè§åœ¢ $OBQ$ ã®é¢ç©ã¯ãšãã« $24$ ã§ããïŒäžæ¹ã§åè§åœ¢ $OARB$ ã¯é·æ¹åœ¢ã§ããããïŒçŽç· $OR$ ã¯åè§åœ¢ $OPRQ$ ã®é¢ç©ãäºçåããïŒããªãã¡çŽç· $OR$ ãåŒ $y=\\dfrac{x}{2}$ ã§è¡šãããããšããïŒ$R$ ã®åº§æšã¯ $(12,6)$ ã§äžãããïŒæ±ããã¹ã $P$ ã® $x$ 座æšã¯ $\\textbf{12}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc147/editorial/296"
}
] | ã$O$ ãåç¹ãšããçŽäº€åº§æšå¹³é¢ã«ãããŠïŒæ²ç· $xy=48\ (x\gt 0)$ äžã« $2$ ç¹ $P,~Q$ ããããŸãïŒ$P$ ãéã $y$ 軞ã«å¹³è¡ãªçŽç·ãšïŒ$Q$ ãéã $x$ 軞ã«å¹³è¡ãªçŽç·ã®äº€ç¹ $R$ ãæ²ç· $xy=72$ äžã«ããïŒçŽç· $y=\dfrac{x}{2}$ ãåè§åœ¢ $OPRQ$ ã®é¢ç©ãäºçåãããšãïŒ$P$ ã® $x$ 座æšãæ±ããŠãã ããïŒ |
OMC147 (for beginners) | https://onlinemathcontest.com/contests/omc147 | https://onlinemathcontest.com/contests/omc147/tasks/283 | D | OMC147(D) | 300 | 127 | 307 | [
{
"content": "ãç·åã®é·ãã $1$ ãšããŠããïŒ$r$ ã $1$ æªæºã®æ£ã®æçæ°ãšãããšãïŒå·Šç«¯ãã $r$ ã®äœçœ®ã«ããç¹ã«åããŠæå°ãä»ãã®ã¯ïŒ$r$ ãæ¢çŽåæ°ã§è¡šãããšãã®åæ¯ã $a$ ãšãããšã $a$ åç®ã®æäœã§ããïŒåŸã£ãŠïŒ$f(n)$ 㯠$n$ 以äžã®æ£æŽæ°ã§ $n$ ãšäºãã«çŽ ãªãã®ã®åæ°ã«çãã(Eulerã®ããŒã·ã§ã³ãé¢æ°)ïŒ$n$ ã®çŽ å æ°å解ã $n=p_1^{a_1}\\cdots p_k^{a_k}$ ãšãããšã\r\n$$f(n)=(p_1^{a_1}-p_1^{a_1-1})\\cdots(p_k^{a_k}-p_k^{a_k-1})$$\r\nãæãç«ã€ïŒãã㧠$g(p,a)=p^a-p^{a-1}\\bigl(=f(p^a)\\bigr)$ ãšããïŒããã $32$ ã®çŽæ°ã«ãªããããªçµ $(p,a)$ ã«ã€ããŠèããïŒ\r\n\r\n- $g(p,a)=1$ïŒ$(p,a)=(2,1)$\r\n- $g(p,a)=2$ïŒ$(p,a)=(2,2),(3,1)$\r\n- $g(p,a)=4$ïŒ$(p,a)=(2,3),(5,1)$\r\n- $g(p,a)=8$ïŒ$(p,a)=(2,4)$\r\n- $g(p,a)=16$ïŒ$(p,a)=(2,5),(17,1)$\r\n- $g(p,a)=32$ïŒ$(p,a)=(2,6)$\r\n\r\nããããã $p$ ãéè€ãããç©ã $32$ ãšãªãããã«éžæããã°ããïŒ$f(n)=32$ ãªã $n$ ã¯ä»¥äžã§äžããããïŒ\r\n$$51,\\quad 64,\\quad 68,\\quad 80,\\quad 96,\\quad 102,\\quad 120$$\r\nç¹ã«ïŒãããã®ç·å㯠$\\textbf{581}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc147/editorial/283"
}
] | ãç·å $S$ ãããïŒä»¥äžã®æäœã $n=2,3,4,\ldots$ ã®é ã«è¡ããŸãïŒ
- $S$ ã $n$ çåãã $n-1$ åã®ç¹ããããã«ã€ããŠïŒããã«æå°ãä»ããŠããªããšãæ°ãã«æå°ãä»ããïŒ
- ãã®ãšãïŒæ°ãã«ä»ããæå°ã®æ°ã $f(n)$ ãšããïŒ
äŸãã°ïŒ$f(2)=1$ïŒ$f(3)=2$ïŒ$f(4)=2$ïŒ$f(5)=4$ïŒ$f(6)=2$ ã§ãïŒ\
ã$f(x)=32$ ãã¿ãã $2$ 以äžã®æŽæ° $x$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC147 (for beginners) | https://onlinemathcontest.com/contests/omc147 | https://onlinemathcontest.com/contests/omc147/tasks/3355 | E | OMC147(E) | 400 | 74 | 137 | [
{
"content": "**è£é¡.**ãä»»æã®æ£ã®å¶æ° $m$ ã«ã€ããŠ\r\n\r\n$$\r\n\\sum_{k = 0}^{m - 1} \\cos \\frac{2k\\pi}{m} = 0.\r\n$$\r\n\r\n**蚌æ.**ã$m$ ãå¶æ°ã§ããããšãã次ã®ããã«èšç®ã§ããïŒ\r\n\r\n$$\r\n\\sum_{k = 0}^{m - 1} \\cos \\frac{2k\\pi}{m} = \\sum_{k = 0}^{(m\\/2) - 1} \\bigg(\\cos \\frac{2k\\pi}{m} + \\cos \\bigg(\\frac{2k\\pi}{m} + \\pi\\bigg)\\bigg) = 0\r\n$$\r\n\r\n----\r\n\r\nãåé¡æäžã® $123456$ ãä»»æã® $4$ ã®åæ° $n$ ã«çœ®ãæããŠè§£ãïŒè£é¡ã«ããïŒæ¬¡ã®ãããªåŒå€åœ¢ãå¯èœïŒ\r\n\r\n$$\r\n\\sum_{a = 0}^{n - 2}\\sum_{b = a + 1}^{n - 1}\\cos\\frac{2a\\pi}{n}\\cos\\frac{2b\\pi}{n}\r\n= \\frac{1}{2}\\Bigg(\\Bigg(\\sum_{k = 0}^{n - 1}\\cos\\frac{2k\\pi}{n}\\Bigg)^2 - \\sum_{k = 0}^{n - 1}\\cos^2\\frac{2k\\pi}{n}\\Bigg)\r\n= -\\frac{1}{2} \\sum_{k = 0}^{n - 1}\\cos^2\\frac{2k\\pi}{n}\r\n$$\r\n\r\nããŸãïŒåè§ã®å
¬åŒãšè£é¡ã«ããïŒ$n\\/2$ ãå¶æ°ã§ããããšã«æ°ãã€ããã°æ¬¡ããããïŒ\r\n\r\n$$\r\n\\begin{aligned}\r\n\\sum_{k = 0}^{n - 1}\\cos^2\\frac{2k\\pi}{n} &= \\sum_{k = 0}^{n - 1}\\frac{1 + \\cos\\frac{4k\\pi}{n}}{2} \\\\\\\\\r\n&= \\frac{n}{2} + \\frac{1}{2}\\sum_{k = 0}^{(n\\/2) - 1}\\cos\\frac{2k\\pi}{n\\/2} + \\frac{1}{2}\\sum_{k = 0}^{(n\\/2) - 1}\\cos\\bigg(\\frac{2k\\pi}{n\\/2} + 2\\pi\\bigg) \\\\\\\\\r\n&= \\frac{n}{2}\r\n\\end{aligned}\r\n$$\r\n\r\nã以äžã«ããæ±ããç·å㯠$-\\dfrac{n}{4}$ ã§ããããïŒæ±ããå€ã¯ $\\bigg(- \\dfrac{123456}{4}\\bigg)^2 = \\bf{952586496}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc147/editorial/3355"
}
] | ã$0 \le a \lt b \lt 123456$ ãªãæŽæ°ã®çµ $(a, b)$ ãã¹ãŠã«ã€ããŠïŒ
$$\biggl(\cos\dfrac{2a\pi}{123456}\biggr)\biggl(\cos\dfrac{2b\pi}{123456}\biggr)$$
ã足ãåãããå€ã® $2$ ä¹ãæ±ããŠäžããïŒ |
OMC147 (for beginners) | https://onlinemathcontest.com/contests/omc147 | https://onlinemathcontest.com/contests/omc147/tasks/3017 | F | OMC147(F) | 400 | 9 | 66 | [
{
"content": "ãåãã¹ãé ç¹ãšãïŒäžå¿ãè·é¢ $\\sqrt{5}$ ã®é¢ä¿ã«ãã $2$ ãã¹ã®éã«ç¡å蟺ã匵ã£ãã°ã©ã $G_n$ ã«ãããŠïŒEulerè·¯ããã€éšåã°ã©ãã®èŸºæ°ãæ倧åããã°ããïŒãŸãïŒ$G_n$ ã®èŸºæ° $T(n)$ ã«ã€ããŠïŒ$T(n)=4(n-1)(n-2)$ ãæç«ããããšããããïŒããã¯ïŒ$4$ çš®é¡ã®ãåŸããããããããã€èŸºã«ã€ããŠèããããšã§ç¢ºèªã§ããïŒ\\\r\nã$G_3$ ã¯ãã¹ãŠã®é ç¹ã®æ¬¡æ°ãå¶æ°ã§ããããEuleréè·¯ããã€ïŒ$n\\geq 4$ ã«å¯ŸãïŒ$G_n$ ã¯æ¬¡æ° $3$ ã®é ç¹ã $8$ åæã€ããïŒå°ãªããšã $6$ 蟺ãåãé€ããªããã°äžçæžãå¯èœãšãªããªãïŒãã ã $G_4$ ã«éãïŒæ¬¡æ° $3$ ã®é ç¹ã©ãããçµã¶ $3$ 蟺ãåãé€ãã°ããïŒä»¥äžããŸãšãããšïŒ\r\n$$M(n)=\r\n\\begin{cases}\r\n8 && (n=3) \\\\\\\\\r\n21 && (n=4) \\\\\\\\\r\n2(2n^2-6n+1) && (n\\geq 5)\r\n\\end{cases}$$\r\nãšãªãïŒ$2(2n^2-6n+1)$ ã $10$ ã§å²ã£ãäœã㯠$2,4,4,2,8$ ãšåšæããããïŒä»¥äžã«ããæ±ããç·åã¯\r\n$$8+1+(2+4+4+2+8) \\times 199= \\bold {3989}$$\r\nã§ããïŒãªãïŒ$n\\gt4$ ã«ãããŠå®éã« $M(n) = T(n) - 6$ ãæç«ããããšã¯ïŒ$n=7$ ã®å Žåã®ä»¥äžã®äŸãšåæ§ã«ããŠå·Šäžãšå³äžãšå·Šäžã® $6$ ã€ã®èŸºãåãé€ãããšã§ïŒæ¬¡æ°ãå¥æ°ã§ããé ç¹ãã¡ããã© $2$ åãšãªãããšãã確ãããããïŒ\r\n![figure 1](\\/images\\/7jUGLO4HeD2NkWEKq7lpFmysLIkJQnek4RMMRtj0)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc147/editorial/3017"
}
] | ã$n\times n$ ã®ãã¹ç®ããããŸãïŒ\
ãOMCåã¯ãã€ãã®é§ã $1$ ã€æã£ãŠããïŒãããé©åœãªãã¹ $A_0$ ã«çœ®ããŸãïŒããããïŒä»¥äžã®æ¡ä»¶ãã¿ããããã«**ãã€ãã®ç§»å**ãã¡ããã© $m$ åç¹°ãè¿ããŸãïŒ
- $k=1,\ldots,m$ ã«ã€ããŠïŒãã€ãã $k$ å移åããæç¹ã§äœçœ®ãããã¹ã $A_k$ ãšãããšãïŒ$m$ åã®éå $\\{A_0,A_1\\}, \\{A_1,A_2\\}, \ldots, \\{A_{m-1},A_m\\}$ ã¯çžç°ãªãïŒ
ããã®ãããªç§»åãå¯èœãª $m$ ãšããŠããããæ倧ã®å€ã $M(n)$ ãšãããŸãïŒ\
ã$n=3,4,\ldots,999$ ããããã«å¯ŸããŠã$M(n)$ ã $10$ ã§å²ã£ãäœãããèšç®ãïŒãããã®ç·åãæ±ããŠãã ããïŒ
<details><summary>**ãã€ãã®ç§»å**ã«ã€ããŠ<\/summary>
ããã€ã㯠$1$ åã®ç§»åã§ïŒäžå³ã®ããã«äžå¿ãè·é¢ $\sqrt{5}$ ã®é¢ä¿ã«ããä»»æã®ãã¹ã«ç§»ãããšãã§ããŸãïŒãã ãïŒãã®éçšã§ãã¹ç®ããåºãŠã¯ãããŸããïŒ
![figure 1](\/images\/Agvf8I8y6LHFjgehdpNFQrDXweb5Zm2f9lzNljRG)
<\/details> |
SOMC001 | https://onlinemathcontest.com/contests/somc001 | https://onlinemathcontest.com/contests/somc001/tasks/1928 | A | SOMC001(A) | 100 | 193 | 218 | [
{
"content": "ãåçŽç· $PO$ äžã« $OR=10$ ãªãç¹ $R$ ããšããšïŒ$PXO$ ãš $PQR$ ã¯çžäŒŒãªäžè§åœ¢ã§ããïŒçžäŒŒæ¯ã¯ $1:6$ ã§ããããïŒç¹ $Q$ ã¯ã€ãã« $RQ=18$ ãã¿ããïŒéã«ãã®ãã㪠$Q$ ã¯ãã¹ãŠæ¡ä»¶ãã¿ããããïŒæ±ããè»è·¡ã¯ååŸ $18$ ã®ååšã§ããïŒè§£çãã¹ãå€ã¯ $\\textbf{18}$ ã§ããïŒäžè¬ã«ïŒãã®èšŒæãšåæ§ã«ããŠåã $1$ ç¹ãäžå¿ãšããŠçžäŒŒæ¡å€§ããŠåŸãããå³åœ¢ã¯ã€ãã«åã§ããããšãåŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc001/editorial/1928"
}
] | ãå¹³é¢äžã«ïŒå®ç¹ $O$ ãäžå¿ãšããååŸ $3$ ã®å $C$ ãš$OP=2$ ãªãå®ç¹ $P$ ããããŸãïŒ\
ãç¹ $Q$ ã以äžã®æ¡ä»¶ããšãã«ã¿ãããªããåããšãïŒãã®è»è·¡ã¯ååšããªããŸãïŒãã®ååŸãæ±ããŠãã ããïŒ
- $Q$ ã¯å $C$ ã®å€éšïŒåšäžãå«ãŸãªãïŒã«ããïŒ
- ç·å $PQ$ ãšå $C$ ã®äº€ç¹ã $X$ ãšãããšïŒ$PX:QX=1:5$ ã§ããïŒ |
SOMC001 | https://onlinemathcontest.com/contests/somc001 | https://onlinemathcontest.com/contests/somc001/tasks/3331 | B | SOMC001(B) | 200 | 191 | 219 | [
{
"content": "ãäžå€®ã®ãã¹ç®ã« $4$ ã®åæ°ïŒ$4$ ãŸã㯠$8$ïŒãæžã蟌ãåŠãã§å Žååããè¡ãïŒ\r\n- æžã蟌ããšãïŒä»ã®ãã¹ç®ãžã®æžã蟌ã¿æ¹ã«ãããæ¡ä»¶ãã¿ããããïŒ$2 \\times 8!$ éã.\r\n- æžã蟌ãŸãªããšãïŒæ¡ä»¶ãã¿ãããã㪠$4$ ãš $8$ ã®æžã蟌ã¿æ¹ã¯ $4$ éãã§ããããïŒ$4 \\times 7!$ éãïŒ\r\n\r\n以äžã«ããïŒæ¡ä»¶ãã¿ããæžã蟌ã¿æ¹ã¯ $\\bf{ 100800 }$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc001/editorial/3331"
}
] | ã$3 \times 3$ ã®ãã¹ç®ã®åãã¹ã«ïŒæ¬¡ã®æ¡ä»¶ãã¿ããããã« $1$ ä»¥äž $9$ 以äžã®æŽæ°ãäžåºŠãã€æžã蟌ãæ¹æ³ã¯äœéããããŸããïŒãããã§ïŒå転ãè£è¿ãã«ãã£ãŠäžèŽããæžã蟌ã¿æ¹ãåºå¥ããŸãïŒ
- ã©ã® $2 \times 2$ ã®éšåãã¹ç®ã«ã€ããŠãïŒãã®äžã« $4$ ã®åæ°ãæžããããã¹ãå«ãŸããŠããïŒ
ããªãïŒã$2\times 2$ ã®éšåãã¹ç®ããšã¯ïŒé£æ¥ãã $2$ è¡ãšé£æ¥ãã $2$ åã®å
±ééšåãšãªã $4$ ãã¹ã®ããšããããŸãïŒ |
SOMC001 | https://onlinemathcontest.com/contests/somc001 | https://onlinemathcontest.com/contests/somc001/tasks/1711 | C | SOMC001(C) | 200 | 152 | 212 | [
{
"content": "ã$t=x^2+x+1$ ãšãããšïŒäžåŒã¯ $t$ ã®é¢æ°ãšããŠä»¥äžã®ããã«æžããããããïŒ\r\n$$\\biggl(f(t):=\\biggr)t+1+\\dfrac{1}{9t}$$\r\nãã㧠$t$ 㯠$3\\/4$ 以äžã®å®æ°å€ããšãããšã«çæããïŒããã§ïŒ$a\\gt b\\geq 3\\/4$ ã«ã€ããŠ\r\n$$f(a)-f(b)=\\dfrac{(a-b)(9ab-1)}{9ab}\\gt 0$$\r\nã«ããïŒãã®ç¯å²ã§ $f$ ã¯å調å¢å ã§ããããïŒæ±ããæå°å€ã¯ $f\\left(\\dfrac{3}{4}\\right)=\\dfrac{205}{108}$ ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{313}$ ã§ããïŒå®çŽã«çžå ã»çžä¹å¹³åã®é¢ä¿ã«é£ã³ä»ããš $\\dfrac{5}{3}$ ã«ãªãããã ãïŒçå·æç«æ¡ä»¶ã®èæ
®ãè©äŸ¡ãšåçã«éèŠã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc001/editorial/1711"
}
] | ã$x$ ãå®æ°å
šäœãåããšãïŒä»¥äžã®ãšãããæå°ã®å€ãæ±ããŠãã ããïŒ
$$x^2+x+2+\dfrac{1}{9x^2+9x+9}$$
ãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
SOMC001 | https://onlinemathcontest.com/contests/somc001 | https://onlinemathcontest.com/contests/somc001/tasks/1345 | D | SOMC001(D) | 300 | 113 | 165 | [
{
"content": "ãå æ°å®çã«ããïŒ$P(x)$ 㯠$l+m+n=1345$ ãªãæ£æŽæ° $l, m, n$ ã«ãã£ãŠ\r\n$$P(x)=(x-4)^l (x-6)^m (x-9)^n $$\r\nãšè¡šããïŒç¹ã« $p=2l+m$ ãšããã°ïŒ$3\\leq p\\leq 2687$ ã§ããïŒ$P(x)$ ã®å®æ°é
㯠$-2^p\\times 3^{2690-p}$ ãšè¡šããïŒ\\\r\nãéã« $p$ ã¯ãã®ç¯å²ãã¹ãŠããšãããããïŒç¹ã«æ±ããã¹ãå Žåã®æ°ã¯ $\\textbf{2685}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc001/editorial/1345"
}
] | ãæé«æ¬¡ä¿æ°ã $1$ ã§ãããããªæŽæ°ä¿æ° $1345$ 次å€é
åŒ $P(x)$ ã«ã€ããŠïŒ$x$ ã®æ¹çšåŒ $P(x)=0$ ãè€çŽ æ°ã®ç¯å²ã§è§£ããšïŒãã®è§£ã¯ $x=4$ïŒ$x=6$ïŒ$x=9$ ã®ã¡ããã© $3$ ã€ãšãªããŸããïŒ$P(x)$ ã®å®æ°é
ãšããŠããããå€ã¯ããã€ãããŸããïŒ |
OMC146 (for experts) | https://onlinemathcontest.com/contests/omc146 | https://onlinemathcontest.com/contests/omc146/tasks/1871 | A | OMC146(A) | 300 | 226 | 273 | [
{
"content": "ãéè² æŽæ° $n$ ã«å¯Ÿã $n^{n}$ ã $5$ ã§å²ã£ãããŸãã $f(n)$ ã§è¡šãïŒæŽæ° $q,r\\~(0\\leq r\\leq 4)$ ãçšã $n=5q+r$ ãšè¡šããããšãïŒ$f(n)$ 㯠$r^{5q+r}$ ã $5$ ã§å²ã£ãããŸãã«çããïŒ\\\r\nã$r=0,1,\\ldots,4$ ã«å¯ŸããŠïŒ$q$ ã $0,1,2,\\dots$ ãšåããããšã $r^{5q+r}$ ã $5$ ã§å²ã£ãããŸãã¯\r\n- $r = 0$ ã®ãšãïŒ$0, 0, 0, 0, 0, 0, 0, 0, 0, \\cdots$\r\n- $r = 1$ ã®ãšãïŒ$1, 1, 1, 1, 1, 1, 1, 1, 1, \\cdots$\r\n- $r = 2$ ã®ãšãïŒ$4, 3, 1, 2, 4, 3, 1, 2, 4, \\cdots$\r\n- $r = 3$ ã®ãšãïŒ$2, 1, 3, 4, 2, 1, 3, 4, 2, \\cdots$\r\n- $r = 4$ ã®ãšãïŒ$1, 4, 1, 4, 1, 4, 1, 4, 1, \\cdots$\r\n\r\nãšåšæçã«å€åããããšã«æ³šæããã°ïŒ$f(1), f(2), \\cdots ,f(2021)$ ã®ãã¡å€ã $k\\ (0\\leq k\\leq 4)$ ã«çãããã®ã®åæ° $c_{k}$ ã¯ïŒ\r\n$$\r\nc_{0} = 404, \\quad c_{1} = 809, \\quad c_{2} = 202, \\quad c_{3} = 202, \\quad c_{4} = 404\r\n$$ \r\nãšæ±ããããïŒãã£ãŠïŒè§£çãã¹ãå€ã¯ ${}\\_{c_{0} }\\mathrm{C}\\_{2} + c_{1} \\times c_{4} + c_{2} \\times c_{3} = \\bold{449046}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc146/editorial/1871"
}
] | ã$2021$ åã®æŽæ° $1, 2, \ldots ,2021$ ããçžç°ãªã $2$ 〠$a\lt b$ ãéžã¶æ¹æ³ã§ãã£ãŠïŒ$a^{a} + b^{b}$ ã $5$ ã§å²ãåãããã®ã¯ããã€ãããŸããïŒ |
OMC146 (for experts) | https://onlinemathcontest.com/contests/omc146 | https://onlinemathcontest.com/contests/omc146/tasks/2640 | B | OMC146(B) | 500 | 28 | 104 | [
{
"content": "ã$2$ åæŠãçµãã£ãæç¹ã§ïŒ$2$ é£åäžã®éžæã $1$ 人ïŒ$1$ é£åäžã®åå è
ã $2$ 人ããïŒãã® $3$ 人ã $3$ åæŠã®ç¬¬ $1$ è©Šåã§å¯ŸæŠããïŒ$2$ åæŠãçµãã£ãæç¹ã®æ瞟ã«å¿ããŠïŒä»¥äžã®ããã«æåãããïŒ\r\n\r\n- $x$ïŒ$2$ é£åäžã®éžæãåªåãã確ç\r\n- $y$ïŒ$1$ é£åäžã®éžæãããããåªåãã確ç\r\n- $z$ïŒ$3$ åæŠã®ç¬¬ $2,3$ äŒå Žã«åºå Žããéžæãããããåªåãã確ç\r\n- $w$ïŒ$3$ åæŠã§åŸ
æ©ããéžæãåªåãã確ç\r\n\r\nããã®ãšãïŒæ¬¡ãæãç«ã€.\r\n$$ x=\\frac{1}{3}+\\frac{1}{3}z+\\frac{1}{3}w,\\quad y=\\frac{1}{3}x+\\frac{1}{6}z+\\frac{1}{6}w,\\quad z=\\frac{2}{9}y+\\frac{4}{9}z,\\quad w=\\frac{2}{3}z $$\r\n\r\n<details><summary>äŸïŒ2ã€ç®ã®åŒãæãç«ã€çç±<\\/summary>\r\n\r\nã$1$ é£åäžã®éžæ $\\mathrm{A}$ ã«ã€ããŠïŒ\r\n- $1$ äœã«ãªã£ãå ŽåïŒ$\\mathrm{A}$ ã $2$ é£åããéžæãšãªãïŒ\r\n- $2$ äœã«ãªã£ãå ŽåïŒ$1\\/2$ ã®ç¢ºç㧠$2$ é£åããéžæã $3$ é£åããŠããïŒè©ŠåãçµäºããïŒããã§ãªããšãïŒ$\\mathrm{A}$ ã第 $2$ äŒå Žã«é²ãïŒ\r\n- $3$ äœã«ãªã£ãå Žåã¯äžãšåæ§ïŒ\r\n\r\n<\\/details>\r\n\r\n<details><summary>äŸïŒ3ã€ç®ã®åŒãæãç«ã€çç±<\\/summary>\r\n\r\nã$3$ åæŠã®ç¬¬ $2,3$ äŒå Žã«åºå Žããéžæ $\\mathrm{A}$ ã«ã€ããŠïŒ$1\\/3$ ã®ç¢ºç㧠$2$ é£åäžã®éžæã $3$ é£åãïŒè©ŠåãçµäºããïŒããã§ãªããšãã®ãã¡ïŒ$1\\/3$ ã®ç¢ºç㧠$\\mathrm{A}$ 㯠$1$ é£åãïŒ$2\\/3$ ã®ç¢ºç㧠$\\mathrm{A}$ ã¯ç¬¬ $2,3$ äŒå Žã«åºå ŽããïŒ\r\n\r\n<\\/details>\r\n\r\n<details><summary>極éã®æ£åœå<\\/summary>\r\n\r\nã$x_n$ ã $2$ é£åäžã®éžæãããš $n$ å以å
ã®è©ŠååŸã«åªåãã確çãªã©ãšãããšïŒ\r\n$$x_{n+1}=\\frac{1}{3}+\\frac{1}{3}z_n+\\frac{1}{3}w_n$$\r\nãªã©ã®æŒžååŒãæãç«ã€ïŒããã§ïŒäŸãã° $\\\\{x_n\\\\}$ ã¯åºçŸ©å調å¢å ã§ããïŒãã¹ãŠ $1$ 以äžã ããåæããïŒ$\\\\{y_n\\\\},\\\\{z_n\\\\},\\\\{w_n\\\\}$ ã«ã€ããŠãåæ§ã§ããïŒæŒžååŒã $n\\to\\infty$ ãšããã°äžã®åŒãåŸãããïŒ\r\n\r\n<\\/details>\r\n\r\nããã解ããŠæ¬¡ãåŸã.\r\n$$ x=\\frac{4}{11},\\quad y=\\frac{3}{22},\\quad z=\\frac{3}{55},\\quad w=\\frac{2}{55} $$ \r\nããããïŒæ±ãã確çããããã«ã€ããŠ\r\n$$ P_1=\\frac{1}{9}x+\\frac{1}{9}y+\\frac{2}{3}z+\\frac{1}{9}w=\\frac{19}{198},\\quad P_{10}=\\frac{1}{3}y+\\frac{2}{3}z=\\frac{9}{110}$$\r\nãã£ãŠæ±ããæ¯ã¯ $95:81$ ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{176}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc146/editorial/2640"
}
] | ã$A_1$ ãã $A_{10}$ ãŸã§ã® $10$ 人ã®éžæãïŒæ¬¡ã®èŠé ã§è©Šåãè¡ããŸãïŒ
- äžåºŠã®è©Šåã«ã¯ $3$ 人ãåå ãïŒ$1,2,3$ äœãšéè€ãªãé äœãä»ãïŒ
- $10$ 人ã®éžæã®å®åã¯äºãã«å¯Ÿçã§ïŒåè©Šåã«ã€ã㊠$3$ 人ã®é äœã®çµã¿åãã $6$ éãã¯åçã«çŸããïŒ
- $1$ åæŠã®ç¬¬ $j$ äŒå ŽïŒ$j=1,2,3$ïŒã§ã¯ $A_{3j-2}$, $A_{3j-1}$, $A_{3j}$ ã® $3$ éžæã察æŠãïŒ$A_{10}$ ã¯åŸ
æ©ããïŒ
- $n$ åæŠã®çµæã«å¿ããŠïŒ$n+1$ åæŠã®å²ãæ¯ããäžå³ã®ããã«è¡ãïŒ$n\geq 1$ïŒïŒ
![figure 1](\/images\/8nKnXwuu826KI4oVHHcr1dwE4grkMn4qdoDth5Pl)
ã$3$ è©Šåé£ç¶ã§ $1$ äœãšãªã£ãéžæãåããŠçŸãããšãïŒãã®éžæãåªåè
ãšããŠçµäºããŸãïŒã«ãŒã«ã«ããïŒåªåè
ã¯ååšããã°äžæã§ãïŒïŒé
ããšã $N$ åæŠãŸã§ã«åªåè
ã $A_j$ ã«å®ãŸã確çã $P_{N,j}$ ãšãïŒãã® $N\to\infty$ ã§ã®æ¥µéã $P_{j}$ ãšå®ããŸãïŒ\
ããã®ãšãïŒæ¯ $P_{1}:P_{10}$ ã¯äºãã«çŽ ãªæ£æŽæ° $s,t$ ãçšã㊠$s:t$ ãšè¡šãããã®ã§ïŒ$s+t$ ã解çããŠãã ãã. |
OMC146 (for experts) | https://onlinemathcontest.com/contests/omc146 | https://onlinemathcontest.com/contests/omc146/tasks/1804 | C | OMC146(C) | 500 | 29 | 64 | [
{
"content": "ã$\\angle A=3\\theta$ïŒ$\\angle PAT=\\alpha$ ãšããã°ïŒ\r\n$$90^\\circ=\\angle ABT=\\angle B+\\theta-\\alpha,\\quad 45^\\circ=\\angle ACT=\\angle C+\\alpha$$\r\nãæç«ããããïŒ$\\angle B+\\angle C+3\\theta=180^\\circ$ ãšããã㊠$\\theta=22.5^\\circ$ïŒããªãã¡ $\\angle A=67.5^\\circ$ ãåŸãïŒ\\\r\nãããã«ããïŒååšè§ãèããããšã§ $\\angle LBQ=\\angle KCP=22.5^\\circ$ ãåŸãããïŒäžè§åœ¢ $XBC$ 㯠$\\angle X=135^\\circ$ ãªãäºç蟺äžè§åœ¢ã§ããïŒç¹ã« $X$ 㯠$ABC$ ã®å€å¿ã§ããããšãåŸãïŒãã£ãŠïŒä»¥äžã®èšç®ãã解çãã¹ãå€ã¯ $\\textbf{684}$ ã§ããïŒ\r\n$$AX^2=BX^2=\\left(\\dfrac{3}{\\cos 22.5^\\circ}\\right)^2=\\dfrac{18}{\\cos45^\\circ+1}=36-18\\sqrt{2}$$\r\n![figure 1](\\/images\\/a9R4DhRUb8yEZ3bIraA6ZzzS3SHT4DjmYVHyVxJQ)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc146/editorial/1804"
}
] | ã$BC=6$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠïŒè§ $A$ ã®ïŒå
è§ã®ïŒäžçåç·ãšèŸº $BC$ ã®äº€ç¹ã®ãã¡ïŒ$B,C$ ã«è¿ãæ¹ããããã $P,Q$ ãšããŸãïŒäžè§åœ¢ $ABQ,ACP$ ã®å€æ¥åããããã $\Omega,\Gamma$ ãšãïŒããããã®äžå¿ã $V,W$ ãšãããšãïŒ$\Omega$ ãš $\Gamma$ ã®äº€ç¹ã®ãã¡ $A$ ã§ãªããã® $T$ ã«ã€ããŠïŒ$V$ ã¯ç·å $AT$ äžã«ããïŒ$W$ 㯠$\Omega$ äžã«ãããŸããïŒ$\Gamma$ ãšèŸº $AB$ ã®äº€ç¹ã®ãã¡ $A$ ã§ãªããã®ã $K$ ïŒ$\Omega$ ãšèŸº $AC$ ã®äº€ç¹ã®ãã¡ $A$ ã§ãªããã®ã $L$ ãšãïŒçŽç· $BL$ ãšçŽç· $CK$ ã®äº€ç¹ã $X$ ãšãããšãïŒ$AX^2$ ãæ±ããŠäžããïŒãã ãïŒæ±ããå€ã¯æ£æŽæ° $a,b$ ã«ãã£ãŠ $a-\sqrt{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ãã. |
OMC146 (for experts) | https://onlinemathcontest.com/contests/omc146 | https://onlinemathcontest.com/contests/omc146/tasks/5048 | D | OMC146(D) | 500 | 16 | 47 | [
{
"content": "ã$2n = 5758, a_0 = 0$ ãšããïŒãŸãïŒæ¬¡ã®è£é¡ã瀺ãïŒ\r\n\r\n---\r\n\r\n**è£é¡ïŒ**$a_k\\in S$ ãªãã°ïŒ$m$ ã $\\max S_i=a_k$ ãªã $i$ ã®åæ°ïŒ$a_{l}$ ã $S$ ã®èŠçŽ ã§ãã£ãŠ $a_k$ æªæºã®ãã®ã®ãã¡æ倧ã®ãã®ïŒååšããªãå Žå㯠$l=0$ïŒãšãããšãïŒ\r\n$$f(S\\setminus \\\\{a_k\\\\})-f(S)=2m(a_k-a_l)-(2n-k+1)$$\r\nãæãç«ã€ïŒç¹ã«\r\n$$f(S\\setminus \\\\{a_k\\\\})-f(S)\\geq 2(a_k-a_{k-1})-(2n-k+1)$$\r\nã§ããïŒ\r\n\r\n**蚌æïŒ**$T=S\\setminus \\\\{a_k\\\\}$ ãšãïŒ$T_i$ 㧠$T$ ã®èŠçŽ ã®ãã¡ $a_i$ 以äžã®ãã®å
šäœã®ãªãéåãè¡šãïŒãã®ãšãïŒå $i=1,2,\\dots,2n$ ã«å¯ŸãïŒ\r\n$$\\begin{aligned}\r\n|S_i|-|T_i|&=\\begin{cases}1&(i\\geq k)\\\\\\\\0&(i\\lt k)\\end{cases}\\\\\\\\\r\n\\max{S_i}-\\max{T_i}&=\\begin{cases}a_k-a_l&(\\max S_i=a_k)\\\\\\\\0&(\\text{ãã以å€})\\end{cases}\r\n\\end{aligned}$$\r\nãæãç«ã€ããïŒ\r\n$$\\begin{aligned}\r\nf(T)-f(S)&=\\sum_{i=1}^{2n}\\Bigl(2(\\max S_i-\\max T_i)-(|S_i|-|T_i|)\\Bigr)\\\\\\\\\r\n&=2m(a_k-a_l)-(2n-k+1)\r\n\\end{aligned}$$\r\nã瀺ãããïŒ\r\n\r\n---\r\n\r\nè£é¡ããïŒå $k=1,2,\\dots,2n$ ã«å¯Ÿã\r\n$$f(U\\setminus \\\\{a_k\\\\})-f(U)=2(a_k-a_{k-1})-(2n-k+1)$$\r\nãæãç«ã€ããïŒ$f(S)\\lt f(U)$ ãšãªãéå $S\\subset U$ ãååšããªãããã«ã¯ïŒä»»æã® $k=1,2,\\dots,2n$ ã«å¯Ÿã\r\n$$2(a_k-a_{k-1})\\geq 2n-k+1$$\r\nãæãç«ã€ããšãå¿
èŠã§ããïŒéã«ïŒããã§ååã§ããããšã¯ïŒè£é¡ã«ãã£ãŠ $|S|$ ã®å€§ããæ¹ããåž°çŽæ³ãçšããã°ç€ºãããïŒ\r\n\r\n----\r\n\r\nãå $k = 1,2,\\ldots 2n$ ã«ã€ã㊠$2(a_{k} - a_{k-1}) \\ge 2n - k+1$ ãæºãã $(a_1,a_2,\\ldots,a_{2n})$ ãèããïŒ\r\n$$b_k = a_k - a_{k-1} - \\left(n - \\left\\lfloor\\frac{k-1}{2}\\right\\rfloor\\right),\\quad b_{2n+1} = 3001^2 - a_{2n}$$\r\nãšãããšïŒå $b_k$ ã¯éè² æŽæ°ã§ããïŒ\r\n$$b_1 + b_2 + \\cdots + b_{2n+1} = 3001^2 - n(n+1)$$\r\nãåžžã«æç«ããïŒãŸãïŒãã®ãã㪠$(b_1,b_2,\\ldots,b_{2n+1})$ ãš $(a_1,a_2,\\ldots,a_{2n})$ ã¯äžå¯Ÿäžå¯Ÿå¿ããã®ã§ïŒåã®æ¡ä»¶ãæºãããªã $(a_1,a_2,\\ldots,a_n)$ ã®æ°ã¯ $\\displaystyle\\binom{3001^2 - n(n+1) + 2n}{2n} =\\binom{3001^2 - n(n-1)}{2n}$ åã§ããïŒ\\\r\nã以äžïŒåååŒã®æ³ã¯å
šãŠ $3001$ ãšããïŒ$n(n-1)\\equiv 1$ ã«æ°ãã€ããã°ïŒ\r\n$$\\begin{aligned}\r\n\\binom{3001^2 - n(n-1)}{2n}\r\n&= \\frac{(3001^2 - n(n-1))(3001^2 - n(n-1) - 1)\\cdots(3001^2 - n(n+1) + 1)}{(2n)!}\\\\\\\\\r\n&\\equiv \\frac{(-1)(-2)\\cdots(-3000)(-3002)\\cdots(-2n)}{(2n)!\\/3001}\r\n\\times \\frac{3001^2 - n(n-1) - 3000}{3001}\\\\\\\\\r\n& = -239\r\n\\end{aligned}$$\r\nã§ããïŒãŸãïŒ$(a_1,a_2,\\ldots,a_n)$ ã®çµã¯å
šäœã§ $\\displaystyle\\binom{3001^2}{2n}$ åããïŒãã㯠$3001$ ã§å²ãåããã®ã§ïŒåã®æ¡ä»¶ãæºãã $(a_1,a_2,\\ldots,a_n)$ ã®çµã®æ°ã $3001$ ã§å²ã£ãäœã㯠$\\bf{239}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc146/editorial/5048"
}
] | ãæŽæ° $a_1, a_2, \ldots, a_{5758}$ 㯠$1\leq a_1\lt a_2 \lt\cdots\lt a_{5758}\leq 3001^2$ ãã¿ãããŠããŸãïŒãã®ãšãïŒ$U=\\{a_1,a_2,\ldots, a_{5758}\\}$ ãšãïŒ$U$ ã®éšåéå $S$ ã«å¯ŸãïŒæŽæ° $f(S)$ ã以äžã®ããã«å®ããŸãïŒ
- å $i=1,2,\dots,5758$ ã«å¯ŸãïŒ$S_i$ 㧠$S$ ã®èŠçŽ ã®ãã¡ $a_i$ 以äžã®ãã®å
šäœã®ãªãéåãè¡šããšãïŒ$$f(S)=\sum_{i=1}^{5758}\bigl(\vert S_i \vert-2\max S_i\bigr)$$
ãšããïŒãã ãïŒéå $X$ ã«å¯ŸãïŒ$X$ ã®èŠçŽ æ°ã $\vert X \vert$ïŒ$X$ ã®èŠçŽ ã®ãã¡æ倧ã®ãã®ã $\max X$ ã§è¡šãïŒãŸãïŒããã§ã¯ $\max \emptyset = 0$ ãšããïŒ
ã$f(S)\lt f(U)$ ãšãªãéå $S\subset U$ ãååšãããããªæŽæ°ã®çµ $(a_1, a_2, \dots, a_{5758})$ ãšããŠããåŸããã®ã¯ $M$ éããããŸãïŒ$M$ ãçŽ æ° $3001$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ |
OMC146 (for experts) | https://onlinemathcontest.com/contests/omc146 | https://onlinemathcontest.com/contests/omc146/tasks/2539 | E | OMC146(E) | 700 | 11 | 25 | [
{
"content": "**è£é¡1.**ã$BC$ ã®äžç¹ã $M$ ãšãããšãïŒ$4$ ç¹ $X,Y,M,D$ ã¯å
±åã§ããïŒ\\\r\n**蚌æ.**ã$AB \\neq AC$ ãªã®ã§çŽç· $EF$ ãšçŽç· $BC$ ã®äº€ç¹ããšããïŒããã $Z$ ãšãããšïŒæ¹ã¹ãã®å®çãã\r\n$$ZD\\times ZM=ZE\\times ZF=ZB\\times ZC=ZX\\times ZY$$\r\nãã瀺ãããïŒãã ã, $B,C,E,F$ ããã³ $D,E,F,M$ ããããã®å
±åïŒä¹ç¹åïŒãçšãã.\r\n----\r\n**è£é¡2.**ã$\\triangle{ABC}$ ã®å€å¿ã $O$ ãšãããšãïŒ$AO$ ã®äžç¹ $N$ 㯠$\\triangle{DXY}$ ã®å€å¿ã§ããïŒ\\\r\n**蚌æ.**ãç°¡åãªè§åºŠèšç®ãã $AO\\perp EF$ ã§ããããïŒ$AO$ 㯠$XY$ ã®åçŽäºçåç·ã§ããïŒããªãã¡ $N$ 㯠$XY$ ã®åçŽäºçåç·äžã«ããïŒäžæ¹ $N$ 㯠$DM$ ã®åçŽäºçåç·äžã«ãããããïŒä»¥äžãã瀺ãããïŒ\r\n----\r\nãæ¹ã¹ãã®å®çãã $EA\\times EC=EX\\times EY=ED\\times EP$ ã§ããããïŒ$4$ ç¹ $A,C,D,P$ ã¯å
±åã§ããïŒããããç°¡åãªè§åºŠèšç®ã«ãã£ãŠ $\\triangle{AEF} \\equiv \\triangle{AEP}$ ããããïŒ$AF=AP=26$ïŒåæ§ã« $AE=AQ=34$ ãåŸãïŒäžæ¹ã§ïŒ$MR$ ã¯å $DXY$ ã®çŽåŸã§ããããïŒè£é¡2ã«ãã $N$ 㯠$MR$ ã®äžç¹ã§ãããïŒäžè§åœ¢ $ABC$ ã®åå¿ã $H$ ãšããã° $AH=2OM=2AR=38$ ã§ããïŒ\\\r\nããããã£ãŠïŒ$\\triangle{AEF}$ 㯠$AE=34,AF=26$ ã§ãã, ãã€å€æ¥åã®çŽåŸã $38$ ã§ãããããªäžè§åœ¢ã§ããïŒ$A$ ãã $EF$ ã«ããããåç·ã®è¶³ã $K$ ãšããã°, ç°¡åãªè§åºŠèšç®ã«ãã $\\triangle{AEH} \\sim \\triangle{AKF}$ ã§ããããïŒ$AK = \\dfrac{442}{19}$ ãšèšç®ã§ãïŒäžå¹³æ¹ã®å®çãã $EF = EK+FK = \\dfrac{156\\sqrt{2} + 272\\sqrt{3}}{19}$ ãåŸãïŒç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{452}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc146/editorial/2539"
},
{
"content": "ããŸãïŒæ¹ã¹ãã®å®çãã $EP\\cdot ED=EX\\cdot EY=EA\\cdot EC$ ã§ããããïŒ$A,D,C,P$ ã¯å
±åã§ããïŒããã« $\\angle AFC=\\angle ADC=90^\\circ$ ã§ããããïŒ$A,F,D,C,P$ ã¯å
±åã§ããïŒ$\\angle EDA=\\angle ADF=90^\\circ-\\angle A$ ã§ããããïŒ$AF=AP$ ã§ããïŒ$P$ ã¯çŽç· $AC$ ã«é¢ã㊠$F$ ãšå¯Ÿç§°ãªç¹ã§ããïŒåæ§ã«ïŒ$Q$ ãçŽç· $AB$ ã«é¢ã㊠$E$ ãšå¯Ÿç§°ãªç¹ã§ããããšããããïŒ$D,P,R,Q$ ã¯å
±åã§ããïŒ$\\angle PDR=\\angle RDQ=90^\\circ-\\angle A$ ã§ããããïŒ$RQ=RP, \\angle QRD =2\\angle A$ ãã¿ããïŒãã£ãŠäžè§åœ¢ $QPR$ ãš $QEA$ ã¯çžäŒŒã§ããïŒãããã£ãŠäžè§åœ¢ $QAR$ ãš $QEP$ ã¯çžäŒŒã§ããïŒ$QE=\\frac{AQ\\cdot EP}{AR}$ ãåŸãïŒãããš\r\n$$\\sin \\angle EFA=\\frac{QE\\/2}{EF}=\\frac{AQ\\cdot EP}{2\\cdot EF\\cdot AR}=\\frac{AQ}{2AR}$$\r\nãæãç«ã¡ïŒåæ§ã«\r\n$$\\sin \\angle AEF=\\frac{AP}{2AR}$$\r\nãæãç«ã€ããïŒ\r\n$$EF=AF\\cos\\angle EFA+AE\\cos\\angle AEF=AP\\sqrt{1-\\frac{AQ^2}{4AR^2}}+AQ\\sqrt{1-\\frac{AP^2}{4AR^2}}.$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc146/editorial/2539/200"
}
] | ã$AB\neq AC$ ãªãéè§äžè§åœ¢ $ABC$ ã«ãããŠïŒ$A$, $B$, $C$ ãã察蟺ã«ããããåç·ã®è¶³ããããã $D,E,F$ ãšãïŒäžè§åœ¢ $ABC$ ã®å€æ¥åãšçŽç· $EF$ ã® $2$ ã€ã®äº€ç¹ã $X$, $Y$ ãšããŸãïŒãã ãïŒ$X$, $E$, $F$, $Y$ ã®é ã§äžŠã¶ãã®ãšããŸãïŒïŒçŽç· $DE$, $DF$, $DA$ ãšäžè§åœ¢ $DXY$ ã®å€æ¥åã®äº€ç¹ã®ãã¡ïŒ $D$ ã§ãªãæ¹ããããã $P$, $Q$, $R$ ãšãããšïŒ
$$AP=26,\quad AQ=34,\quad AR=19$$
ãæãç«ã¡ãŸããïŒãã®ãšãïŒç·å $EF$ ã®é·ãã¯æ£æŽæ° $a$, $b$, $c$, $d$, $e$ ãçšããŠ
$$\displaystyle \frac{a\sqrt{b} + c\sqrt{d}}{e}$$
ãšè¡šããŸãïŒãã ã $b$, $d$ ã¯å¹³æ¹å åããããïŒ$e$ ã¯çŽ æ°ã§ãïŒ$a+b+c+d+e$ ã解çããŠãã ããïŒ |
OMC146 (for experts) | https://onlinemathcontest.com/contests/omc146 | https://onlinemathcontest.com/contests/omc146/tasks/2405 | F | OMC146(F) | 800 | 28 | 101 | [
{
"content": "ã$n$ ãçŽ ã¹ã $p^k$ ã®ãšã,\r\n$$d_1 = p , \\quad d_2 = p^k , \\quad d_3 = p^2 , \\quad d_4 = p^{k - 1}, \\ldots$$\r\nãšããããšã§ïŒLTEã®è£é¡ã«ããé¡æãã¿ããããšããããïŒãã£ãŠïŒãã®å Žåã®æ¡ä»¶ãæºãã $n$ ã®ç·åã¯\r\n$$\r\n3^2 + \\cdots + 3^5 + 5^ 2 + 5^3 + 7^2 + 11^ 2 + 13^2 + 17^2 = 1138.\r\n$$\r\nã以äžïŒ$n$ ãçŽ ã¹ãã§ãªãå ŽåãèããïŒ$n$ ã®æå°ã®çŽ å æ°ã $p$ ãšããïŒ\r\n---\r\n **è£é¡1.**ã$n$ ã $p$ 以å€ã®çŽ æ°ã§å²ãåããåæ°ã¯ïŒåèšã§é«ã
$1$ åã§ããïŒ\\\r\n**蚌æ.**ã$i = 2,3,\\ldots,m$ ããããã«ã€ããŠïŒ\r\n$$\r\n(d_{i-1} + 1)^{d_{i}} \\equiv 1 \\pmod p\r\n$$\r\nãæãç«ã€ïŒããã§ïŒ$p$ ã®æå°æ§ãã $\\gcd(d_i, p - 1) = 1$ ã§ããããïŒ$d_{i-1} + 1$ ã® $\\textrm{mod}~p$ ã§ã®äœæ°ã¯ $1$ ã§ããïŒãã£ãŠïŒ$d_1,...,d_{m - 1}$ ã¯ãã¹ãŠ $p$ ã§å²ãããïŒããã¯è£é¡ã®æç«ãæå³ããïŒ\r\n----\r\n**è£é¡2.**ã$n$ ã® $p$ ã§ãªãå¯äžã®çŽ å æ° $q$ ã«ã€ããŠïŒ$q\\equiv 1\\pmod{p}$ ã§ããïŒ\\\r\n**蚌æ.**ã$d_i$ ã $p$ ã®ã¹ãã§ãããã㪠$i$ ã«ã€ããŠïŒ$d_{i + 1} = p^sq^t$ ãšããã°ïŒ\r\n$$\r\n(d_i + 1)^{p^s} \\equiv (d_i + 1)^{d_{i+1}} \\equiv 1 \\pmod q\r\n$$\r\nã«ãã $s\\gt 0$ ã§ããïŒ$\\gcd(p^s,q-1)\\gt1$ ã«ãã $p\\mid q-1$ ãåŸãïŒ\r\n----\r\nãè£é¡2ã®èšŒæã«ããïŒ$a = \\min(v_p(n), v_p(q-1))$ ã«ã€ããŠïŒ$i=1,\\ldots,m-1$ ãããã㧠$(d_i + 1)^{p^a} - 1$ 㯠$q$ ã§å²ãåããïŒ$p$ ãå¥çŽ æ°ã§ããããšããïŒ$300 \\ge n \\ge p^a(2p^a + 1)$ã«ãã $p^a \\leq 11$ ã§ããïŒ\r\n\r\n- $p^a = 3$ ã®å ŽåïŒ$q$ 㯠$(3 + 1)^3 - 1 = 3^2 \\times 7$ ãå²ãåãå¿
èŠããããã $q = 7$ ãå¿
èŠ. $v_3(n) \\ge 2$ ãªãã° $q$ 㯠$$(9 + 1)^3 - 1 = 3^3\\times 37$$ ãå²ãåãå¿
èŠããããããã¯äžé©ã§ãããã, ããåŸããã®ã¯ $n = 21$ ã®ã¿. \\\r\nããã®ãšãéã«, $d_1 = 3, d_2 = 21, d_3 = 7$ ãšããããšã§æ¡ä»¶ãæºãã. \r\n\r\n- $p^a = 5$ ã®å ŽåïŒ$q$ 㯠$(5 + 1)^5 - 1 = 5^2 \\times 311$ ãå²ãåãå¿
èŠãããããäžé©. \r\n\r\n- $p^a = 7$ ã®å ŽåïŒ$q$ 㯠$(7 + 1)^7 - 1 = 7^2 \\times 127 \\times 337$ ãå²ãåãå¿
èŠãããäžé©. \r\n\r\n- $p^a = 9$ ã®å ŽåïŒ$9\\mid q-1$ ã〠$9q\\le300$ ãªãæ° $q$ 㯠$19$ ã®ã¿ã§ããã, ãã㯠$(9 + 1)^9 - 1$ ãå²ãåããäžé©. \r\n\r\n- $p^a = 11$ ã®å ŽåïŒ$11\\mid q-1$ ã〠$11q\\le300$ ãæºããçŽ æ° $q$ 㯠$23$ ã®ã¿ã§ãã, 倧å°é¢ä¿ãã $n=253$ ã®ã¿ãããåŸãïŒ\\\r\nããã®ãšãéã«, $d_1 = 11, d_2 = 253, d_3 = 23$ ãšããããšã§æ¡ä»¶ãæºãã. \r\n\r\nã以äžãã, æ±ããç·å㯠$1138 + 21 + 253 = \\bf{1412}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc146/editorial/2405"
}
] | ã以äžã®æ¡ä»¶ãã¿ããïŒ$1$ ä»¥äž $300$ 以äžã®**å¥æ°ã®åææ°** $n$ ã®ç·åãæ±ããŠãã ããïŒ
- $n$ ã® $1$ ã§ãªãæ£ã®çŽæ°ãã¹ãŠãé©åã«äžŠã³æ¿ã㊠$d_1,d_2,\ldots,d_m$ ãšããããšã§ïŒä»¥äžãæç«ããïŒ
$$
(d_1 + 1)^{d_2} \equiv (d_2 + 1)^{d_3} \equiv \cdots \equiv (d_{m-1} + 1)^{d_{m}} \equiv 1 \pmod n
$$ |
OMC145 (for beginners) | https://onlinemathcontest.com/contests/omc145 | https://onlinemathcontest.com/contests/omc145/tasks/4490 | A | OMC145(A) | 100 | 377 | 381 | [
{
"content": "ãé·ãã $4$ ã®èŸºãš $50$ ã®èŸºã®ãªãè§ã $\\theta$ ãšããã°ïŒ$100=4\\times 50\\times (\\sin\\theta)\\/2$ ã§ããããïŒ$\\theta=90^\\circ$ ã§ããïŒãã£ãŠïŒæ±ããå€ã¯äžå¹³æ¹ã®å®çãã $4^2+50^2=\\mathbf{2516}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc145/editorial/4490"
}
] | ãé·ã $4$ ã®èŸºãšé·ã $50$ ã®èŸºããã¡ïŒé¢ç©ã $100$ ã§ããäžè§åœ¢ã«ãããŠïŒãã $1$ 蟺ã®é·ãã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMC145 (for beginners) | https://onlinemathcontest.com/contests/omc145 | https://onlinemathcontest.com/contests/omc145/tasks/4376 | B | OMC145(B) | 200 | 342 | 378 | [
{
"content": "ãäžäžã®äœãšäžã®äœã®ã»ãã« $1$ ãšãªãåŸãã®ã¯çŸã®äœã®ã¿ã§ããïŒãã®ãããªãã®ã¯ $9^2=81$ éãååšããïŒããã§ãªããã®ã«ã€ããŠã¯ïŒãŸãçŸã®äœã $9$ éãååšãïŒããããã«ã€ããŠæ®ãã®äœãç¬ç«ã« $8$ éããã€ååšããããïŒå
šäœã§ã¯ $81+9\\times8^2=\\textbf{657}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc145/editorial/4376"
}
] | ãåé²æ³è¡šèšã§ä»¥äžã®æ¡ä»¶ãã¿ãã $5$ æ¡ã®æ£æŽæ°ã¯ããã€ãããŸããïŒ
- äžäžã®äœãšäžã®äœã¯ãšãã« $1$ ã§ããïŒ
- ä»»æã®é£ãåã $2$ æ¡ã«ã¯çžç°ãªãæ°ã䞊ã¶ïŒ |
OMC145 (for beginners) | https://onlinemathcontest.com/contests/omc145 | https://onlinemathcontest.com/contests/omc145/tasks/3059 | C | OMC145(C) | 200 | 317 | 352 | [
{
"content": "ã$n$ ãå¶æ°ïŒããªãã¡ $n=2k$ãšè¡šãããšã\r\n$$n^{n}\\equiv (-1)^{2k}\\equiv 1\\pmod{2k+1} $$\r\nãæãç«ã¡ïŒäžæ¹ã§ $n$ ãå¥æ°ïŒããªãã¡ $n=2k-1$ ãšè¡šãããšã\r\n$$n^{n}\\equiv (-1)^{2k-1}\\equiv -1\\equiv 2k-1\\pmod{2k}$$\r\nãæãç«ã€ïŒä»¥äžã«ãã, æ±ããå€ã¯\r\n$$(1+1)+(3+1)+(5+1)+\\cdots +(99+1)=\\sum_{k=1}^{50} 2k=\\textbf{2550}$$\r\nã§ããïŒãªãïŒæåŸã®ç·åèšç®ã«ããã£ãŠã¯ $1+3+5+\\cdots+99=50^2$ ãçšããŠãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc145/editorial/3059"
}
] | ãæ£ã®æŽæ° $n$ ã«å¯ŸããŠïŒ$n^{n}$ ã $n+1$ ã§å²ã£ãäœãã $f(n)$ ã§è¡šããšãïŒ
$$f(1)+f(2)+\cdots +f(99)+f(100)$$
ãæ±ããŠãã ããïŒ |
OMC145 (for beginners) | https://onlinemathcontest.com/contests/omc145 | https://onlinemathcontest.com/contests/omc145/tasks/4773 | D | OMC145(D) | 300 | 192 | 248 | [
{
"content": "$$n^4-5n^2+4=(n+2)(n+1)(n-1)(n-2)$$\r\nã«æ³šæããã°ïŒ\r\n$$\\dfrac{6n}{n^4-5n^2+4} = \\dfrac{1}{n-2}-\\dfrac{1}{n-1}-\\dfrac{1}{n+1}+ \\dfrac{1}{n+2} $$\r\nãšå€åœ¢ã§ããããïŒ\r\n$$\\begin{aligned}\\sum_{n=3}^{1002}\\dfrac{n}{n^4-5n^2+4}&= \\dfrac{1}6\\bigg(\\dfrac{1}1-\\dfrac{1}2-\\dfrac{1} 4 +\\dfrac{1} 5 +\\cdots+ \\dfrac{1}{1000}-\\dfrac{1} {1001}-\\dfrac{1} {1003}+ \\dfrac{1} {1004}\\bigg)\\\\\\\\\r\n&=\\dfrac{1}6\\bigg(1-\\dfrac{1}4-\\dfrac{1}{1001}+\\dfrac{1}{1004} \\bigg)\\\\\\\\\r\n&=\\dfrac{125625}{1005004} \\end{aligned}$$\r\nãšãªãïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{1130629}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc145/editorial/4773"
}
] | ã以äžã®ç·åãèšç®ããŠãã ããïŒ
$$\displaystyle \sum_{n=3}^{1002}\dfrac{n}{n^4-5n^2+4}$$
ãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}b$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC145 (for beginners) | https://onlinemathcontest.com/contests/omc145 | https://onlinemathcontest.com/contests/omc145/tasks/2957 | E | OMC145(E) | 300 | 117 | 190 | [
{
"content": "ã$AD\\neq 9$ ã§ããïŒ$AD\\gt9$ ã®ãšãïŒçŽç· $AB$ ãšçŽç· $CD$ ã®äº€ç¹ $O$ ã«ã€ã㊠$BO=7x, CO=8x$ ãšããïŒ\r\n$$\\triangle OBC:\\triangle OPQ:\\triangle OAD=56x^2:(7x+3)(8x+5):(7x+7)(8x+8)$$\r\nãæãç«ã€ïŒããã§ïŒäžããããæ¡ä»¶ã¯\r\n$$\\triangle OAD-\\triangle OPQ=\\triangle OPQ-\\triangle OBC$$\r\nãšåå€ã§ããããšããïŒ$x=\\\\dfrac{13}{3}\\$ãšãããïŒãã®ãšãïŒäžè§åœ¢ $OAD$ ãšäžè§åœ¢ $OBC$ ã®çžäŒŒã«æ³šæã㊠$AD=\\\\dfrac{144}{13}\\$ ãåŸãïŒ\\\r\nã$AD\\lt9$ ã®ãšãïŒ$AD\\gt9$ ã®ãšããšåæ§ã«èãããšïŒåè§åœ¢ $BPQC$ ã®é¢ç©ãã€ãã«åè§åœ¢ $APQD$ ã®é¢ç©ãã倧ãããªãããšããããäžé©ã§ããïŒ\\\r\nã以äžã«ããïŒè§£çãã¹ãå€ã¯ $\\bm{157}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc145/editorial/2957"
},
{
"content": "ãåè§åœ¢ $ABCD$ ãšåè§åœ¢ $BPQC$ ã®é¢ç©ããããã $S,T$ ãšãïŒ$AD=x$ ãšããïŒ \r\n $T=â³BCQ+â³BPQ=â³BCQ+\\dfrac{5}{8}â³BPD+\\dfrac{3}{8}â³BPC=\\dfrac{3}{8}â³BCD+\\dfrac{5}{8}\\cdot\\dfrac{3}{7}â³ABD+\\dfrac{3}{8}\\cdot\\dfrac{3}{7}â³ABC$ \r\n ããïŒ$T=\\Bigl(\\dfrac{3}{8}\\cdot\\dfrac{9}{x+9}+\\dfrac{15}{56}\\cdot\\dfrac{x}{x+9}+\\dfrac{9}{56}\\cdot\\dfrac{9}{x+9}\\Bigr)S$ ãšãªãïŒ\r\n \r\nããã£ãŠïŒ$\\dfrac{3}{8}\\cdot\\dfrac{9}{x+9}+\\dfrac{15}{56}\\cdot\\dfrac{x}{x+9}+\\dfrac{9}{56}\\cdot\\dfrac{9}{x+9}=\\dfrac{1}{2}$ ã解ããŠïŒ$x=\\dfrac{144}{13}$ ãšãªãïŒè§£çãã¹ãæ°å€ã¯ $157$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc145/editorial/2957/198"
}
] | ãåè§åœ¢ $ABCD$ 㯠$AD\parallel BC$ ãªãå°åœ¢ã§ããïŒ
$$AB=7,\quad BC=9,\quad CD=8$$
ãã¿ãããŠããŸãïŒããã§ïŒç¹ $P$ ã蟺 $AB$ äžã«ïŒç¹ $Q$ ã蟺 $CD$ äžã«ïŒ$BP=DQ=3$ ãšãªãããã«ãšã£ããšããïŒç·å $PQ$ ã¯åè§åœ¢ $ABCD$ ãé¢ç©ãåã $2$ ã€ã®åè§åœ¢ã«åããŸããïŒãã®ãšãïŒç·å $AD$ ã®é·ãã¯äºãã«çŽ ãªæ£ã®æŽæ° $p,q$ ãçšã㊠$\\dfrac{p}{q}\$ ãšè¡šããã®ã§ïŒ$p+q$ ã解çããŠãã ããïŒ |
OMC145 (for beginners) | https://onlinemathcontest.com/contests/omc145 | https://onlinemathcontest.com/contests/omc145/tasks/5260 | F | OMC145(F) | 400 | 41 | 118 | [
{
"content": "ã$a_{2n-1}=a_{n}+2$ ããã³ $a_{2n}=a_n+1$ ã«æ³šæããã°ïŒ$S_n=a_{2^{n-1}+1}+\\cdots+a_{2^n}$ ã«ã€ããŠ\r\n\r\n$$ S_{n+1}=2S_{n}+3\\cdot 2^{n-1}$$\r\n\r\nãæç«ããïŒ$S_{1}=1$ ãèžãŸããã°ïŒäžè¬é
㯠$S_{n}=(3n-1)2^{n-2}=2^{n-1} + 3(n-1)2^{n-2}$ ãšãªãïŒãã£ãŠïŒ\r\n\r\n$$ \\sum_{n=1}^{M} S_n = (2^M-1)+3\\bigl(2^{M-1}M-2^{M}+1\\bigr)=( 3M-4 )2^{M-1}+2$$\r\n\r\nãæç«ããããïŒ$S_1+S_2+\\cdots+S_{1024}$ ã $1021$ ã§å²ã£ãäœãã¯ãã§ã«ããŒã®å°å®çãã $\\mathbf{42}$ ã§ãã ïŒ ãã ãïŒä»¥äžã®çåŒãçšããïŒ\r\n$$\\sum_{k=1}^{M} k2^{k-1} = 2^MM-2^M+1.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc145/editorial/5260"
},
{
"content": "å
¬åŒè§£èª¬ã«ããã $S_n$ ãæ±ããéçšã§ã. \r\n\r\n---\r\n\r\n$n-1$ ã $2$ é²æ³è¡šç€ºãããšïŒæäœã¯ä»¥äžã®ããã«è¡šãã. \r\n- $1$ ã®äœã $1$ ã®ãšãïŒãã® $1$ ãåãé€ã. \r\n- $1$ ã®äœã $0$ ã®ãšãïŒããã $1$ ã«å€ãã. \r\n\r\n$a_n$ ã¯æäœã§å€ã $0$ ã«ãªããŸã§ã®åæ°ã§ããïŒãã㯠$n-1$ ã $2$ é²æ³è¡šç€ºãããšãã® $$(åäœã«çŸãã0ã®åæ°)Ã2+(åäœã«çŸãã1ã®åæ°)$$ ã«çãã (ãã ãïŒæé«äœã¯ $0$ ã§ã¯ãªããã®ãšãã. ). ãããã£ãŠïŒ$2^{k-1}+1\\leq n\\leq 2^{k}$ ã«ããã $a_n$ ã®æåŸ
å€ã¯ïŒ$1+\\dfrac{3}{2}(k-1)=\\dfrac{3}{2}k-\\dfrac{1}{2}$ ã§ããããïŒ$S_n=2^{n-2}(3n-1)$ ãããã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc145/editorial/5260/199"
}
] | ã$2$ 以äžã®æŽæ° $n$ ã«å¯ŸãïŒä»¥äžã®æäœã $n$ ã $1$ ã«ãªããŸã§ç¹°ãè¿ããŸãïŒ
- $n$ ãå¥æ°ãªãã°ïŒ$n$ ã« $1$ ã足ãïŒ
- $n$ ãå¶æ°ãªãã°ïŒ$n$ ã $2$ ã§å²ãïŒ
ãã®ãšãïŒ$a_n$ ã $n$ ã $1$ ã«ãªããŸã§ã«å¿
èŠãªæäœã®åæ°ã§å®ããŸãïŒ\
ãäŸãã° $5$ ã¯ä»¥äžã®ããã«æäœãããã®ã§ïŒ$a_5=5$ ã§ãïŒ
$$5\rightarrow6\rightarrow3\rightarrow4\rightarrow2\rightarrow1.$$
ããã®ãšãïŒä»¥äžã®ç·åãçŽ æ° $1021$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ
$$a_2+a_3+a_4+\cdots+a_{2^{1024}-1}+a_{2^{1024}}$$ |
OMC144 | https://onlinemathcontest.com/contests/omc144 | https://onlinemathcontest.com/contests/omc144/tasks/6825 | A | OMC144(A) | 100 | 354 | 362 | [
{
"content": "ãæ¡ä»¶ãã¿ãã $n$ æ°ã¯ã©ã® $2$ ã€ãçŽ å æ°ãå
±æããªãããïŒ$29$ 以äžã®çŽ æ°ã $10$ åã§ããããšãèæ
®ãããšïŒ$n$ ã¯ïŒ$1$ ã®ååšã«æ³šæããŠïŒ$11$ 以äžã§ããïŒéã«ïŒ$29$ 以äžã®çŽ æ°ãš $1$ ãéžã¹ã° $n=11$ ãšã§ããããïŒè§£çãã¹ãå€ã¯ $\\bf 11$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc144/editorial/6825"
}
] | ã$1$ ä»¥äž $29$ 以äžã®æŽæ°ã®ãã¡çžç°ãªã $n$ åãéžãã ãšããïŒãã®ãã¡ã©ã®çžç°ãªã $2$ ã€ã«ã€ããŠãäºãã«çŽ ã§ããïŒãã®ãšãïŒ$n$ ãšããŠããããæ倧å€ãæ±ããŠãã ããïŒ |
OMC144 | https://onlinemathcontest.com/contests/omc144 | https://onlinemathcontest.com/contests/omc144/tasks/6765 | B | OMC144(B) | 200 | 259 | 303 | [
{
"content": "ãæ¡ä»¶ããåè§åœ¢ $ABDE$ ã¯çèå°åœ¢ã§ããããïŒPtolemyã®å®çãã $BE^2 - AB^2 = AE \\cdot BD$ ã§ããïŒ$\\angle{BCE}=90°$ ã§ããããäžå¹³æ¹ã®å®çãã $BC^2=BE^2-EC^2=BE^2-AB^2=AE\\cdot BD$ ã§ããïŒåŸã£ãŠïŒæ±ããå€ã¯ $BC^2=7\\cdot 3=\\mathbf{21}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc144/editorial/6765"
}
] | ãåžäºè§åœ¢ $ABCDE$ ã¯ä»¥äžã®æ¡ä»¶ãã¿ãããŸãïŒ
$$\begin{aligned}
&AE\parallel BD, \quad AB=EC=ED, \\\\
&AE=3, \quad BD=7, \quad \angle{BCE}=90^\circ.
\end{aligned}$$
ãã®ãšãïŒ$BC$ ã®é·ãã®äºä¹ã解çããŠäžãã. |
OMC144 | https://onlinemathcontest.com/contests/omc144 | https://onlinemathcontest.com/contests/omc144/tasks/6683 | C | OMC144(C) | 300 | 295 | 321 | [
{
"content": "ãç®±ã®äžã«å
¥ã£ãŠããçã®æ°ãïŒå·Šããé ã« $a_1,a_2,a_3,a_4$ åãšããïŒãã®ãšãïŒäžããããæ¡ä»¶ã¯ä»¥äžã®ããã«æŽçã§ããïŒ\r\n$$a_1+a_2=2019,\\quad a_3+a_4=7981,\\quad 0\\leq a_1\\lt a_2\\lt a_3\\lt a_4$$\r\n\r\nãããŸïŒ$a_2$ ã $1010\\leq a_2\\leq 2019$ ã®ç¯å²ã§åºå®ãããšãïŒã¿ããã¹ãæ¡ä»¶ã¯\r\n$$a_2\\lt a_3\\lt 7981-a_3 \\iff a_2\\lt a_3 \\leq 3990$$\r\nã®ããã«æžããããããïŒãã£ãŠïŒæ¡ä»¶ãã¿ãã $a_1,a_2,a_3,a_4$ ã®ç·æ°ã¯ $3990-a_2$ ãªã®ã§ïŒæ±ããçãã¯\r\n$$\\displaystyle\\sum_{a_2=1010}^{2019}(3990-a_2)=\\mathbf{2500255}$$ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc144/editorial/6683"
}
] | ãäºãã«åºå¥ã§ãã $4$ ã€ã®ç®±ãå·Šå³äžåã«äžŠãã§ããïŒãããã®äžŠã³é ã¯åºå®ãããŠããŸãïŒãããã®ç®±ã«åèš $10^4$ åã®åºå¥ã§ããªãçãå
¥ã£ãŠããŸãïŒãããã®ç®±ãçãïŒä»¥äžã®æ¡ä»¶ãã¿ãããŠãããšãïŒããããã®ç®±ã«å
¥ã£ãŠããçã®æ°ã®çµã¿åãããšããŠãããããã®ã¯äœéããããŸããïŒ
- ã©ã®çžç°ãªã $2$ ã€ã®ç®±ã«å¯ŸããŠãïŒå·ŠåŽã®ç®±ã«å
¥ã£ãŠããçã®æ°ãããå³åŽã®ç®±ã«å
¥ã£ãŠããçã®æ°ã®æ¹ãå€ãïŒ
- å·Šååã® $2$ åã®ç®±ã«å
¥ã£ãŠããçã®æ°ã®åèšã¯ $2019$ åã§ããïŒ
ããã ãïŒçã $1$ åãå
¥ã£ãŠããªãç®±ããã£ãŠãæ§ããŸããïŒ |
OMC144 | https://onlinemathcontest.com/contests/omc144 | https://onlinemathcontest.com/contests/omc144/tasks/4969 | D | OMC144(D) | 400 | 75 | 180 | [
{
"content": "ãäžè¬æ§ã倱ãã $AB=1$ ãšã§ããããšã«æ³šæããïŒãã®ãšãïŒ$CA=x, CB=y$ ãšããã°ïŒ\r\n$$x^2+y^2\\lt1,\\quad x+y\\gt1,\\quad x\\gt0,\\quad y\\gt0$$\r\nã§äžããããé åïŒäžå³ã®éè²éšïŒãçŽç· $y=-k(x-2)-2$ ãééãããã㪠$k$ ã®ç¯å²ãèããããšã«åž°çãããïŒãã®çŽç·ã¯ã€ãã«å®ç¹ $(2,-2)$ ãéãããšã«æ³šæããŠäžå³ããå€æããã°ïŒä»¥äžã®ããšããããïŒ\r\n\r\n- çŽç·ã $(0,1)$ ãéãå ŽåãïŒåŸãã®äžé $-3\\/2$ ãäžããïŒ\r\n- çŽç·ãåäœåã®äžååãšæ¥ããå ŽåãïŒåŸãã®äžé $-\\big(4+\\sqrt{7}\\big)\\/3$ ãäžããïŒ\r\n\r\nãªãïŒäœçœ®é¢ä¿ã«ãã£ãŠã¯ïŒ$(1,0)$ ã«ãããç¹ãéãå Žåãåè£ã«å
¥ãå¯èœæ§ãããããšã«æ³šæããïŒ\\\r\nãåŸãã $-k$ ã§äžããããããšããïŒä»¥äžãã\r\n$$m=\\frac{3}{2}, \\quad M=\\frac{4+\\sqrt{7}}{3}, \\quad P(x)=\\pm(12x^2+4x-9)$$ \r\nãšãããïŒè§£çãã¹ãå€ã¯ $\\bf 120391$ ã§ããïŒ \r\n\r\n![figure 1](\\/images\\/WxYHF8MKveQfguxOp85HTKa4MaL6KX03gJoPD0hg)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc144/editorial/4969"
}
] | ã以äžãã¿ãããããªå®æ° $s$ ãšããŠããããæ倧å€ã $m$ ãšãïŒå®æ° $t$ ãšããŠããããæå°å€ã $M$ ãšããŸãïŒãã ãïŒååšã¯ä¿èšŒãããŸãïŒïŒ
- $\angle C\gt 90^\circ$ ãã¿ãããããªãäžè§åœ¢ $ABC$ ã«å¯ŸããŠãïŒä»¥äžãæãç«ã€ïŒ$$s\lt \dfrac{2AB+CB}{2AB-CA} \lt t$$
ããã®ãšãïŒ$|M-m|$ ãæ ¹ã«ãã€æŽæ°ä¿æ° $2$ 次å€é
åŒ $P(x)$ ãååšããŸãïŒãã®ãã¡ïŒä¿æ°ã®æ倧å
¬çŽæ°ã $1$ ã§ãããã®ã«ã€ããŠïŒ$\lvert P(100)\rvert$ ã解çããŠãã ããïŒ |
OMC144 | https://onlinemathcontest.com/contests/omc144 | https://onlinemathcontest.com/contests/omc144/tasks/6615 | E | OMC144(E) | 500 | 24 | 60 | [
{
"content": "ã$f(1)=a, f(2)=b$ ãšããïŒãã®ãšã\r\n$$f(3)=f(1)^2+f(2)^2=a^2+b^2, \\quad f(4)=f(1)f(2)+f(2)f(3)=a^2b+ab+b^3$$\r\nã§ããïŒãŸãïŒ$f(5)=f(1)f(3)+f(2)f(4)=f(2)f(2)+f(3)f(3)$ ã§ããããïŒä»£å
¥ããŠè§£ãããšã§ $a=1$ ãåããïŒåŸã£ãŠïŒäžåŒã« $m=1$ ã代å
¥ãïŒ\r\n$$f(1)=1,\\quad f(2)=b,\\quad f(n+2)=f(n)+bf(n+1)$$\r\nãä»»æã®æ£ã®æŽæ° $n$ ã«ã€ããŠæç«ããããšããããïŒéã«ïŒããããæç«ãããšãïŒ$b$ ã«ãããä»»æã®æ£ã®æŽæ° $m,n$ïŒãã ã $m\\geq 2$ ïŒã«ã€ããŠïŒ\r\n$$\r\n\\begin{aligned}\r\nf(m)f(n) + f(m+1)f(n+1) &= f(m)f(n) + \\bigl(f(m-1)+bf(m)\\bigr)f(n+1) \\\\\\\\\r\n&= f(m-1)f(n+1) + f(m)\\bigl(f(n)+bf(n+1)\\bigr) \\\\\\\\\r\n&= f(m-1)f(n+1) + f(m)f(n+2)\r\n\\end{aligned}\r\n$$\r\nãæãç«ã€ããšããïŒäžåŒãæºããããããšãåž°çŽçã«ç¢ºãããããã®ã§ïŒæ±ããé¢æ°ã¯ããæ£ã®æŽæ° $b$ ã«å¯ŸããŠäžã®æŒžååŒãæºãã $f$ å
šãŠã§ããïŒ\\\r\nããã®ãããªé¢æ°ã® $f(4)$ ã®å€ã¯ $b^3+2b$ ã§ããããïŒ$\\left| f(4)-10^6\\right|$ ãæãå°ãããªããã㪠$b$ ã®å€ã¯ $100$ ã§ããïŒãŸãïŒ$3$ 以äžã®æŽæ° $n$ ã«ã€ããŠä»¥äžãæç«ããã®ã§ïŒæ±ããçã㯠$\\bf{10001}$ ã§ããïŒ\r\n$$\r\n\\begin{aligned}\r\n\\left\\lfloor \\dfrac{f(n+2)}{f(n)} \\right\\rfloor & = \\left\\lfloor\\dfrac{f(n)+bf(n+1)}{f(n)} \\right\\rfloor \\\\\\\\\r\n& = 1+b^2+ \\left\\lfloor \\dfrac{bf(n-1)}{f(n)} \\right\\rfloor \\\\\\\\\r\n& = 1+b^2 +\\left\\lfloor \\dfrac{bf(n-1)}{f(n-2)+bf(n-1)} \\right\\rfloor \\\\\\\\\r\n& = 1+b^2.\r\n\\end{aligned}\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc144/editorial/6615"
}
] | ãæ£æŽæ°ã«å¯ŸããŠå®çŸ©ããïŒæ£æŽæ°å€ããšãé¢æ° $f$ ãïŒä»»æã®æ£æŽæ° $m,n$ ã«å¯ŸããŠ
$$f(m+n+1)=f(m)f(n)+f(m+1)f(n+1)$$
ãã¿ãããŸãïŒãã®ãã㪠$f$ ã®ãã¡ïŒ$\left| f(4)-10^6\right|$ ãæãå°ãããªããã®ãã¹ãŠã«ã€ããŠïŒ$\dfrac{f(1012)}{f(1010)}$ ã®**æŽæ°éšåã®ç·å**ã解çããŠãã ããïŒ |
OMC144 | https://onlinemathcontest.com/contests/omc144 | https://onlinemathcontest.com/contests/omc144/tasks/6725 | F | OMC144(F) | 600 | 15 | 71 | [
{
"content": "ãã«ã¿ãã ãªåã $n$ åç®ã«èŸºãäŒã£ãŠç§»åããæã« $X$ ããã®è·é¢ã $1,2,3,4$ ã®é ç¹ã«ããå Žåã®æ°ãããããïŒ$a_n, b_n, c_n, d_n$ ãšãããšïŒæ±ããå Žåã®æ°ã¯ $d_{9999}$ ã§ããïŒãŸãïŒä»¥äžã®æŒžååŒãæãç«ã€ïŒ\r\n$$\r\na_{n+1}=b_{n}, \\quad\r\nb_{n+1}=2a_{n}+b_{n}+c_{n}, \\quad\r\nc_{n+1}=b_{n}+c_{n}+2d_{n}, \\quad\r\nd_{n+1}=c_{n}\r\n$$\r\nããã§ïŒ$s_n = a_n + d_n, t_n = a_n - d_n$ ãšããã°ïŒ$d_{9999} = \\dfrac{s_{9999}- t_{9999}}{2}$ ã§ããããïŒ$s_{9999}$ ãš $t_{9999}$ ã $5003$ ã§å²ã£ãäœããæ±ããã°ããïŒä»¥äžã§ã¯ïŒåååŒã¯å
šãŠ $5003$ ãæ³ãšããŠèããïŒ\r\n\r\n- $s_{9999}$ ã $5003$ ã§å²ã£ãäœã\\\r\n$$s_{1} = 3,\\quad s_2 = 0,\\quad s_{n} = b_{n-1} + c_{n-1} = 2(b_{n-2} + c_{n-2}) + 2(a_{n-2} + d_{n-2}) = 2s_{n-1} +2 s_{n-2}$$\r\nã§ããïŒããã§ïŒå¥çŽ æ° $p$ ãšæŽæ° $a$ ã«å¯Ÿã $\\bigg(\\dfrac{a}{p}\\bigg)$ ãLegendreèšå·ãšãããšïŒå¹³æ¹å°äœã®çžäºæ³åãã\r\n$$\\bigg(\\dfrac{3}{5003}\\bigg) = \\bigg(\\dfrac{5003}{3}\\bigg)(-1)^{\\frac{5003-1}{2}\\cdot\\frac{3-1}{2}} = 1$$\r\nã§ããã®ã§ïŒ$r^2 \\equiv 3$ ãªãæŽæ° $r$ ãååšããïŒãã®ãšãïŒ\r\n$$s_n \\equiv \\frac{r}{2}\\big((1+r)(1-r)^{n-1} - (1-r)(1+r)^{n-1}\\big)$$\r\nã§ããããšã確èªã§ããïŒåŸã£ãŠïŒ\r\n$$\\begin{aligned}\r\ns_{9999} \r\n&\\equiv \\frac{r}{2}\\big((1+r)(1-r)^{9998} - (1-r)(1+r)^{9998}\\big)\\\\\\\\\r\n&\\equiv \\frac{r}{2}\\bigg(\\frac{1+r}{(1-r)^6} - \\frac{1-r}{(1+r)^6}\\bigg)\\\\\\\\\r\n&= \\frac{r\\big((1+r)^7 - (1-r)^7\\big)}{2(1-r^2)^6}\\\\\\\\\r\n&= \\frac{\\sum\\limits_{k=1}^{4}{}\\_{7}\\mathrm{C}\\_{2k-1}r^{2k}}{(1-r^2)^6}\\\\\\\\\r\n&\\equiv \\frac{\\sum\\limits_{k=1}^{4}{}\\_{7}\\mathrm{C}\\_{2k-1}3^k}{(-2)^6}\\\\\\\\\r\n&\\equiv \\frac{123}{8}\r\n\\end{aligned}$$\r\nã§ããïŒãããã¯ïŒ$s_{9999}\\equiv s_{-5}$ ã§ããããïŒæŒžååŒãéé ã«èŸ¿ãããšã§ãåæ§ã®çµæãåŸãããïŒ\r\n\r\n- $t_{9999}$ ã $5003$ ã§å²ã£ãäœã\\\r\n$$t_n = b_{n-1} - c_{n-1} = (2a_{n-2} + b_{n-2} + c_{n-2}) - (b_{n-2} + c_{n-2} + 2d_{n-2}) = 2(a_{n-2} - d_{n-2})$$\r\nã§ããïŒãŸãïŒ$a_1-d_1=3$ ã§ããããïŒ\r\n$$a_{9999}-d_{9999}=3\\times 2^{4999}\\equiv 3\\times2^{-3}\\equiv \\frac38$$\r\nã§ããïŒ\r\n\r\n以äžããïŒæ±ããçã㯠$d_{9999}\\equiv\\dfrac12\\biggl(\\dfrac{123}{8}-\\dfrac38\\biggr) \\equiv \\dfrac{15}{2}\\equiv \\bf{2509}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc144/editorial/6725"
}
] | ãæ£åäºé¢äœã®é ç¹ã®äžã€ã $X$ ãšãïŒäžå¿ã«é¢ã㊠$X$ ãšå¯Ÿç§°ãªé ç¹ã $Y$ ãšããŸãïŒ\
ãã«ã¿ãã ãªåã¯ïŒ$X$ ããã¹ã¿ãŒãããŠïŒèŸºã§çµã°ããé ç¹ã«ç§»åããããšã $10^4$ åç¹°ãè¿ããŸãïŒããã§ïŒçŽåã«ããé ç¹ã«åŒãè¿ãããšãå¯èœã§ãïŒãã®ãšãïŒä»¥äžã®æ¡ä»¶ãã¿ãã移åæ¹æ³ã®ç·æ°ãïŒçŽ æ° $5003$ ã§å²ã£ãããŸããæ±ããŠãã ããïŒ
ããã
- äžåºŠã $X$ ã«æ»ããïŒã〠$10^4$ åç®ã®ç§»åã§åã㊠$Y$ ã«å°éããïŒ
ããã ãïŒå転ããŠäžèŽãããããªç§»åæ¹æ³ãç°ãªããã®ãšããŠæ°ããŸãïŒ |
OMCT004 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct004 | https://onlinemathcontest.com/contests/omct004/tasks/3112 | A | OMCT004(A) | 100 | 102 | 171 | [
{
"content": "ãåè§åœ¢ $ABCD$ ã®é¢ç©ã¯äžè§åœ¢ $ABD$ ã®é¢ç©ã® $2$ åã§ããïŒäžè§åœ¢ $ABD$ ã®é¢ç©ã¯ $\\angle BAD=90^{\\circ}$ ã®ãšãã«æå€§å€ $55$ ããšãïŒ$\\angle BAD$ ãé©åœãªéè§ã«ããããšã«ãã£ãŠäžè§åœ¢ $ABD$ ã®é¢ç©ã $55$ æªæºã®ä»»æã®æ£ã®å®æ°ã«ããããšãã§ããïŒãã®ãšãïŒåè§åœ¢ $ABCD$ ã¯åžã§ããïŒïŒãã£ãŠïŒåžåè§åœ¢ $ABCD$ ã®é¢ç©ã¯ $1,2,\\ldots, 110$ ã® $\\bf{110}$ éãã®æ£æŽæ°å€ãåããã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct004/editorial/3112"
}
] | ãåžåè§åœ¢ $ABCD$ ã以äžãã¿ãããŸãïŒ
$$AB=BC=10,\quad CD=DA=11$$
ãã®ãšãïŒåè§åœ¢ $ABCD$ ã®é¢ç©ãšããŠããããæ£æŽæ°å€ã¯äœéããããŸããïŒ |
OMCT004 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct004 | https://onlinemathcontest.com/contests/omct004/tasks/2928 | B | OMCT004(B) | 200 | 138 | 161 | [
{
"content": "ã$2$ ã€ã®çµ $(p_1, p_2, p_3, p_4), (p_2, p_4, p_1, p_3)$ ã«ã€ããŠïŒããããã®ã¹ã³ã¢ã®å㯠\r\n$$\\begin{aligned}\r\n(p_1p_2+p_2p_3+p_3p_4)+(p_2p_4+p_4p_1+p_1p_3)\r\n&=p_1p_2+p_1p_3+p_1p_4+p_2p_3+p_2p_4+p_3p_4 \\\\\\\\\r\n&=0\\cdot1+0\\cdot2+0\\cdot3+1\\cdot2+1\\cdot3+2\\cdot3 \\\\\\\\\r\n&=11\r\n\\end{aligned}$$\r\nã§äžå®ã§ããïŒãã®ãããªãã¢ã¯ $4!\\/2=12$ åäœããããïŒæ±ããç·å㯠$11\\times 12=\\bf{132}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct004/editorial/2928"
}
] | ãå®æ° $4$ ã€ã®çµ $(a,b,c,d)$ ã«å¯ŸããŠïŒãã®**ã¹ã³ã¢**ã以äžã§å®ããŸãïŒ
$$ab+bc+cd$$
$0,1,2,3$ ããããäžã€ãã€ãããªãçµã¯ $4!$ éããããŸããïŒããããã«ã€ããŠã¹ã³ã¢ãæ±ãïŒãã®ç·åã解çããŠãã ããïŒ |
OMCT004 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct004 | https://onlinemathcontest.com/contests/omct004/tasks/4126 | C | OMCT004(C) | 200 | 153 | 176 | [
{
"content": "ã$k$ 㯠$(103^2-1)-(101^2-1)=204\\cdot2$ ãš $(109^2-1)-(107^2-1)=216\\cdot2$ ã®å
¬çŽæ°ïŒããªãã¡ $24$ ã®çŽæ°ã§ããïŒãŸãïŒ$100$ 以äžã®çŽ æ° $p$ 㯠$p=6a\\pm1$ ã®åœ¢ã§è¡šããïŒ$(6a\\pm1)^2-1=12a(3a\\pm1)$ ãããã㯠$24$ ã®åæ°ã§ããïŒãããã£ãŠïŒæ±ããæ倧㮠$k$ 㯠$\\textbf{24}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct004/editorial/4126"
}
] | ã次ã®åœé¡ãçãšãªããããªæ倧ã®æ£æŽæ° $k$ ãæ±ããŠãã ããïŒ
- ä»»æã® $100$ 以äžã®çŽ æ° $p$ ã«å¯ŸãïŒ$p^2-1$ 㯠$k$ ã®åæ°ã§ããïŒ |
OMCT004 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct004 | https://onlinemathcontest.com/contests/omct004/tasks/3495 | D | OMCT004(D) | 200 | 81 | 100 | [
{
"content": "ã$P$ ãéã $PD$ ã«åçŽãªçŽç·ãšèŸº $AB, AC$ ã®äº€ç¹ã $X, Y$ ãšãïŒçŽç· $PE, PF$ ãšèŸº $BC$ ã®äº€ç¹ã $Z, W$ ãšããïŒ$XY \\parallel BC, EZ \\parallel AB, FW \\parallel AC$ ã«çæããã°ïŒä»¥äžãæç«ããïŒ\r\n\r\n$$\r\n\\begin{aligned}\r\nAF &= PE = 6,&& AE = PF = 8\\\\\\\\\r\nFX &= \\frac{PF}{\\sqrt{3}} = \\frac{8}{\\sqrt{3}},&& EY = \\sqrt{3}PE = 6\\sqrt{3}\\\\\\\\\r\nXB &= PZ = \\frac{2PD}{\\sqrt{3}} = \\frac{10}{\\sqrt{3}},&& YC = PW = 2PD = 10\r\n\\end{aligned}\r\n$$\r\n\r\nãã£ãŠïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã¯\r\n\r\n$$\\frac{1}{2}(AF + FX + XB)(AE + EY + YC) = 108 + 72\\sqrt{3}$$\r\n\r\nã§ããã®ã§ïŒè§£çãã¹ãå€ã¯ $\\bf{183}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct004/editorial/3495"
},
{
"content": "ãé åããããããŸãããïŒäžå¿ïŒ\r\n\r\n---\r\n\r\nã$AB=x$ ãšãããš $\\triangle ABC$ ã®é¢ç©ã¯ $\\dfrac{\\sqrt{3}}{2} x^2$ ã§ããïŒäžæ¹\r\n$$\\begin{aligned}\r\n\\triangle ABC &= \\triangle PAB + \\triangle PBC + \\triangle PCA \\\\\\\\\r\n&= 4x+5x+3\\sqrt{3}x \r\n\\end{aligned}$$\r\nãšãè¡šããããïŒããããé£ç«ã㊠$x=6+6\\sqrt{3}$ ãåŸãïŒå床 $\\triangle ABC = \\dfrac{\\sqrt{3}}{2} x^2$ ãçšããã°çããåºãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct004/editorial/3495/196"
}
] | ãäžè§åœ¢ $ABC$ ã¯
$$\angle A = 90^\circ, \quad \angle B= 60^\circ, \quad \angle C = 30^\circ$$
ãã¿ãããŸãïŒäžè§åœ¢ $ABC$ ã®å
éšã®ç¹ $P$ ãã蟺 $BC, CA, AB$ ã«ããããåç·ã®è¶³ããããã $D, E, F$ ãšãããšïŒä»¥äžãæãç«ã¡ãŸããïŒ
$$PD = 5, \quad PE = 6, \quad PF = 8$$
ãã®ãšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã¯æ£ã®æŽæ° $a, b, c$ïŒ$c$ ã¯å¹³æ¹å åããããªãïŒãçšã㊠$a + b\sqrt{c}$ ãšè¡šãããã®ã§ïŒ$a + b + c$ ã解çããŠãã ããïŒ |
OMCT003 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct003 | https://onlinemathcontest.com/contests/omct003/tasks/3262 | A | OMCT003(A) | 100 | 212 | 218 | [
{
"content": "ã$x$ ã $3$ ã§å²ããåæ°ã $f(x)$ ã§è¡šãã°ïŒ$3261$ ããã³ $3264$ ã $3$ ã®åæ°ã§ããããšããïŒ\r\n$$\\cdots=f(3260!)\\lt f(3261!)=f(3262!)=f(3263!)\\lt f(3264!)=\\cdots$$\r\nãæç«ããïŒãããã£ãŠïŒæ±ããç·å㯠$3261+3263=\\textbf{6524}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct003/editorial/3262"
}
] | ã$n!$ ãš $3262!$ ã $3$ ã§å²ãåããæ倧ã®åæ°ãçãããããªïŒ$3262$ 以å€ã®æ£ã®æŽæ° $n$ ã®ç·åãæ±ããŠãã ããïŒ |
OMCT003 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct003 | https://onlinemathcontest.com/contests/omct003/tasks/3412 | B | OMCT003(B) | 300 | 148 | 173 | [
{
"content": "ãçŽç· $AB$ äžã«ããïŒ$x$ 座æšã $t$ ã§ããç¹ã $D$ ãšããïŒ$CD$ ãåºèŸºãšããŠèããã° \r\n$$\r\n\\triangle{ABC}=\\frac{1}{2} \\times CD \\times \\bigl( 25-(-13) \\bigl)\r\n$$\r\nã§ããããïŒç·å $CD$ ã®é·ãã«ã€ããŠèããã°ããïŒ$D$ ã® $y$ 座æšã¯ $12t+325$ ã§ããããïŒ\r\n$$CD=|t^2-12t-325|=|(t-6)^2-361|$$\r\nã§ããïŒãããæ倧ãšãªã $t$ ã®å€ã $3$ ã€ååšããã®ã¯ïŒæ倧å€ã $361$ ãšãªããšãã§ããïŒ$-a, b$ 㯠$2$ 次æ¹çšåŒ $x^2-12x-325=361$ ã® $2$ 解ã§ããïŒä»¥äžã«ããïŒè§£çãã¹ãå€ã¯ $325+361=\\textbf{686}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct003/editorial/3412"
},
{
"content": "ã$t$ ã $-13\\lt t\\lt25$ ãåããšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ãæ倧ãšãªãã®ã¯ç¹ $C$ ã $y=x^2$ ã® $AB$ ã«å¹³è¡ãªæ¥ç· $m$ ã®æ¥ç¹ $K(k,k^2)$ ã«äžèŽãããšãïŒ \r\nãã£ãŠïŒäžè§åœ¢ $ABC$ ã®é¢ç©ãæ倧ãšãªãã®ã¯ç¹ $C$ ãã¡ããã© $3$ åã§ããã®ã¯ïŒ$X(-a,a^2),Y(b,b^2)$ ãçµã¶çŽç·ãšçŽç· $AB$ ãšçŽç· $m$ ãçå¹
å¹³è¡ç·ãšãªããšãã§ããïŒ$\\cdots(*)$ \r\n(ãã®ãšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ãæ倧ãšãªãã®ã¯ïŒ$t=-a,b,k$ ã®ãšãïŒ) \r\n\r\nãããã§äžè¬ã«ïŒ$y=x^2$ äžã® $2$ ç¹ $(p,p^2),(q,q^2)$ ãéãçŽç·ã®åŒã¯ $y=(p+q)x-pq$ (æåäºå®)ã§ããããšããïŒ$AB\\/\\/m$ ãã $-13+25=k+k$ ãªã®ã§ $k=6$ ãšãªãïŒããã«ïŒ$XY,AB,m$ ã® $y$ åçããããã $ab,13\\cdot25,-6^2$ ãšãªãïŒ$(*)$ ããïŒããããçå·®æ°åããªãããšããïŒ$ab=2\\cdot13\\cdot25+36=\\textbf{686}$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct003/editorial/3412/197"
}
] | ã$a, b$ ã¯æ£ã®å®æ°ã§ãïŒåº§æšå¹³é¢äžã® $3$ ç¹
$$A:(-13, 13^2),\quad B:(25, 25^2),\quad C:(t, t^2)$$
ã«ã€ããŠïŒ$-a \leq t \leq b$ ã®ç¯å²ã§ç¹ $C$ ãåããšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ãæ倧ãšãªã $t$ ã®å€ã¯ã¡ããã© $3$ ã€ååšããŸããïŒãã®ãšãïŒ$ab$ ã®å€ãæ±ããŠãã ããïŒ |
OMCT003 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct003 | https://onlinemathcontest.com/contests/omct003/tasks/3178 | C | OMCT003(C) | 300 | 131 | 160 | [
{
"content": "ãäžåŒã $2$ åŒãã€è¶³ãåãããããšã§ïŒæ¡ä»¶ã¯ä»¥äžãšåå€ã§ããïŒ\r\n$$(a+b)(c+d)=143,\\quad (a+c)(b+d)=140,\\quad (a+d)(b+c)=135$$\r\n$143=11\\times 13$ ãèžãŸããŠç¬¬ $1$ åŒã«çç®ããã°ïŒ$a+b+c+d$ ã¯ã€ãã« $11+13=24$ ã§ããïŒããã«ãã\r\n$$ \\\\{a+b,~ c+d\\\\} = \\\\{11,13\\\\}, \\quad \\\\{a+c,~ b+d\\\\} = \\\\{10,14\\\\}, \\quad \\\\{a+d,~ b+c\\\\}=\\\\{9,15\\\\} $$\r\nãå¿
èŠã§ããïŒéã«ïŒããããã®å²ãæ¯ããä»»æã«éžãã $2^3$ éããã¹ãŠã§ $a,b,c,d$ ã¯æ£ã®æŽæ°ãšãªãããšããããããïŒæ±ããå€ã¯ $24 \\times 8 = \\bf{192}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct003/editorial/3178"
}
] | ã以äžããã¹ãŠã¿ããæ£ã®æŽæ°ã®çµ $(a,b,c,d)$ ãã¹ãŠã«ã€ããŠïŒ$a+b+c+d$ ã®ç·åãæ±ããŠãã ããïŒ
$$ab+cd=66,\quad ac+bd=69,\quad ad+bc=74$$ |
OMCT003 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct003 | https://onlinemathcontest.com/contests/omct003/tasks/4230 | D | OMCT003(D) | 300 | 44 | 80 | [
{
"content": "$$\\angle DBA=\\angle DBI-\\angle ABI=\\angle BID-\\angle IBC=\\angle BCI=\\angle ICA=\\angle DCA$$\r\nã«ããïŒ$D$ ã¯äžè§åœ¢ $ABC$ ã®å€æ¥åäžã«ããïŒãªãïŒåŒ§ $AB$ ã®äžç¹ãäžè§åœ¢ $AIB$ ã®å€å¿ã§ãããšããæåäºå®ãèžãŸããã°ïŒçŽæ¥ã®è§åºŠè¿œè·¡ãè¡ãããšãããã $D$ ã§ããããšããããïŒïŒç¹ $E$ ã«ã€ããŠãåæ§ã§ããïŒãããã£ãŠïŒäžè§åœ¢ $IBC$ ãšäžè§åœ¢ $IED$ ã¯çžäŒŒãªã®ã§ïŒ $IB:ID=BC:DE=4:5$ ãš $BD=ID$ ã«ãã\r\n$$ \\sin{\\angle{A}} = \\sin \\angle BDI = \\frac{4\\sqrt{21}}{25}$$\r\nãåããïŒãã£ãŠïŒäžè§åœ¢ $ABC$ ã®å€æ¥åã®ååŸã¯æ£åŒŠå®çãã $\\dfrac{25}{2\\sqrt{21}}$ ãšãªãããïŒç¹ã«è§£çãã¹ãå€ã¯ $625+84=\\mathbf{709}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct003/editorial/4230"
}
] | ã$AB=3,BC=4$ ãªãäžè§åœ¢ $ABC$ ãããïŒãã®å
å¿ã $I$ ãšããŸãïŒç·å $BI$ ã®åçŽäºçåç·ãšçŽç· $CI$ ã®äº€ç¹ã $D$ ãšãïŒç·å $CI$ ã®åçŽäºçåç·ãšçŽç· $BI$ ã®äº€ç¹ã $E$ ãšãããšïŒ$DE=5$ ãæãç«ã¡ãŸããïŒãã®ãšãïŒäžè§åœ¢ $ABC$ ã®å€æ¥åã®é¢ç©ã¯ïŒäºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\displaystyle \frac{a}{b}\pi$ ãšè¡šããŸãïŒ$a + b$ ã®å€ãæ±ããŠãã ããïŒ |
OMCT003 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct003 | https://onlinemathcontest.com/contests/omct003/tasks/4250 | E | OMCT003(E) | 300 | 114 | 136 | [
{
"content": "ãå®éã«æäœãå®è¡ããããšã§ïŒæ¬¡ã®ããšããããïŒ\r\n\r\n- ããããã®æäœã®æç¹ã«ãããŠïŒå人ãéžã³ããè¡ãŸãã¯åã¯ãã¹ãŠäžèŽããïŒç¹ã«ïŒåèšã§ $17$ åç®ã®æäœä»¥éã¯ïŒå€ªéããã¯ãã¹ãŠ $1$ ã®è¡ãïŒæ¬¡éããã¯ãã¹ãŠ $0$ ã®åãéžã³ç¶ããããšã«ãªãïŒïŒ\r\n\r\nãããèžãŸããã°ïŒå€ªéããã¯éžã³ããè¡ã®ãã¡æãå·Šã«ãããã®ãïŒæ¬¡éããã¯éžã³ããåã®ãã¡æãäžã«ãããã®ãéžã³ç¶ãããšããŠãããïŒãã®å¶çŽã®ããšã§å®éã«æäœãå®è¡ããã°ïŒããã«æ¬¡ã®ããšããããïŒ\r\n\r\n- åèšã§ $16$ ã®åæ°åã®æäœãçµããçŽåŸã®ãã¹ç®ã¯ïŒå·ŠäžååïŒå¯Ÿè§ç·ãå«ãïŒããã¹ãŠ $1$ ã§ïŒæ®ãããã¹ãŠ $0$ ãšãªã£ãŠããïŒ\r\n\r\n\r\nãç¹ã«ïŒæ±ããå€ã¯ $\\bf{36}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct003/editorial/4250"
}
] | ã$8\times8$ ã®ãã¹ç®ãããïŒã¯ãããã¹ãŠã®ãã¹ã«ã¯ $1$ ãæžãããŠããŸãïŒãã®ãã¹ç®ã«å¯ŸããŠïŒå€ªéãããšæ¬¡éããã次ã®ãããªæäœãïŒå€ªéãããå
æãšããŠäº€äºã« $5000$ åãã€è¡ããŸããïŒ
- 倪éããã¯ïŒçžŠã®è¡ã®ãã¡æžãããŠããæ°ã®ç·åãæã**倧ãã**ãã®ã®äžããé©åœã«äžã€ãéžã³ïŒãã®è¡ã®ãã¹ããã¹ãŠ $0$ ã«æžããããïŒ
- 次éããã¯ïŒæšªã®åã®ãã¡æžãããŠããæ°ã®ç·åãæã**å°ãã**ãã®ã®äžããé©åœã«äžã€ãéžã³ïŒãã®åã®ãã¹ããã¹ãŠ $1$ ã«æžããããïŒ
ãã¹ãŠã®æäœãçµãã£ãããšïŒãã¹ç®å
šäœã«æžãããæ°ã®ç·åãæ±ããŠãã ããïŒ\
ããã ãïŒæ±ããå€ã¯æäœã«ãããäžæã«å®ãŸãããšãä¿èšŒãããŸãïŒ |
OMCT003 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct003 | https://onlinemathcontest.com/contests/omct003/tasks/3271 | F | OMCT003(F) | 500 | 7 | 47 | [
{
"content": "ã$AD=BC=a, AC=BD=b$ ãšããïŒçèå°åœ¢ $ABCD$ ã¯åã«å
æ¥ããã®ã§ïŒPtolemyã®å®çãã\r\n$$a^2+2\\times10^{200}=b^2 \\tag{1}$$\r\nãæç«ããïŒãŸãïŒ$DA+AB+BC\\gt DC$ ãã\r\n$$a\\gt\\dfrac12 \\times 10^{100}\\tag{2}$$\r\nãæç«ããïŒéã«ïŒãã® $2$ æ¡ä»¶ãæç«ããŠãããšãïŒæ¡ä»¶ãã¿ããçèå°åœ¢ãååšããïŒãããã£ãŠïŒäžã® $2$ æ¡ä»¶ãã¿ããæ£ã®æŽæ°ã®çµ $(a, b)$ ãæ°ããã°ããïŒ\\\r\nã$(1)$ ãæžãæãããš $(b+a)(b-a)=2\\times10^{200}$ ã§ããïŒ$b+a, b-a$ ã¯ããããæ£ã®å¶æ°ã§ããããšãã $$a=t-s,\\quad b=t+s, \\quad st=2^{199}\\times5^{200}$$\r\nãªãæ£æŽæ° $s,t$ ããšããïŒ$s\\lt t$ ã«çæããã°ïŒãããã¿ããçµ $(s, t)$ 㯠$200\\times201\\div2=20100$ åã§ããïŒ\\\r\nã$(1)$ ãã¿ããã $(2)$ ãã¿ãããªãçµ $(s, t)$ ãèãããïŒ$s=10^{200}\\/2t$ ã§ããããšããïŒ$(2)$ ã¯\r\n$$ t - \\dfrac {10^{200}}{2t} \\gt \\frac12 \\times 10^{100}$$\r\nãšè¡šçŸã§ããïŒå·ŠèŸºã $t\\gt 0$ ã§å調å¢å ã§ããããšã«çæããã°ïŒ$(2)$ ãã¿ãããªãããšã¯\r\n$$ \\dfrac12\\times 10^{100} \\leq s \\lt t \\leq 10^{100}$$\r\nãšåå€ã§ããïŒãã®ãããªçµ $(s, t)$ ã«ã€ããŠïŒ$s, t$ ã®ãã¡ $2$ 㧠$100$ å以äžå²ãåããæ¹ããšãïŒããã¯äžæã«ååšããïŒ$u$ ãšããïŒ$u$ 㯠$(s, t)$ ãšäžå¯Ÿäžã«å¯Ÿå¿ããïŒ$u$ 㯠$1$ ä»¥äž $100$ 以äžã®æŽæ° $p$ ãš $0$ ä»¥äž $100$ 以äžã®æŽæ° $q$ ã«ãã£ãŠ\r\n$$u=\\dfrac{2^p}{5^q}\\times\\dfrac{10^{100}}{2}$$\r\nãšè¡šãããïŒãã®ãšã $(s,t)$ ã $(2)$ ãã¿ãããªãããšã¯ä»¥äžãšåå€ã§ããïŒ\r\n$$1\\leq\\dfrac{2^p}{5^q}\\le2ïŒ$$\r\n$q$ ãä»»æã«äžãããšãïŒ$p=1+\\lfloor q\\log_2 5 \\rfloor$ ã®ãšããã€ãã®ãšãã«éãïŒãããæç«ããïŒãã£ãŠïŒ$\\log_2 5\\approx2.322$ ã«æ³šæã㊠$1\\le1+\\lfloor q\\log_2 5 \\rfloor\\le100$ ã解ãã° $0\\le q\\le43$ ãåŸãããïŒããªãã¡ïŒ$u$ ãšããŠãããããã®ã¯ $44$ åããïŒ$(1)$ ãã¿ããã $(2)$ ãã¿ãããªãçµ $(s, t)$ ã $44$ åååšããããšãåããïŒ\\\r\nã以äžã«ããïŒæ¡ä»¶ãã¿ããå°åœ¢ã¯ $20100-44=\\mathbf{20056}$ çš®é¡ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct003/editorial/3271"
}
] | ã$AB\parallel DC$ ãªãçèå°åœ¢ $ABCD$ ã¯ïŒ $AB=10^{100}, CD=2\times10^{100}$ ãã¿ãããŠããïŒç·å $AC, AD$ ã®é·ãã¯ãšãã«æ£æŽæ°å€ã§ãïŒãã®ãšãïŒãã®çèå°åœ¢ã®åœ¢ç¶ãšããŠãããããã®ã¯äœéããããŸããïŒããã ãïŒ$\log_{10}2$ ãå°æ°ç¬¬ $5$ äœã§åæšäºå
¥ããå€ãšã㊠$\log_{10}2\approx0.3010$ ãä¿èšŒãããŸãïŒ |
OMCT002 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct002 | https://onlinemathcontest.com/contests/omct002/tasks/6454 | A | OMCT002(A) | 100 | 313 | 320 | [
{
"content": "ãæåŸã®ã²ãŒã 㯠$A$ ããã®åã¡ã§ããããšã«æ³šæããã°ïŒæ®ãã® $9$ ã²ãŒã ãã $A$ ããã®åã¡ã $5$ ã€éžã¹ã°ããããïŒæ±ããå Žåã®æ°ã¯ ${}\\_{9}\\mathrm{C}\\_{5}=\\mathbf{126}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct002/editorial/6454"
}
] | ã$A$ ãããš $B$ ããã®äºäººãïŒå
ã«ã©ã¡ããã $6$ åãããçµäºãšããã«ãŒã«ã§ïŒãªã»ãã§å¯Ÿæ±ºããŸããïŒæçµçã« $A$ ããã $6$ åïŒ$B$ ããã $4$ åããŠçµäºãïŒåŒãåãã¯ç¡ãã£ããšãïŒå
š $10$ åã®ã²ãŒã ã®åæã®çµã¿åãããšããŠãããããã®ã¯äœéããããŸããïŒ |
OMCT002 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct002 | https://onlinemathcontest.com/contests/omct002/tasks/4036 | B | OMCT002(B) | 200 | 226 | 302 | [
{
"content": "ãæ¡ä»¶ã¯ïŒ$4$ ã€ã®ç®ãçžç°ãªãïŒããã« $1,4$ ãããããŠé«ã
$1$ åããåºãªãããšãšèšããããããïŒ$4$ ã€ã®ç®ãçžç°ãªããã®ã¯ $6Ã5Ã4Ã3=360$ éãããïŒãã®ãã¡ $1,4$ ãåæã«åºããã®ã¯ ${}\\_{4}\\mathrm{C}\\_{2}Ã4!=144$ éãã§ããããïŒæ±ããå€ã¯ $\\dfrac{360-144}{6^4}=\\dfrac{1}{6}$ ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{7}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct002/editorial/4036"
}
] | ãã©ã®ç®ãç確çã§åºããããªäžè¬çãªå
é¢äœã®ãµã€ã³ãã $4$ åæ¯ãïŒåºãç®ãé ã« $a_1, a_2, a_3, a_4$ ãšãããšãïŒä»»æã® $1\leq{i}\lt{j}\leq4$ ã«å¯Ÿã $a_{i}a_{j}$ ãå¹³æ¹æ°ãš**ãªããªã**確çãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $s,t$ ãçšã㊠$\dfrac{s}{t}$ ãšè¡šããã®ã§ïŒ$s+t$ ã解çããŠãã ããïŒ |
OMCT002 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct002 | https://onlinemathcontest.com/contests/omct002/tasks/1986 | C | OMCT002(C) | 200 | 181 | 215 | [
{
"content": "ãç¹ $Q$ ãåºå®ãããšãïŒç·å $PQ$ ã®ååšãåŸãé åã¯äžè§åœ¢ $BGQ$ ã§ããããšã«çæããã°ïŒæ±ããé å㯠$B$ ãé ç¹ãšããŠïŒåååããçŽè§äºç蟺äžè§åœ¢ãé€ããå³åœ¢ãåºé¢ãšããéäœã§ããïŒãã®äœç©ã¯\r\n$$\\dfrac{1}{3}\\times 6\\times\\left( 9\\pi-18 \\right)=18\\pi-36$$\r\nã§äžããããããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{648}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct002/editorial/1986"
}
] | ãäžèŸºã®é·ãã $6$ ã®ç«æ¹äœ $ABCD-EFGH$ ãåºå®ãããŠããïŒç·å $BG$ äžãåãç¹ $P$ ãšïŒ$C$ ãäžå¿ãšã㊠$D,G$ ãéãåã®å£åŒ§ $DG$ äžãåãç¹ $Q$ ããããŸãïŒãã®ãšãïŒç·å $PQ$ ã®ééãããé åã®äœç©ãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯æŽæ° $a,b$ ã«ãã£ãŠ $a\pi+b$ ãšè¡šããã®ã§ïŒ$|ab|$ ã解çããŠãã ããïŒ |
OMCT002 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct002 | https://onlinemathcontest.com/contests/omct002/tasks/6762 | D | OMCT002(D) | 300 | 183 | 231 | [
{
"content": "ãæ¡ä»¶ã¯ïŒ$25p\\le n^2\\lt25p+5$ ãšåå€ã§ããïŒ$n^2$ ã $5$ ã§å²ã£ãäœã㯠$0,1,4$ ã®ããããã§ããïŒ$25p$ ã¯å¹³æ¹æ°ã«ãªãããªãããšã«æ³šæããã°ïŒ$n^2=25p+1$ ãŸã㯠$n^2=25p+4$ ã®ãããããæç«ããïŒ\r\n\r\n- $n^2=25p+1$ ã§ããå Žå\\\r\nã$25p=(n-1)(n+1)$ ã§ããïŒ$n-1$ ãš $n+1$ ã®ãã¡ $5$ ã®åæ°ã§ããã®ã¯é«ã
äžã€ã§ããïŒ$n-1$ ãš $n+1$ ã®å·®ã¯ $2$ ã§ããããïŒ$\\\\{n-1,n+1\\\\} = \\\\{25,p\\\\}$ ã§ããïŒåŸã£ãŠïŒ$p = 23$ ã§ããïŒ\r\n\r\n- $n^2=25p+4$ ã§ããå Žå\\\r\nã$25p=(n-2)(n+2)$ ã§ããïŒ$n-2$ ãš $n+2$ ã®ãã¡ $5$ ã®åæ°ã§ããã®ã¯é«ã
äžã€ã§ããïŒ$n-2$ ãš $n+2$ ã®å·®ã¯ $4$ ã§ããããïŒ$\\\\{n-2,n+2\\\\} = \\\\{25,p\\\\}$ ã§ããïŒåŸã£ãŠïŒ$p = 29$ ã§ããïŒ\r\n\r\nã以äžããïŒæ±ããçã㯠$23 + 29 = \\mathbf{52}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct002/editorial/6762"
}
] | ã$\left\lfloor\dfrac{n^2}{5}\right\rfloor=5p$ ãã¿ããæŽæ° $n$ ãååšãããããªçŽ æ° $p$ ã®ç·åãæ±ããŠãã ããïŒ\
ããã ãïŒå®æ° $x$ ã«å¯Ÿã㊠$\lfloor x\rfloor$ 㧠$x$ ãè¶
ããªãæ倧ã®æŽæ°ãè¡šããŸãïŒ |
OMCT002 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct002 | https://onlinemathcontest.com/contests/omct002/tasks/231 | E | OMCT002(E) | 300 | 64 | 158 | [
{
"content": "ã$T_n$ ã® $3$ é ç¹ã $A_n,B_n,C_n$ ãšãããšã, å
è§ã«ã€ããŠä»¥äžã容æã«ç¢ºããããã.\r\n\r\n- $T_n$ ãéè§äžè§åœ¢ã§ãããšã,$$\\angle A_{n+1}=180^\\circ-2\\angle A_n,\\ \\ \\angle B_{n+1}=180^\\circ-2\\angle B_n,\\ \\ \\angle C_{n+1}=180^\\circ-2\\angle C_n.$$\r\n- $T_n$ ãéè§äžè§åœ¢ã§ãããšã, äŸãã° $\\angle A_n$ ãéè§ã§ãããªãã°,$$\\angle A_{n+1}=2\\angle A_n-180^\\circ,\\ \\ \\angle B_{n+1}=2\\angle B_n,\\ \\ \\angle C_{n+1}=2\\angle C_n.$$\r\n\r\nããããèžãŸããã°, $T_1$ ãæ£äžè§åœ¢ãšãªããã㪠$T_0$ ã®å
è§ã¯ $(60^\\circ,60^\\circ,60^\\circ)$ ãŸã㯠$(120^\\circ,30^\\circ,30^\\circ)$ ã§ãã. ãŸããããã, $T_2$ ãåããŠæ£äžè§åœ¢ãšãªããã㪠$T_0$ ã®å
è§ã以äžã®ããã«åæã§ãã.\r\n$$(75^\\circ,75^\\circ,30^\\circ),\\quad (150^\\circ,15^\\circ,15^\\circ),\\quad (105^\\circ,60^\\circ,15^\\circ)$$\r\nãã㧠$T_1$ 以éã¯ãã¹ãŠã®å
è§ã®å€§ãããå¶æ°å€ã§ããããšãšäœµããŠ, $T_3$ 以éãåããŠæ£äžè§åœ¢ã«ãªã $T_0$ ã¯ååšããªã. 以äžãã, 解çãã¹ãå€ã¯ $60+120+75+150+105=\\textbf{510}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct002/editorial/231"
}
] | ãäžè§åœ¢ $T_0$ ã¯ïŒ$3$ ã€ã®å
è§ã®å€§ããã床æ°æ³ã«ãããŠãã¹ãŠæ£æŽæ°å€ã§ãïŒ\
ãããŸïŒä»¥äžã®ããã«äžè§åœ¢ã®å $T_0,T_1,T_2,\dots$ ãå®ããŸãïŒ
- éè² æŽæ° $n$ ã«å¯ŸãïŒ$T_n$ ã®åé ç¹ãã察蟺ïŒãŸãã¯ãã®å»¶é·ïŒã«ããããåç·ã®è¶³ã $3$ é ç¹ãšããäžè§åœ¢ã $T_{n+1}$ ãšããïŒãã ãïŒ$T_n$ ãçŽè§äžè§åœ¢ã§ããå Žåã¯ïŒ$T_{n+1}=T_{n}$ ãšããïŒ
ãããéè² æŽæ° $N$ ãååšããŠïŒ$T_N$ ãæ£äžè§åœ¢ã§ãããã㪠$T_0$ ã«ã€ããŠïŒãã®æ倧ã®å
è§ã®å€§ãããšããŠããããå€ã床æ°æ³ã§ãã¹ãŠæ±ãïŒãããã®ç·åã解çããŠãã ããïŒ |
OMCT002 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct002 | https://onlinemathcontest.com/contests/omct002/tasks/1457 | F | OMCT002(F) | 400 | 81 | 132 | [
{
"content": "ãçã«æžãããæ°ã $x_i\\ (i=1,2,\\cdots,100)$ ãšãïŒããããåºå®ãããšãåŸç¹ã®æåŸ
å€ã $E$ ãšããïŒãã®ãšã\r\n$$E=\\frac{1}{{}\\_{100}\\mathrm{P}\\_2}\\sum\\_{i\\neq j}\\frac{x_i}{x_j}=\\frac{1}{9900}\\left\\\\{\\left(\\sum\\_{i=1}^{100}x_i\\right)\\left(\\sum\\_{j=1}^{100}\\frac{1}{x_j}\\right)-100\\right\\\\}.$$\r\nãã㧠$\\displaystyle\\left(\\sum_{i=1}^{100}x_i\\right)\\left(\\sum_{j=1}^{100}\\frac{1}{x_j}\\right)$ ã¯åå€æ° $x_i$ ã«é¢ããŠäžåžé¢æ°ã«ãªãããïŒæ®ãã®å€æ°ãåºå®ãããšã $E$ ãæ倧ãšãªãã®ã¯ $x_i$ ã $1$ ãŸã㯠$100$ ã®ãšãã§ããïŒãããã£ãŠïŒ$x_1,x_2,\\cdots,x_{100}$ ã®ãã¡ $1$ ã§ãããã®ã $n$ åïŒ$100$ ã§ãããã®ã $100-n$ åã§ããå Žåãèããã°ããïŒãã®ãšã\r\n$$\\left(\\sum_{i=1}^{100}x_i\\right)\\left(\\sum_{j=1}^{100}\\frac{1}{x_j}\\right)=\\left(n+100(100-n)\\right)\\left( \\frac{n}{1}+\\frac{100-n}{100}\\right)=\\frac{99^2}{100}\\left(\\dfrac{10000}{99}-n\\right)\\left(n+\\dfrac{100}{99}\\right).$$\r\nãããæ倧ãšãªãã®ã¯\r\n$$n=\\frac{1}{2}\\left(\\frac{10000}{99}-\\frac{100}{99}\\right)=50$$\r\nã®ãšãã§ããïŒãã®ãšã\r\n$$\\displaystyle E=\\frac{1}{9900}\\left(5050\\cdot\\frac{101}{2}-100\\right)=\\frac{1}{9900}(505^2-10^2)=\\frac{1}{9900}\\cdot495\\cdot515\\=\\frac{103}{4}.$$\r\nãããæ±ããæåŸ
å€ã®æ倧å€ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{107}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct002/editorial/1457"
}
] | ã$100$ åã®çã $1$ ã€ã®ç®±ã«å
¥ã£ãŠããŸãïŒããããã®çã«ã¯ïŒ$1$ ä»¥äž $100$ 以äžã®æŽæ°ã®ãã¡ $1$ ã€ãæžã蟌ãŸããŠããŸãïŒçžç°ãªããšã¯éããŸããïŒïŒOMCåã¯ããããçšãã次ã®ã²ãŒã ãèããŸããïŒ
- ç®±ã®äžãã $2$ åç¶ããŠçãåãåºãïŒ$1,2$ åç®ã«åãåºããçã«æžãããæ°ããããã $a,b$ ãšããïŒ
- ãã®ãšãïŒ$\displaystyle\frac{a}{b}$ ãOMCåã®åŸç¹ãšãªãïŒ
- ãã ãïŒ$1$ åç®ã«åãåºããçã¯ç®±ã«æ»ããªããšããïŒ
ãçã«æžã蟌ãŸããæ°ãå€åãããšãïŒãã®ã²ãŒã ã«ãããOMCåã®åŸç¹ã®æåŸ
å€ãšããŠããããæ倧å€ã¯ïŒäºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\displaystyle\frac{a}{b}$ ãšè¡šãããŸãïŒ $a+b$ ã解çããŠãã ããïŒ |
OMC143 (for beginners) | https://onlinemathcontest.com/contests/omc143 | https://onlinemathcontest.com/contests/omc143/tasks/5549 | A | OMC143(A) | 100 | 325 | 341 | [
{
"content": "ãçžå çžä¹å¹³åã®äžçåŒãã\r\n$$\\displaystyle \\Big( x+\\frac{20}{x} \\Big)\\Big( x+\\frac{500}{x} \\Big) = x^2+ \\frac{100^2}{x^2}+520 \\geq 2\\sqrt{x^2\\times \\frac{100^2}{x^2}}+520=720$$\r\nãæãç«ã€ïŒ$x = 10$ ã®ãšãçå·ãæç«ããã®ã§ïŒæ±ããçã㯠$\\bf{720}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc143/editorial/5549"
}
] | ãæ£ã®å®æ° $x$ ã«å¯ŸãïŒæ¬¡ã®åŒããšãããæå°å€ãæ±ããŠãã ããïŒ\
$$\displaystyle \bigg( x+\frac{20}{x} \bigg)\bigg( x+\frac{500}{x} \bigg)$$ |
OMC143 (for beginners) | https://onlinemathcontest.com/contests/omc143 | https://onlinemathcontest.com/contests/omc143/tasks/4762 | B | OMC143(B) | 200 | 304 | 341 | [
{
"content": "ãçŸã®äœãšäžã®äœã®å¶å¥ãäžèŽããã°ïŒé©ããåã®äœãäžæã«å®ãŸãïŒãšãã«å¥æ°ã§ãããã®ã¯ $5^2$ éãïŒãšãã«å¶æ°ã§ãããã®ã¯ïŒäžã®äœã¯ $0$ ã§ãè¯ãããšã«çæããŠïŒ$4\\times 5$ éãã§ããããïŒå
šäœã§ã¯ $\\mathbf{45}$ éãã§ããïŒãªãïŒå
¬å·®ãšããŠããåŸãã®ã¯ $-4$ ä»¥äž $4$ 以äžã§ããããšããïŒããããæ°ãäžããŠãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc143/editorial/4762"
}
] | ã$3$ æ¡ïŒ$100$ ä»¥äž $999$ 以äžïŒã®æ£æŽæ°ã®ãã¡ïŒçŸã®äœã»åã®äœã»äžã®äœããã®é ã«çå·®æ°åããªããã®ã¯ããã€ãããŸããïŒ |
OMC143 (for beginners) | https://onlinemathcontest.com/contests/omc143 | https://onlinemathcontest.com/contests/omc143/tasks/3396 | C | OMC143(C) | 200 | 294 | 310 | [
{
"content": "ã$\\triangle ADE\\equiv\\triangle ADF$ ãæãç«ã€ããïŒç°¡åãªè°è«ã«ãã $AD=5,AD\\perp EF$ ããããïŒ\\\r\nãããããåè§åœ¢ $AEDF$ ã®é¢ç©ã«ã€ããŠïŒæ¬¡ãæãç«ã€ïŒ\r\n$$2\\times(\\triangle ADE ã®é¢ç©)=12=\\dfrac{AD\\times EF}{2}=\\dfrac{5}{2}EF$$\r\nãããã $EF=\\dfrac{24}{5}$ ãåŸãããããïŒè§£çãã¹ãå€ã¯ $\\textbf{29}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc143/editorial/3396"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠïŒ$\angle{A}$ ã®å
è§ã®äºçåç·ãšèŸº $BC$ ã®äº€ç¹ã $D$ ãšãïŒ$D$ ãã蟺 $AB,AC$ ã«äžãããåç·ã®è¶³ããããã $E,F$ ãšããŸãïŒ
$$AF=4, \quad DE=3$$
ã®ãšãïŒç·å $EF$ ã®é·ãã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC143 (for beginners) | https://onlinemathcontest.com/contests/omc143 | https://onlinemathcontest.com/contests/omc143/tasks/3193 | D | OMC143(D) | 300 | 209 | 279 | [
{
"content": "ã$k$ 人座ããšãïŒåº§ã£ãŠããåžã®çªå·ãå°ããé ã« $a_1,a_2,\\dots,a_k$ ãšããïŒ\r\n$b_i=a_i-4(i-1)$ ãšããã°ïŒ\r\n$$1\\leq b_1\\lt b_2\\lt\\cdots\\lt b_k\\leq 20-4(k-1)$$\r\nãªãæŽæ°ã®çµ $(b_1,b_2,\\dots,b_k)$ ãèããããšãšç䟡ã§ããïŒãã®ãããªçµ $(b_1,b_2,\\dots,b_k)$ 㯠$\\binom{24-4k}{k}$ çµååšããããïŒæ±ããåæ°ã¯æ¬¡ã§æ±ããããïŒ\r\n$$\\binom{20}{1}+\\binom{16}{2}+\\binom{12}{3}+\\binom{8}{4}=\\textbf{430}ïŒ$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc143/editorial/3193"
},
{
"content": "ã挞ååŒãçšãã解æ³ã§ãïŒ\r\n\r\nãåé¡ã®æ€
åã®åæ°ã $n$ åã§ããæã®åº§ãæ¹ã®ç·æ°ã $a_n$ ãšããïŒ$n+1$ åã®æ€
åãããæïŒæãå·Šã®æ€
åã«äººã座ã£ãŠããå Žåã®åº§ãæ¹ã®ç·æ°ã¯ $a_{n-5}$ïŒåº§ã£ãŠããªãå Žåã®åº§ãæ¹ã®ç·æ°ã¯ $a_{n-1}$ ãšè¡šããããšããïŒ$$a_n=a_{n-1}+a_{n-5},a_1=2,a_2=3,a_3=4,a_4=5,a_5=6$$ ãæç«ãïŒãããçšã㊠$a_{20}$ ãæ±ããã°ããïŒæ±ããå€ã¯ $a_{20}-1=\\bf{430}$ ã§ããïŒ(誰ã座ã£ãŠããªãæãå«ãŸããŠããããšã«æ³šæããïŒ)",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc143/editorial/3193/192"
}
] | ãã¹ããŒãžã«åãã£ãŠ $20$ åã®æ€
å $1,2,\ldots, 20$ ããã®é ã«æšªäžåã«äžŠãã§ããŸãïŒããŸïŒãããã«ã客ããã座ããããã®ã§ããïŒãœãŒã·ã£ã«ãã£ã¹ã¿ã³ã¹ãä¿ã€ããïŒé£ã®äººãšã¯æäœã§ãæ€
å $4$ ååã¯ç©ºããŠããããã§ãïŒããšãã°ïŒæ€
å $2,7,15,20$ ãéžãã§åº§ãããããšã¯å¯èœã§ããïŒæ€
å $10,14$ ãéžãã§åº§ãããããšã¯ã§ããŸããïŒ$1$ 人以äžã®ã客ããã座ããããšãïŒäººã座ã£ãŠããæ€
åã®éåãšããŠãããããã®ã¯ããã€ãããŸããïŒ |
OMC143 (for beginners) | https://onlinemathcontest.com/contests/omc143 | https://onlinemathcontest.com/contests/omc143/tasks/5428 | E | OMC143(E) | 300 | 229 | 274 | [
{
"content": "$$a+b+c=s,\\quad ab+bc+ca=t,\\quad abc=u$$ãšãããšïŒæ¡ä»¶ã¯\r\n$$\r\n\\begin{cases}\r\n\\{s + t + u = 0}\\\\\\\\\r\n\\{4s + 2 t + u = -4}\\\\\\\\\r\n\\{9s + 3 t + u = -18}\\\\\\\\\r\n\\end{cases}\r\n$$\r\nãšæžããã®ã§ïŒããã解ã㊠$s = -5, ~ t = 11, ~ u = -6$ ã§ããïŒåŸã£ãŠïŒæ±ããå€ã¯\r\n$$(a + 100)(b + 100)(c + 100) = 100^3 + 100^2s+100t+u = \\textbf{951094}.$$\r\n\r\n**å¥è§£.**ã$f(x)=(x+a)(x+b)(x+c)-x^2$ 㯠$f(1)=f(2)=f(3)=0$ ãã¿ããããïŒ$3$ 次ã®ä¿æ°ã $1$ ã§ããããšãšããã㊠$(x-1)(x-2)(x-3)$ ã§ããïŒãã£ãŠïŒæ±ããå€ã¯ $f(100)+100^2$ ãšããŠèšç®ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc143/editorial/5428"
}
] | ã$3$ ã€ã®è€çŽ æ° $a,b,c$ ã以äžãã¿ãããŠããŸãïŒ\
$$
\begin{cases}
\(a+1)(b+1)(c+1)=1^2\\\\
\(a+2)(b+2)(c+2)=2^2\\\\
\(a+3)(b+3)(c+3)=3^2\\\\
\end{cases}
$$
ãã®ãšãïŒ$(a+100)(b+100)(c+100)$ ãæ±ããŠãã ããïŒ |
OMC143 (for beginners) | https://onlinemathcontest.com/contests/omc143 | https://onlinemathcontest.com/contests/omc143/tasks/1914 | F | OMC143(F) | 400 | 66 | 142 | [
{
"content": "ãçµè«ããè¿°ã¹ããš, 以äžã®ããã«åå²ãããããšãåããïŒ\r\n\r\n- äžã»å段ç®ã«ã€ããŠ, äœç© $1\\/6$ ã $6$ ã€, äœç© $1\\/2$ ã $2$ ã€, äœç© $2\\/3$ ã $2$ ã€ã§ãã.\r\n- äºã»äžæ®µç®ã«ã€ããŠ, äœç© $1\\/6$ ã $6$ ã€, äœç© $2\\/3$ ã $4$ ã€, äœç© $5\\/6$ ã $2$ ã€, äœç© $1$ ã $2$ ã€ã§ãã.\r\n\r\nããããã®äœç©ã®å°ç«äœã¯, ãã®äžé¢ããã³äžé¢ã®åœ¢ç¶ã«ãã£ãŠä»¥äžã®ããã«å€æå¯èœã§ããïŒ\r\n\r\n- äœç© $1\\/6$ ã®ãã®ïŒ$1$ ç¹ããã³çŽè§äºç蟺äžè§åœ¢\r\n- äœç© $1\\/2$ ã®ãã®ïŒå¯Ÿè§ç·ããã³çŽè§äºç蟺äžè§åœ¢\r\n- äœç© $2\\/3$ ã®ãã®ïŒå¯Ÿè§ç·ããã³æ£æ¹åœ¢, ãŸãã¯åãã®éã $2$ ã€ã®çŽè§äºç蟺äžè§åœ¢\r\n- äœç© $5\\/6$ ã®ãã®ïŒçŽè§äºç蟺äžè§åœ¢ããã³æ£æ¹åœ¢\r\n- äœç© $1$ ã®ãã®ïŒ$2$ ã€ã®æ£æ¹åœ¢\r\n\r\nãããã, æ±ããç·ç©ã¯ä»¥äžã®ããã«èšç®ã§ã, 解çãã¹ãå€ã¯ $\\textbf{180}$ ã§ãã.\r\n\r\n$$\\left(\\dfrac{1}{6}\\right)^{24}\\times\\left(\\dfrac{1}{2}\\right)^{4}\\times\\left(\\dfrac{2}{3}\\right)^{12}\\times\\left(\\dfrac{5}{6}\\right)^{4}\\times1^4=2^{-20}\\times 3^{-40}\\times 5^4$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc143/editorial/1914"
}
] | ãäžèŸº $4$ ã®ç«æ¹äœ $ABCD-EFGH$ ãïŒäžèŸº $1$ ã®ç«æ¹äœ $64$ åã«åå²ãããšïŒæ£åé¢äœ $BDEG$ ãè€æ°ã®ç«äœã«åå²ãããŸãïŒãã®ãšãïŒæ£åé¢äœ $BDEG$ ãåå²ãããçµæãšããŠåŸãããããããã®ç«äœã®äœç©ã®**ç·ç©**ã¯ïŒçžç°ãªãçŽ æ° $p,q,r$ ããã³æŽæ° $s,t,u$ ã«ãã£ãŠ $p^sq^tr^u$ ãšè¡šããŸãïŒæ¬¡ã®å€ã解çããŠäžããïŒ
$$p\times |s|+q\times |t|+r\times|u|.$$
ãããã§ïŒç«äœã¯æ£ã®äœç©ãæã€ãã®ã®ã¿ãæããã®ãšããŸãïŒ |
OMC142 | https://onlinemathcontest.com/contests/omc142 | https://onlinemathcontest.com/contests/omc142/tasks/2725 | A | OMC142(A) | 200 | 319 | 332 | [
{
"content": "ã$a=142857$ ãšããã°ïŒ$a,2a,3a,4a,5a,6a$ ã®äžããéè€ãèš±ããŠéžã¶æ¹æ³ã®ãã¡ïŒç·åã $7a$ ã§ãããã®ã®ç·æ°ãæ±ããããšã«ãªãïŒ$7$ ã $2$ ã€ä»¥äžã®æ£ã®æŽæ°ã®åã«åå²ããæ¹æ³ã®ç·æ°ïŒ $7$ ã®åå²æ°ãã $1$ åŒãããã®ïŒãèããŠïŒæ±ããå Žåã®æ°ã¯ $\\textbf{14}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc142/editorial/2725"
}
] | ã以äžã® $6$ ã€ã®æ°ã®äžããïŒéè€ãèš±ããŠããã€ããéžã¶æ¹æ³ã®ãã¡ïŒãããã®åã $999999$ ãšãªããããªãã®ã¯äœéããããŸããïŒ
$$142857, \quad 285714, \quad 428571, \quad 571428, \quad 714285, \quad 857142$$
ããã ãïŒæ°ãéžã¶é çªã¯èæ
®ããŸããïŒ |
OMC142 | https://onlinemathcontest.com/contests/omc142 | https://onlinemathcontest.com/contests/omc142/tasks/2726 | B | OMC142(B) | 200 | 254 | 296 | [
{
"content": "ãäžè§åœ¢ $ABT$ ãïŒ$A$ ãäžå¿ã«ïŒåæèšåãã« $120^\\circ$ å転ãããšäžè§åœ¢ $AFP$ ãšäžèŽããïŒäžè§åœ¢ $AFP$ 㯠$AF$ ãåºèŸºãšèŠããšé«ãã $\\dfrac{5}{6}AC=\\dfrac{5\\sqrt{3}}{2}$ ã§ããããïŒ $X = \\dfrac{1}{2}\\cdot3\\cdot\\dfrac{5\\sqrt{3}}{2}=\\dfrac{15\\sqrt{3}}{4}$ ã§ããïŒãã£ãŠïŒ$X^2=\\dfrac{675}{16}$ ããïŒç¹ã«è§£çãã¹ãæ°å€ã¯ $\\textbf{691}$ ãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc142/editorial/2726"
}
] | ãäžèŸºã®é·ãã $3$ ã®æ£å
è§åœ¢ $ABCDEF$ ã«ãããŠïŒèŸº $BC$ äžã« $BP=2$ ãªãç¹ $P$ ããšãïŒæ£å
è§åœ¢ $APQRST$ ãäœããŸããïŒããã§ïŒ$A,B,C,D,E,F$ ã¯ãã®é ã«**åæèšåã**ã«äžŠã³ïŒ$A,P,Q,R,S,T$ ã¯ãã®é ã«**æèšåã**ã«äžŠãã§ãããã®ãšããŸãïŒ\
ãäžè§åœ¢ $ABT$ ã®é¢ç©ã $X$ ãšãããšãïŒ$X^2$ ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ããïŒ |
OMC142 | https://onlinemathcontest.com/contests/omc142 | https://onlinemathcontest.com/contests/omc142/tasks/2727 | C | OMC142(C) | 300 | 222 | 254 | [
{
"content": "ã$a_1\\lt a_2\\lt \\cdots\\lt a_{54}$ ãšããŠäžè¬æ§ã倱ããïŒãã®ãšã䞊ã¹æ¿ãäžçåŒããäžåŒã¯ $b_1\\gt b_2\\gt\\cdots\\gt b_{54}$ ã®ãšãã«æ倧å€ããšãïŒããªãã¡ïŒæ±ããæ倧å€ã¯\r\n$$\\dfrac{1}{6300}+\\dfrac{2}{3150}+\\cdots+\\dfrac{6300}{1}$$\r\nã§ããïŒããã¯ä»¥äžã®ããã«èšç®ã§ããããïŒè§£çãã¹ãæ°å€ã¯ $\\textbf{19749}$ ã§ããïŒ\r\n$$\\sum_{d\\mid6300}\\frac{d^2}{6300}=\\dfrac{(1+2^2+2^4)(1+3^2+3^4)(1+5^2+5^4)(1+7^2)}{2^2\\times3^2\\times5^2\\times7}=\\dfrac{19747}{2}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc142/editorial/2727"
}
] | ã$6300$ ã¯æ£ã®çŽæ°ãå
šéšã§ $54$ åãã¡ãŸãïŒ\
ã $a_1,a_2,\ldots,a_{54}$ ããã³ $b_1,b_2,\ldots,b_{54}$ ãïŒããããçžç°ãªã $54$ åã® $6300$ ã®æ£ã®çŽæ°ã§ãããšãïŒä»¥äžã®ãšãããæ倧å€ãæ±ããŠãã ããïŒ
$$\dfrac{a_1}{b_1}+\dfrac{a_2}{b_2}+\cdots+\dfrac{a_{54}}{b_{54}}$$
ãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£ã®æŽæ° $m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šãããã®ã§ïŒ$m+n$ ã®å€ã解çããŠãã ããïŒ |
OMC142 | https://onlinemathcontest.com/contests/omc142 | https://onlinemathcontest.com/contests/omc142/tasks/2728 | D | OMC142(D) | 400 | 87 | 142 | [
{
"content": "ã $a=\\sqrt[3]{2x-y-z}, ~ b=\\sqrt[3]{2y-z-x}, ~ c=\\sqrt[3]{2z-x-y}$ ãšãããšïŒä»¥äžãæãç«ã€ïŒ\r\n $$a+b+c=3, \\quad \\dfrac{1}{a}+\\dfrac{1}{b}+\\dfrac{1}{c}=\\dfrac{3}{10},\\quad a^3+b^3+c^3=0$$\r\nãããã $ab+bc+ca=3k, ~ abc=10k$ ãšããããïŒãã®ãšã\r\n$$\\begin{aligned}\r\na^3+b^3+c^3&=(a+b+c)\\bigl((a+b+c)^2-3(ab+bc+ca)\\bigr)+3abc\\\\\\\\\r\n&=3\\cdot (3^2-3\\cdot3k)+3\\cdot10k\\\\\\\\\r\n&=3k+27\r\n\\end{aligned}$$\r\nã $0$ ã§ããããšãã $k=-9$ïŒãã£ãŠ\r\n$$a+b+c=3, \\quad ab+bc+ca=-27,\\quad abc=-90$$\r\nã§ããããïŒ$t^3-3t^2-27t+90=0$ 㯠$t=a,b,c$ ã $3$ ã€ã®å®æ°è§£ã«ã〠$3$ 次æ¹çšåŒã§ããïŒãããã\r\n$$t^{n+3}-3t^{n+2}-27t^{n+1}+90t^n=0$$\r\n㯠$t=a,b,c$ ã $3$ ã€ã®å®æ°è§£ã«ãã€æ¹çšåŒãšãªãïŒãããã£ãŠïŒ$S_n=a^n+b^n+c^n$ ãšããããšãïŒ\r\n$$S_{n+3}-3S_{n+2}-27S_{n+1}+90S_{n}=0$$\r\nãæãç«ã€ããšããããïŒ$S_{-1}=\\dfrac{3}{10}, ~ S_{0}=3, ~ S_{1}=3$ ããèšç®ããã° $S_{6}=34506$ ãšãªãïŒ\r\n$${(x-y)}^2+{(y-z)}^2+{(z-x)}^2=\\dfrac{S_{6}}{3}=\\textbf{11502}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc142/editorial/2728"
}
] | ãå®æ° $x,y,z$ ã以äžã® $2$ åŒãã¿ãããšããŸãïŒ\
$$\begin{cases}
\sqrt[3]{2x-y-z}+\sqrt[3]{2y-z-x}+\sqrt[3]{2z-x-y}=3\\\\
\\\\
\dfrac{1}{\sqrt[3]{2x-y-z}}+\dfrac{1}{\sqrt[3]{2y-z-x}}+\dfrac{1}{\sqrt[3]{2z-x-y}}=\dfrac{3}{10}
\end{cases}$$
ãã®ãšãïŒ${(x-y)}^2+{(y-z)}^2+{(z-x)}^2$ ã®å€ãæ±ããŠãã ããïŒ
<details><summary>$3$ ä¹æ ¹ã«ã€ããŠ<\/summary>
ãä»»æã®å®æ° $a$ ã«å¯ŸãïŒ $3$ ä¹ã㊠$a$ ã«ãªãå®æ°ãäžæã«ååšããã®ã§ïŒãã®å€ã $\sqrt[3]{a}$ ãšè¡šããã®ãšããŸãïŒ
<\/details> |
OMC142 | https://onlinemathcontest.com/contests/omc142 | https://onlinemathcontest.com/contests/omc142/tasks/2730 | E | OMC142(E) | 500 | 39 | 144 | [
{
"content": "ãç¹ $P$ ãçŽç· $x=2000$ ããå
ã«çŽç· $y=2000$ ã«ãã©ãçã確çã¯å¯Ÿç§°æ§ãã $\\dfrac{1}{2}$ ã§ããïŒãã®ããšã¯ïŒç¹ $P$ ãç¹ $(1999,2000)$ ãéã確çã $\\dfrac{1}{2}$ ã§ãããšèšãæããããïŒäžæ¹ã§ïŒç¹ $P$ ãç¹ $(2000,1999)$ ã«çã確ç㯠$\\dfrac{\\_{3999}\\mathrm{C}\\_{1999}}{2^{3999}}$ ã§ããããïŒåããç¯å²ã $x\\geq 0,y\\geq 0$ å
šäœãšããŠèããã®ãšåãïŒïŒç¹ $P$ ãç¹ $(2000,2000)$ ãéã確çã¯ä»¥äžã§äžããããïŒ\r\n$$\\dfrac{2^{3999}+{}\\_{3999}\\mathrm{C}\\_{1999}}{2^{4000}}$$\r\nã ${}\\_{3999}\\mathrm{C}\\_{1999}$ ã® $2$ ã§å²ãåããåæ°ã¯ $5$ åã§ããïŒããã§ïŒ$n!$ ã $2$ ã§å²ãåããåæ°ã¯ïŒ$n$ ã $2$ é²æ³è¡šç€ºãããšãã® $1$ ã®åæ°ã $k$ ãšã㊠$n-k$ ã§ããããšãçšããããšãã§ããïŒïŒãã£ãŠïŒæ±ããå€ã¯\r\n$$({}\\_{3999}\\mathrm{C}\\_{1999}+2^{3999}+2^{4000})\\div32$$\r\nã $4001$ ã§å²ã£ãäœãã§ããïŒä»¥äžïŒåååŒã®æ³ã¯ $4001$ ãšããïŒ\r\n$${}\\_{3999}\\mathrm{C}\\_{1999}\\equiv\\dfrac{3999\\times\\cdots\\times2001}{1999!}\\equiv\\dfrac{(-2)\\times\\cdots\\times(-2000)}{1999!}\\equiv-2000$$\r\nã§ããããšãšïŒFermatã®å°å®çãã $2^{4000}\\equiv1,~2^{3999}\\equiv2^{-1}\\equiv2001$ ã§ããããšããïŒ\r\n$$({}\\_{3999}\\mathrm{C}\\_{1999}+2^{3999}+2^{4000})\\times{32}^{-1}\\equiv(-2000+1+2001)\\times{32}^{-1}\\equiv{16}^{-1}\\equiv\\textbf{3751}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc142/editorial/2730"
},
{
"content": "ã端ã®å¶çŽããªãã㊠$4000$ å $P$ ã移åãããããšãèããïŒãã®ãšãæ±ãã確ç㯠$(0, 4000), (1, 3999), \\ldots, (2000, 2000)$ ã®ã©ããã«ãã確çã§ãããã\r\n$$ \\sum_{k=0}^{2000}\\frac{{}\\_{4000}\\mathrm C\\_r}{2^{4000}} = \\frac{2^{4000} + {}\\_{4000}\\mathrm C\\_{2000}}{2^{4001}}\\mathrel{\\left(=\\frac{2^{3999} + {}\\_{3999}\\mathrm C\\_{1999}}{2^{4000}}\\right)}\\mathclose{}. $$\r\nããšã¯æ¬è§£èª¬ãšåæ§ïŒãã ã«ãã³ã®åã®åœ¢ã§ ${}\\_{p-1}\\mathrm C\\_r \\equiv (-1)^r \\pmod p$ ã䜿ããšã©ã¯ïŒïŒ",
"text": "察称æ§ãåŒã§åŠç",
"url": "https://onlinemathcontest.com/contests/omc142/editorial/2730/191"
}
] | ã座æšå¹³é¢äžã«ç¹ $P$ ãããïŒã¯ããã¯åç¹ $(0,0)$ ã«ãããŸãïŒ\
ã以äžã®èŠåã«åŸã£ãŠ $P$ ã $4001$ ååãããšïŒæçµçã« $P$ ã¯ç¹ $(2001,2000)$ ã«éããŸãïŒãã®ãšãïŒ$P$ ãéäžã§ç¹ $(2000,2000)$ ãéã確çãæ±ããŠãã ããïŒ
- $P$ ã $x=2001$ äžã«ãããšãïŒ$P$ ã $y$ 軞ã®æ£ã®æ¹åã« $1$ ã ãåããïŒ
- $P$ ã $y=2000$ äžã«ãããšãïŒ$P$ ã $x$ 軞ã®æ£ã®æ¹åã« $1$ ã ãåããïŒ
- $P$ ããã以å€ã®é åã«ãããšãïŒ$P$ ã $x$ 軞ã®æ£ã®æ¹åã« $1$ ã ãåããæäœãš $y$ 軞ã®æ£ã®æ¹åã« $1$ ã ãåããæäœã®ãã¡ïŒã¡ããã©äžæ¹ãç確çã«è¡ãïŒ
ãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ãçŽ æ° $4001$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ |
OMC142 | https://onlinemathcontest.com/contests/omc142 | https://onlinemathcontest.com/contests/omc142/tasks/2729 | F | OMC142(F) | 500 | 13 | 34 | [
{
"content": "ãå $\\omega$ ãšå $\\Omega$ ã®çžäŒŒã®äžå¿ã¯ $T$ ã§ããããïŒ$P$ ã«ããã $\\Omega$ ã®æ¥ç·ã¯ $D$ ã«ããã $\\omega$ ã®æ¥ç·ïŒããªãã¡çŽç· $AB$ ãšå¹³è¡ã§ããïŒåŸã£ãŠïŒ$P$ ã¯åŒ§ $AB$ ã®äžç¹ã§ããïŒ åæ§ã«ããŠïŒ$Q$ ã¯åŒ§ $AC$ ã®äžç¹ã§ããã®ã§ïŒ$BQ$ ãš $CP$ ã®äº€ç¹ãå
å¿ $I$ ã§ããïŒãã¹ã«ã«ã®å®çãã $3$ ç¹ $D,I,E$ ã¯åäžçŽç·äžã«ããïŒ\\\r\nããŸãïŒ$PA=PI,QA=QI$ ãªã®ã§ïŒ$PQ$ 㯠$AI$ ã®åçŽäºçåç·ãšãªãïŒãã£ãŠïŒ$AI$ ãš $PQ$ ã®äº€ç¹ã $M$ ãšãããšïŒ\r\n$$AM=IM=\\dfrac{23}{2},\\quad RM=SM=\\dfrac{11}{2}$$\r\nãšãªã $AR=AS=\\dfrac{5\\sqrt{26}}{2}$ ãšãªãïŒãŸãïŒ\r\n$$\\angle{PAR}=\\angle{PQI} = \\angle{AQS},\\quad \\angle{APR}=\\angle{ACQ} = \\angle{QAS}$$\r\nããäžè§åœ¢ $APR,QAS$ ãçžäŒŒãªã®ã§ïŒ$PR=x,QS=y$ ãšãããš $xy=AR\\times AS = \\dfrac{325}{2}$ ãšãªãïŒ\\\r\nããŸãïŒ$AI\\perp PQ,AI\\perp DE$ ãã $DE\\parallel PQ$ ãªã®ã§ïŒ$DI=IE$ ãã $PS=SQ$ ã§ãããã $x+11=y$ ãšãªãïŒä»¥äžããïŒ\r\n$$(x+y)^2=(y-x)^2+4xy=11^2+4\\times\\dfrac{325}{2}=771$$\r\nã§ããããïŒ$PQ=x+y+11=\\sqrt{771}+11$ ã§ããïŒç¹ã«è§£çãã¹ãæ°å€ã¯ $\\textbf{782}$ ãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc142/editorial/2729"
}
] | ãäžè§åœ¢ $ABC$ ãããïŒãã®å€æ¥åã $\Omega$ïŒå
å¿ã $I$ ãšããŸãïŒå $\Omega$ ã«å
æ¥ãïŒãã€èŸº $AB$ ãšç¹ $D$ ã§æ¥ãïŒèŸº $AC$ ãšç¹ $E$ ã§æ¥ããåã $\omega$ ãšãïŒãã® $\Omega$ ãšã®æ¥ç¹ã $T$ ãšããŸãïŒçŽç· $TD,TE$ ãšå $\Omega$ ã®äº€ç¹ã®ãã¡ $T$ ã§ãªãæ¹ããããã $P,Q$ ãšããŸãïŒãŸãïŒç·å $PQ$ ãšç·å $AB,AC$ ã®äº€ç¹ããããã $R,S$ ãšããŸãïŒãããšïŒ
$$RS=11, \quad AI=23$$
ãšãªãïŒããã« $3$ ç¹ $T,I,S$ ã¯åäžçŽç·äžã«ãããŸããïŒãã®ãšãïŒ$PQ$ ã®é·ãã¯æ£æŽæ° $a,b$ ãçšã㊠$a+\sqrt{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ãæ±ããŠãã ããïŒ |
OMC141 (for beginners) | https://onlinemathcontest.com/contests/omc141 | https://onlinemathcontest.com/contests/omc141/tasks/3409 | A | OMC141(A) | 100 | 343 | 347 | [
{
"content": "ãã³ãã $C$ ã®ã³ãŒããŒã®éãšãã«ã¯ã®éã«ã€ããŠ, 以äžã®åŒãæãç«ã€.\r\n$$\r\n\\left(100 \\times \\dfrac{11}{14} + 200 \\times \\dfrac{9}{14} \\right):\\left( 100 \\times \\dfrac{3}{14} + 200 \\times \\dfrac{5}{14} \\right)= 29 : 13\r\n$$\r\nããããã, çããã¹ãå€ã¯ $\\mathbf{42}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc141/editorial/3409"
}
] | ãããã§ã¯**ã³ãŒããŒ**ãš**ãã«ã¯**ã®æ··åç©ã**ã«ãã§ãªã¬**ãšãã¶ããšãšããŸãïŒ\
ã$2$ ã€ã®ã³ãã $A, B$ ãããïŒããããã«ãã§ãªã¬ã $100 \mathrm{mL}, ~ 200 \mathrm{mL}$ å
¥ã£ãŠããŸãïŒã³ãŒããŒãšãã«ã¯ã®äœç©ã®æ¯ã¯ïŒã³ãã $A$ 㯠$11:3$ïŒã³ãã $B$ 㯠$9:5$ ã§ãïŒ\
ãããããã®äžèº«ãå®å
šã«ã³ãã $C$ ã«ç§»ããŠïŒ$300 \mathrm{mL}$ ã®ã«ãã§ãªã¬ãäœããŸããïŒãã®ãšãïŒãã®ã³ãŒããŒãšãã«ã¯ã®äœç©ã®æ¯ã¯ïŒäºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$a:b$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC141 (for beginners) | https://onlinemathcontest.com/contests/omc141 | https://onlinemathcontest.com/contests/omc141/tasks/3411 | B | OMC141(B) | 200 | 303 | 335 | [
{
"content": "ã$1, A, A, A, A, B, B, B, B$ ã® $9$ æåã䞊ã¹æ¿ããŠæååãäœã, $A$ ã«å·Šãã $2, 3, 4, 5$ ã®é ã«æ°åãåœãŠã¯ã, $B$ ã«å·Šãã $6, 7, 8, 9$ ã®é ã«æ°åãåœãŠã¯ããã°, é¡æãæºããæŽæ°ãéè€ãªããã¹ãŠäœãããšãã§ãã. ãããã£ãŠ, ãããã®æåã®äžŠã³æ¿ãã®ç·æ°ãèããã°ãã, 解çãã¹ãå€ã¯\r\n$$\r\n\\frac{9!}{(4!)^2}=\\mathbf{630}\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc141/editorial/3411"
}
] | ã次ã®æ¡ä»¶ããã¹ãŠã¿ãã $9$ æ¡ã®æ£æŽæ°ã¯ããã€ãããŸããïŒ
- $1$ ä»¥äž $9$ 以äžã®æŽæ°ãïŒåæ¡ã«äžåºŠãã€çšããããŠããïŒ
- $2, 3, 4, 5$ ã®ã¿ãæãåºãããšãïŒå·Šãããã®é ã§äžŠãã§ããïŒ
- $6, 7, 8, 9$ ã®ã¿ãæãåºãããšãïŒå·Šãããã®é ã§äžŠãã§ããïŒ |
OMC141 (for beginners) | https://onlinemathcontest.com/contests/omc141 | https://onlinemathcontest.com/contests/omc141/tasks/2867 | C | OMC141(C) | 200 | 239 | 323 | [
{
"content": "ã$1+2+\\cdots+n=n(n+1)\\/2$ ã $3$ ã®åæ°ã«ãªãå¿
èŠãããããïŒ$n$ 㯠$3$ ã§å²ã£ãŠ $0$ ãŸã㯠$2$ äœãïŒ\\\r\nãéã«ïŒããã« $n\\geq 5$ ãªãã°æ¡ä»¶ãã¿ããããšããããããïŒæ±ããåæ°ã¯ $666-2=\\textbf{664}$ ã§ããïŒ\\\r\nãå
·äœçã«ã¯ïŒ$1+6=2+5=3+4$ ã«æ³šç®ã㊠$n-6$ ã®å Žåã«åž°çããããšã§ç€ºãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc141/editorial/2867"
}
] | ãOMCå㯠$n$ åã®ã¢ã¡ãæã£ãŠããŸãïŒãããã®ã¢ã¡ã¯ãã¹ãŠéããç°ãªãïŒãããã $1,2,\ldots, n$ ã§ãïŒåäœã¯ã°ã©ã ïŒïŒOMCåã¯ãããã®ã¢ã¡ãïŒOåã»Måã»Cåã® $3$ 人ã«éäžè¶³ãªãé
ãããã§ãïŒ$3$ 人ããããããããåã«ã€ããŠïŒéãã®ç·åãçãããªãããã«ã§ãããšãïŒ$n$ ãšããŠé©ãã $1$ ä»¥äž $1000$ 以äžã®æŽæ°ã¯ããã€ãããŸããïŒ |
OMC141 (for beginners) | https://onlinemathcontest.com/contests/omc141 | https://onlinemathcontest.com/contests/omc141/tasks/2961 | D | OMC141(D) | 200 | 249 | 282 | [
{
"content": "**解æ³1.**ã蟺 $AB$ äžã« $AQ:QB=1:3$ ãšãªãç¹ $Q$ ããšããšïŒ$BQ=3, PQ=7\\/4$ ã§ããïŒäºèŸºæ¯å€Ÿè§çžçããäžè§åœ¢ $PBQ$ ãš $ABP$ ã¯çžäŒŒã§ããããïŒ$AP=7\\sqrt{3}\\/6$ïŒãã£ãŠ $AC^2=\\dfrac{196}{3}$ ã§ããïŒæ±ããå€ã¯ $196+3=\\mathbf{199}$ïŒ\r\n\r\n**解æ³2.**ãStewart ã®å®çããã®ãŸãŸé©çšããããšãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc141/editorial/2961"
}
] | ã$AB=4,~BC=7$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $AC$ ã $1:3$ ã«å
åããç¹ $P$ ã $BP=2\sqrt{3}$ ãã¿ãããŸããïŒãã®ãšãïŒ$AC$ ã®é·ãã® $2$ ä¹ã¯ïŒäºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC141 (for beginners) | https://onlinemathcontest.com/contests/omc141 | https://onlinemathcontest.com/contests/omc141/tasks/3415 | E | OMC141(E) | 300 | 132 | 195 | [
{
"content": "ãæ¡ä»¶ãã, $i \\leq j$ ãªãä»»æã® $i, j$ ã«å¯ŸããŠ\r\n$$\r\n\\frac{10^{i^2-i}}{a_i+a_{i+1}}=\\frac{10^{j^2-j}}{a_j+a_{j+1}}\r\n$$\r\nãæãç«ã€. ç¹ã« $i=1$ ãšããã°, ä»»æã®æ£æŽæ° $n$ ã«å¯Ÿã\r\n$$\r\n\\frac{10^{n^2-n}}{a_n+a_{n+1}}=\\frac{1}{a_1+a_2}=\\frac{1}{10}\r\n$$\r\nãšãªããã, $a_n+a_{n+1}=10^{n^2-n+1}$ ã§ãã. ãããã, æ£æŽæ° $k$ ã«å¯ŸããŠ\r\n$$\r\n\\begin{aligned}\r\na_{k+2}\r\n&= (a_{k+2}+a_{k+1})-(a_{k+1}+a_{k})+a_{k}\\\\\\\\\r\n&=10^{k^2+k+1}-10^{k^2-k+1}+a_k\\\\\\\\\r\n&=10^{k^2-k+1}(10^{2k}-1)+a_k\\\\\\\\\r\n&=\\underbrace{999...999}\\_{2kå}\\underbrace{000...000}\\_{k^2-k+1å}+a_k\r\n\\end{aligned}\r\n$$\r\nãæãç«ã€. $b_k=10^{k^2-k+1}(10^{2k}-1)$ ãšãããšã, $b_{k}$ 㧠$9$ ãç»å Žããæ¡ãš $b_{k+2}$ 㧠$9$ ãç»å Žããæ¡ã«éè€ããªãããšãåãããã, æ±ããçãã¯\r\n$$\r\n\\begin{aligned}\r\n(a_{100} ã®æ¡å)&=\\left(\\sum_{k=1}^{49} (b_{2k} ã®æ¡å)+a_2\\right)\\\\\\\\\r\n&=\\sum_{k=1}^{49}36k+5\\\\\\\\\r\n&=\\mathbf{44105}\r\n\\end{aligned}\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc141/editorial/3415"
}
] | ãå®æ°å $\\{a_n\\}_{n=1,2,\ldots}$ ã¯ïŒ$i \leq j$ ãªãä»»æã®æ£æŽæ° $i, j$ ã«å¯ŸããŠä»¥äžãã¿ãããŸãïŒ
$$
\frac{a_j+a\_{j+1}}{a_i+a\_{i+1}}=10 ^ {(j-i)(j+i-1)}
$$
$a_1=a_2=5$ ã§ãããšãïŒ$a\_{100}$ ã¯æ£æŽæ°ã«ãªãã®ã§ïŒ$a\_{100}$ ã®ïŒåé²æ³è¡šèšã§ã®ïŒåæ¡ã®åãæ±ããŠãã ããïŒ |
OMC141 (for beginners) | https://onlinemathcontest.com/contests/omc141 | https://onlinemathcontest.com/contests/omc141/tasks/3261 | F | OMC141(F) | 400 | 88 | 185 | [
{
"content": "ã$2$ ããã³ $3$ ã§å²ã£ãäœããèããããšã§ïŒ$p,q,r,s$ ã«ã¯ $2$ ããã³ $3$ ãå«ãŸããïŒ\\\r\nã$p=2$ ã〠$q=3$ ã®ãšãïŒ$(s+r)(s-r)=24$ ã§ããããïŒä»¥äžãåŸãïŒ\r\n$$(p, q, r, s)=(2, 3, 5, 7)$$ \r\nã$p=2$ ã〠$r=3$ ã®ãšãïŒ$8q=(s+3)(s-3)$ ã§ããããïŒä»¥äžãåŸãïŒ\r\n$$(p, q, r, s)=(2, 2, 3, 5),(2, 5, 3, 7)$$\r\nã$q=2$ ã®ãšãïŒ$s^2-r^2=2p^3$ ã§ãããïŒ$r^2,s^2$ ã¯ãšãã« $4$ ã§å²ã£ãŠ $1$ äœãããšãã $p=2$ ãå¿
èŠã§ããïŒãã®ãšã察å¿ãã $(r,s)$ ã¯ïŒ$(r,s)=(3,5)$ ãé€ããŠïŒååšããªãïŒ\\\r\nã$r=2$ ã®ãšãïŒ$s\\pm 2$ ã®æ倧å
¬çŽæ°ã¯ $1,2,4$ ã®ããããã§ããããšã«æ³šæããã°ïŒ\r\n$$(s+2, s-2)=(p^3, q), (q, p^3), (p^3q, 1)$$\r\nã§ããã»ããªãïŒãããã㯠$3$ ã§ããããšã«æ³šæããŠæ¢çŽ¢ããããšã§ïŒä»¥äžãåŸãïŒ\r\n$$(p, q, r, s)=(3, 31, 2, 29)$$\r\nã以äžããïŒå
šäœã§ã¯\r\n$$(p, q, r, s)=(2, 3, 5, 7), (2,2,3,5), (2, 5, 3, 7), (3, 31, 2, 29)$$\r\nã§ããããïŒæ±ããç·ç©ã¯ $\\textbf{225420}$ ãšèšç®ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc141/editorial/3261"
}
] | ãçŽ æ°ã®çµ $(p, q, r, s)$ ã§ãã£ãŠïŒä»¥äžã®çåŒ
$$p^3q+r^2=s^2$$
ãã¿ãããã®ãã¹ãŠã«ã€ããŠïŒ $p+q+r+s$ ã®**ç·ç©**ãæ±ããŠãã ããïŒ |
OMC140 (for beginners) | https://onlinemathcontest.com/contests/omc140 | https://onlinemathcontest.com/contests/omc140/tasks/4442 | A | OMC140(A) | 100 | 354 | 359 | [
{
"content": "ãæ¡ä»¶ãã¿ããé·æ¹åœ¢ã®çžŠã®é·ãã $x$, 暪ã®é·ãã $y$ ãšãããš, $$x+y = 4\\sqrt{6},\\quad xy= 10$$ ãæç«ãã. ãããã£ãŠ, æ±ããçãã¯ä»¥äžã®ããã«èšç®ã§ãã. \r\n$$ x^2 + y^2 = (x+y)^2- 2xy=96-20=\\textbf{76} $$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc140/editorial/4442"
}
] | ãããé·æ¹åœ¢ã«ã€ããŠïŒãã®åšé·ã $8\sqrt{6}$ïŒé¢ç©ã $10$ ã®ãšãïŒå¯Ÿè§ç·ã®é·ãã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMC140 (for beginners) | https://onlinemathcontest.com/contests/omc140 | https://onlinemathcontest.com/contests/omc140/tasks/1547 | B | OMC140(B) | 200 | 301 | 336 | [
{
"content": "ã$2048=2^{11}$ ã§ããããšã«çæããã°, CMOåã解çãã¹ãæ£æŽæ°å€ãšãªãåŸããã®ãå°ããé ã«äžŠã¹ããš\r\n$$1+2=3,\\quad 1+4=5,\\quad 3+4=7,\\quad 1+8=9,\\quad 3+8=11,\\quad \\cdots$$\r\nåæ§ã«ããŠ, å
šäœã§ããåŸããã®ã¯ $4096$ æªæºã®å¥æ°ãã¹ãŠãã $1$ ãé€ãããã®ã§ããããšã容æã«ããã, ç¹ã«CMOåãæåºããåæ°ãšããŠããåŸãæ倧å€ã¯ $\\textbf{2047}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc140/editorial/1547"
}
] | ãCMOåã¯OMCã®ããã³ã³ãã¹ãã«åå ããŠããŸããïŒã©ã®åé¡ããããèããŠãããããªãã®ã§ïŒAåé¡ãããã¯åœãŠãã£ãœãã§æ£è§£ããããšæããŸããïŒ\
ãCMOåãAåé¡ã«ã€ããŠããã£ãŠããã®ã¯ïŒä»¥äžã® $2$ ç¹ã®ã¿ã§ãïŒ
- çã㯠**$1$ æªæº** ã®æ£ã®æçæ°å€ã§ããïŒãã® $2048$ åã¯æŽæ°å€ã§ããïŒ
- çããäºãã«çŽ ãªæ£æŽæ° $p,q$ ãçšã㊠$p\/q$ ãšè¡šãããšãïŒ$p+q$ ã解çããïŒ
ããã®ãšãïŒCMOåã¯è§£çãã¹ãæ£æŽæ°å€ãšãªãåŸããã®ãå°ããæ¹ããé ã«ã¡ããã©äžåãã€ïŒCAãåºããŸã§æåºããããšã«ããŸããïŒCMOåãAåé¡ã§**æåºããåæ°**ãšããŠããåŸãæ倧ã®å€ãæ±ããŠãã ããïŒãã ãïŒCAãåºããããã以éã®æåºã¯è¡ããªããã®ãšãïŒããã§ã¯ $10$ åã®**æåºå¶éã¯èæ
®ããªã**ãã®ãšããŸãïŒ |
OMC140 (for beginners) | https://onlinemathcontest.com/contests/omc140 | https://onlinemathcontest.com/contests/omc140/tasks/3094 | C | OMC140(C) | 200 | 282 | 338 | [
{
"content": "ãæ¡ä»¶ãã¿ããæ°ã**è¯ãæ°**ãšåŒã¶ïŒãŸãïŒæ°å $a,b,c$ ããã®é ã«äžŠã¹ãŠã§ãã $3$ æ¡ã®æ£æŽæ°ã $\\overline{abc}$ ãšè¡šãããšã«ããïŒ$4$ æ¡ã®å Žåãåæ§ïŒïŒ$3$ æ¡ã®è¯ãæ°ã¯ïŒ$a\\neq b$ ãã¿ãã $1\\leq a\\leq 9$ ããã³ $0\\leq b\\leq 9$ ãçšããŠ\r\n$$\\overline{abb},\\quad \\overline{aab},\\quad \\overline{aba}$$\r\nãšè¡šããããïŒ$3\\times 9\\times 9=243$ åååšããïŒãŸãïŒ$2022$ 以äžã® $4$ æ¡ã®è¯ãæ°ã¯ïŒ$a=0,2,3,\\ldots,9$ ã«ãã£ãŠ\r\n$$\\overline{111a},\\quad \\overline{11a1},\\quad \\overline{1a11},\\quad \\overline{1aaa}$$\r\nã®åœ¢åŒã®ãã®ãš $2000,2022$ ã®ã¿ã§ããããïŒ$38$ åã§ããïŒä»¥äžããïŒæ±ããå€ã¯ $\\textbf{281}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc140/editorial/3094"
}
] | ã$100$ ä»¥äž $2022$ 以äžã§ãã£ãŠïŒåé²æ³ã«ãããŠã¡ããã©äžã€ã®æ¡ã ããä»ãšç°ãªãæ£æŽæ°ã¯ããã€ãããŸããïŒãã ãïŒå
é ã® $0$ ã¯èããªããã®ãšããŸãïŒ |
OMC140 (for beginners) | https://onlinemathcontest.com/contests/omc140 | https://onlinemathcontest.com/contests/omc140/tasks/3579 | D | OMC140(D) | 300 | 128 | 298 | [
{
"content": "ããäºãã«æãæãåããã¢ããŸã決ã, ãã®ããšã«ãã以å€ã®æ§æãèãããšãã.\\\r\nãæãæãåããã¢ã®çµã¿åãã㯠${}_7\\mathrm{C}_2\\cdot{}_5\\mathrm{C}_2 \\div2$ éãååšãã. ãã®ãã¡äžã€ãåºå®ãããšã, ãã¢ã§ã¯ãªã人ããã¢ã§ãã人ãæå·®ããŠãã人æ°ã§å Žååãããããš,\r\n- $0$ 人ã®ãšã, $3$ 人ã§äžåšããããã«æãå¿
èŠããã, $2$ éã\r\n- $1$ 人ã®ãšã, æ®ã $2$ 人ãæãåã£ãŠã¯ãªããªãããšã«æ³šæããŠ, $3\\cdot4\\cdot3=36$ éã\r\n- $2$ 人ã®ãšã, $3\\cdot4^2\\cdot2=96$ éã\r\n- $3$ 人ã®ãšã, $4^3=64$ éã\r\n\r\nãã£ãŠæ±ãã確ç㯠$\\dfrac{{}_7\\mathrm{C}_2\\cdot{}_5\\mathrm{C}_2\\cdot198}{2\\cdot6^7}=\\dfrac{385}{5184}$ ã§ãããã, 解çãã¹ãå€ã¯ $\\textbf{5569}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc140/editorial/3579"
},
{
"content": "ãå
¬åŒè§£èª¬ã®ããã¢ã§ã¯ãªã人ã®æãæ¹ãã®æ°ãäžãã®å¥è§£ã§ãïŒ\r\n\r\näœäºè±¡ãèãããšïŒãã¢ã§ãªã $3$ 人ã®ãã¡ $2$ 人ã $1$ ã€ã®ãã¢ãäœãå Žåã®ã¿ã§ïŒããã¯ãã¢ãäœã $2$ 人ã®æ±ºãæ¹ã $3$ éãïŒãããŠæ®ã£ã $1$ 人ã®æãæ¹ã $6$ éããªã®ã§ $3Ã6=18$ éãã«ãªããŸãïŒãã£ãŠæ±ããå Žåã®æ°ã¯ $6^3-18=198$ éãã§ãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc140/editorial/3579/187"
}
] | ã$7$ 人ã®çåŸãããïŒèªèº«ä»¥å€ã®ãã $1$ 人ãäžæã«ç¡äœçºã«æãããšãïŒãäºãã«æãããåã£ãŠãã
$2$ 人çµãã¡ããã© $2$ çµååšãã確çãæ±ããŠãã ããïŒãã ãïŒæ±ãã確çã¯äºãã«çŽ ãªæ£æŽæ° $a$ , $b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC140 (for beginners) | https://onlinemathcontest.com/contests/omc140 | https://onlinemathcontest.com/contests/omc140/tasks/2448 | E | OMC140(E) | 300 | 143 | 256 | [
{
"content": "ã次ãã¿ããæ£æŽæ°ã®åæ°ãæ±ããã°ããïŒ\r\n- (a) åé²è¡šèšã§ã¡ããã© $4$ æ¡ã§ããïŒ\r\n- (b1) $3$ ã®åæ°ã§ããïŒ\r\n- (b2) äžã®äœã®æ°åãå¶æ°ã§ããïŒ\r\n- (c) åé²è¡šèšãããšãã«åæ¡ã«çŸããæ°ã¯ã¡ããã© $2$ çš®é¡ã§ããïŒ\r\n\r\nããæ£æŽæ°ã (a), (b1), (c) ãã¿ãããšãïŒåæ¡ã«çŸããæ°ã¯æ¬¡ã®ããããã«åé¡ã§ããïŒ\r\n- (i) ãã¹ãŠ $3$ ã®åæ°\r\n- (ii) $3$ ã®åæ°(1å)ãš $3$ ã§å²ãåããªãæ°(3å)\r\n- (iii) $3$ ã§å²ããš $1$ äœãæ°(2å)ãš $2$ äœãæ°(2å)\r\n\r\nããããã«ã€ããŠïŒ(b2) ãã¿ãããã®ã¯æ¬¡ã®ããã«æ°ããããïŒ\r\n- (i)ïŒäžã®äœã $0$ ã®ãšã $3\\times 2^2=12$ åïŒ$6$ ã®ãšã $2\\times (2^3-1)+3=17$ åïŒ\r\n- (ii)ïŒäžã®äœã $3$ ã®åæ°ã®ãšã $2\\times 6=12$ åïŒããã§ãªããšã $3\\times(3\\times 3+2)=33$ åïŒ\r\n- (iii)ïŒäžã®äœã®æ°åããèãããš $3\\times 3\\times 3=27$ åïŒ\r\n\r\nã以äžããæ¡ä»¶ãã¿ããæ°ã¯ $\\mathbf{101}$ åã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc140/editorial/2448"
}
] | ã$2022$ ã¯æ¬¡ã®æ¡ä»¶ããã¹ãŠã¿ããæ£æŽæ°ã§ãïŒ
- åé²æ°è¡šèšã§ïŒã¡ããã© $4$ æ¡ã§ããïŒããªãã¡ $1000$ ä»¥äž $9999$ 以äžïŒ
- åé²æ°è¡šèšã§ïŒåæ¡ã«çŸããæ°ã¯ã¡ããã© $2$ çš®é¡ã§ããïŒ
- $6$ ã®åæ°ã§ããïŒ
ãã®æ¡ä»¶ããã¹ãŠã¿ããæ£æŽæ°ã¯ïŒ$2022$ ãå«ããŠããã€ãããŸããïŒ |
OMC140 (for beginners) | https://onlinemathcontest.com/contests/omc140 | https://onlinemathcontest.com/contests/omc140/tasks/4032 | F | OMC140(F) | 400 | 91 | 131 | [
{
"content": "$BC$ ã®äžç¹ã $M$, äžè§åœ¢ $ABC$ ã®åå¿, å€å¿ããããã $H,O$ ãšããã°, $HD:OM=DE:ME=3:1$ ã§ãã, well-known-factãšã㊠$AH:OM=2:1$ ã§ããã®ã§\r\n$$AD:HD=5:3$$\r\nã§ãã. ãŸã, \r\n$$\\angle{HBD}=90^{\\circ}-\\angle{BHD}= 90^{\\circ}-\\angle{ACB} =\\angle{DAC}$$\r\n ã§ããããäžè§åœ¢ $DBH$ ãšäžè§åœ¢ $DAC$ ã¯çžäŒŒã§ããããšãããã, $AD=x$ ãšããã°ä»¥äžãåŸã. \r\n$$\\frac{3}{5}x\\times{x}=BD\\times CD=21$$\r\nãã£ãŠ $AD=\\sqrt{35}$ ãšæ±ãŸããã, äžè§åœ¢ $ABC$ ã®é¢ç©ã¯ $5\\sqrt{35}$ ã§ãã, ç¹ã«è§£çãã¹ãå€ã¯ $\\bf{875}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc140/editorial/4032"
},
{
"content": "ããããåé¡ã¯çŽäº€åº§æšã§èãããšããã§ãïŒ\\\r\n$A(0,x), B(-3,0), D(0,0), E(3,0), C(7,0)$ ãšããŸãïŒ\\\r\n察称æ§ããïŒ$x\\gt0$ ãšããŠããã§ãïŒ\\\r\näžè¬ã«ïŒ$A(0,a), B(b,0), C(c,0)$ ã®ãšãã«åå¿ã¯ $H\\left(0,-\\dfrac{bc}{a}\\right)$ ãšãªãããšãç¥ãããŠããã®ã§ïŒ $H\\left(0,\\dfrac{21}{x}\\right)$ ãšãªããŸãïŒ\\\r\nãŸãïŒéå¿ã¯ $G\\left(\\dfrac{4}{3},\\dfrac{x}{3}\\right)$ ãšãªããŸãïŒ\\\r\n$G,H,E$ ãåäžçŽç·äžã«ããããšãã $x=\\sqrt{35}$ ãšãããïŒ$ABC$ ã®é¢ç©ã¯ $\\mathbf{5\\sqrt{35}}$ ãšããããŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc140/editorial/4032/188"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠïŒ$A$ ãã $BC$ ã«äžãããåç·ã®è¶³ã $D$ ãšãïŒäžè§åœ¢ $ABC$ ã®[ãªã€ã©ãŒç·](https:\/\/onlinemathcontest.com\/terms)ãšçŽç· $BC$ ã®äº€ç¹ãååšããã®ã§ããã $E$ ãšããã°ïŒ$4$ ç¹ $B,D,E,C$ ã¯ãã®é ã«äžŠã³ãŸããïŒ
$$BD=DE=3, \quad EC=4$$
ã§ãããšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMC139 (for experts) | https://onlinemathcontest.com/contests/omc139 | https://onlinemathcontest.com/contests/omc139/tasks/2467 | A | OMC139(A) | 300 | 179 | 207 | [
{
"content": "**è£é¡.**ãéè² æŽæ° $n$ ã«ã€ããŠïŒ$10^n \\equiv 9n+1 \\pmod{81}$ïŒ\\\r\n**蚌æ.**ã$n=0$ ã§ã¯æãç«ã€ããïŒéå·®ããšã£ãŠ $9\\times 10^n \\equiv 9 \\pmod{81}$ ã瀺ãã°ããïŒãã㯠$10^n \\equiv 1 \\pmod{9}$ ããæç«ããïŒ\r\n\r\n---\r\nãè£é¡ããïŒåé¡ã¯æ¬¡ã®ããã«èšããããããïŒ\r\n\r\n---\r\n\r\n**åé¡â .**ã$1,10,19,28,\\ldots$ ããããã€ããéžãã§ïŒãããã®åã $81$ ã®åæ°ã«ããïŒ\r\n\r\n---\r\n\r\nãããŠïŒæ¡ä»¶ãã¿ããæ°ã $X$ ãšããã°ïŒ$X$ ã®åäœã®åã $9$ ã§å²ãåããããšã«æ³šæãããïŒ\\\r\nãããã§ã¯ $X$ ãé«ã
$11$ æ¡ä»¥äžã§ãããšããŠèãããïŒãã®ãšãïŒ$X$ ã®æ¡å㯠$9$ ã§ããïŒäžã®èšãããã§ã¯ $11$ åã®æ°ãã $9$ åéžã¶ããšã«ãªãïŒãããèžãŸããã°ïŒããã«åé¡â¡ïŒãããŠåé¡â¢ã®ããã«èšããããããïŒ\r\n\r\n---\r\n\r\n**åé¡â¡.**ã$0,1,2,3,\\ldots,8,0,1$ ãã $9$ åãéžãã§ïŒãããã®åã $9$ ã§å²ã£ãŠ $8$ äœãæ°ã«ããïŒ\\\r\n**åé¡â¢.**ã$0,1,2,3,\\ldots,8,0,1$ ãã $2$ åãéžãã§ïŒãããã®åã $9$ ã§å²ã£ãŠ $2$ äœãæ°ã«ããïŒ\r\n\r\n---\r\n\r\nãåé¡â¢ã§èãããïŒãã㧠$X$ ãå°ããããã«ã¯ïŒå³åŽã«ããæ°ãåªå
çã«éžã¶å¿
èŠãããïŒ\\\r\nãå³ç«¯ã® $1$ ã®éžæã«å¯Ÿå¿ããã®ã¯ $(0)11\\cdots101$ïŒæ¬¡ã® $0$ ã®éžæã«å¯Ÿå¿ããã®ã¯ $1011\\cdots1011$ïŒãã®æ¬¡ã® $8$ ã®éžæã«å¯Ÿå¿ããã®ã¯ $\\mathbf{11011110111}$ ã§ããïŒãããæ±ãã $3$ çªç®ã«å°ãã $X$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc139/editorial/2467"
}
] | ã$81$ ã§å²ãåãïŒãã€åé²æ³ã§è¡šèšãããšãåæ¡ã $0$ ãŸã㯠$1$ïŒäžæ¹ã®ã¿ã§ãããïŒã§ãããããªæ£æŽæ°ã®ãã¡ïŒ$3$ çªç®ã«å°ãããã®ãæ±ããŠãã ããïŒ |
OMC139 (for experts) | https://onlinemathcontest.com/contests/omc139 | https://onlinemathcontest.com/contests/omc139/tasks/5138 | B | OMC139(B) | 300 | 168 | 192 | [
{
"content": "**è£é¡.**ãä»»æã®å®æ° $x$ ã«ã€ããŠïŒä»¥äžãæç«ããïŒ\r\n$$\\displaystyle\\lfloor x\\rfloor\r\n+\\bigg\\lfloor x+\\frac{1}{99}\\bigg\\rfloor\r\n+\\bigg\\lfloor x+\\frac{2}{99}\\bigg\\rfloor\r\n+\\cdots\r\n+\\bigg\\lfloor x+\\frac{98}{99}\\bigg\\rfloor\r\n=\\lfloor99x\\rfloor$$\r\n**蚌æ.**ã$x$ ã®å°æ°éšåã $\\dfrac{k}{99}$ ä»¥äž $\\dfrac{k+1}{99}$ æªæºã§ãããšãïŒä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$\\lfloor x\\rfloor\r\n+\\bigg\\lfloor x+\\frac{1}{99}\\bigg\\rfloor\r\n+\\bigg\\lfloor x+\\frac{2}{99}\\bigg\\rfloor\r\n+\\cdots\r\n+\\bigg\\lfloor x+\\frac{98}{99}\\bigg\\rfloor\r\n=99\\lfloor x\\rfloor + k\r\n=\\lfloor 99x\\rfloor - k + k\r\n=\\lfloor 99x\\rfloor$$\r\n\r\n----\r\n\r\nãè£é¡ããïŒä»¥äžãã¿ããæ£ã®å®æ° $x$ ããã¹ãŠæ±ããã°ããïŒ\r\n$$\\lfloor 99x\\rfloor=9999x-999$$\r\n巊蟺ã¯æŽæ°ã§ããããïŒ$9999x$ ãæŽæ°ã§ããïŒåŸã£ãŠ $x$ ã¯ããæŽæ° $n$ ãçšã㊠$\\dfrac{n}{9999}$ ãšè¡šããïŒãããäžåŒã«ä»£å
¥ãããš\r\n$$\\bigg\\lfloor\\frac{n}{101}\\bigg\\rfloor=n-999$$\r\nãšãªãïŒããã«ïŒ$n=101p+q$ ãæºããæŽæ° $p$ ãš $100$ 以äžã®éè² æŽæ° $q$ ããšãïŒãããåã³äžã«ä»£å
¥ããã°ïŒ\r\n$$100p=999-q$$\r\nãåããïŒåŸã£ãŠïŒ$999-q$ ã $100$ ã®åæ°ã§ããããïŒ$0 \\leq q \\leq 100$ ã«æ°ãã€ã㊠$q=99$ ãåããïŒãããã $p=9$ ã§ããïŒ\\\r\nã以äžããŸãšããã°ïŒæ±ãã解㯠$x=\\dfrac{112}{1111}$ ã®ã¿ãšèšç®ã§ãïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{1223}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc139/editorial/5138"
}
] | ã以äžã®çåŒãã¿ããæ£ã®å®æ° $x$ ã®ç·åãæ±ããŠãã ããïŒ
$$\lfloor x\rfloor
+\bigg\lfloor x+\frac{1}{99}\bigg\rfloor
+\bigg\lfloor x+\frac{2}{99}\bigg\rfloor
+\cdots
+\bigg\lfloor x+\frac{98}{99}\bigg\rfloor
=9999x-999$$
ãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC139 (for experts) | https://onlinemathcontest.com/contests/omc139 | https://onlinemathcontest.com/contests/omc139/tasks/2756 | C | OMC139(C) | 400 | 137 | 169 | [
{
"content": "ããŸãïŒæ¡ä»¶ $\\gcd(a,b)\\times\\gcd(b,c) =\\gcd(a,c)$ ã«ã€ããŠèãããïŒ$a,b,c$ ã®å°ãªããšãäžã€ãå²ãåãé©åœãªçŽ æ° $p$ ã«ã€ããŠïŒãããããå²ãåãåæ°ã $x,y,z$ ãšããïŒäžè¬æ§ã倱ãã $x\\leq z$ ãšããã°ïŒæ¡ä»¶ã¯\r\n$$\\min(x,y)+\\min(y,z)=x.$$\r\nããã㧠$y\\geq z$ ã®ãšãïŒ$x\\leq z$ ãã $\\min(x,y)=0$ ãå¿
èŠïŒãã㯠$x=z=0$ ãæå³ããïŒãŸã $y\\lt z$ ã®ãšãïŒ$x\\lt y$ ãªãã° $y=0$ ãšãªãççŸïŒããªãã¡ïŒãããã«ãã $\\min(x,y)=\\min(y,z)$ ã§ããããïŒ\r\n$$\\gcd(a,b)=\\gcd(b,c)\\bigl(=\\gcd(a,b,c)\\bigr)$$\r\nãæãç«ã€ïŒããã $g$ ãšããïŒãªãïŒä»¥äžã®å€åœ¢ããã蚌æã§ããïŒ$\\gcd(a,b,c)=\\gcd(b,c)$ ãåæ§ã«åŸãããïŒ\r\n$$\\gcd(a,b,c)=\\gcd\\bigl(\\gcd(a,b),\\gcd(a,c)\\bigr)=\\gcd\\bigl(\\gcd(a,b), \\gcd(a,b)\\times\\gcd(b,c)\\bigr)=\\gcd(a,b)$$\r\nã$\\gcd(a,c)=g^2$ ããã³ $2022=2\\times3\\times337$ ã«æ³šæãããšïŒ$g$ ãšããŠèããã¹ããã®ã¯ $1,2,3,6$ ã§ããïŒ\\\r\nãããŸïŒæ¡ä»¶ $a+b+c=N$ ã®ããšã§ $a^2+b^2+c^2$ ãæå°åããã«ã¯ïŒ$(a-N\\/3)^2+(b-N\\/3)^2+(c-N\\/3)^2$ ãæå°åããã°ããããšã«æ³šæããïŒããªãã¡ïŒæèŠçã«ã¯ã$a,b,c$ ããããã $N\\/3$ ã«è¿ã¥ãããå¿
èŠãããïŒ\\\r\nã$g=6$ ãšããïŒãã®ãšãïŒ$a=ga^\\prime$ ãªã©ãšããã° $a^\\prime+b^\\prime+c^\\prime=337$ ã§ããïŒæå°åãã¹ãå€ã¯ ${a^\\prime}^2+{b^\\prime}^2+{c^\\prime}^2$ ã§ããïŒããŸïŒ$a^\\prime,c^\\prime$ 㯠$6$ ã§å²ãåããããšã«æ³šæããã°ïŒ$337\\/3$ ã®åšèŸºãã $108$ ã $114$ ãåè£ãšãªãïŒå®éïŒ$(a^\\prime,b^\\prime,c^\\prime)=(108, 115, 114)$ ãšããŠ\r\n$$\\dfrac{a^2+b^2+c^2}{\\mathrm{gcd} (a,b,c)}=g({a^\\prime}^2+{b^\\prime}^2+{c^\\prime}^2)=\\bm{227310}$$\r\nãæå°ã§ããããšããããïŒ$g\\leq 3$ ã®ãšã $(\\text{äžåŒ}) \\geq 3\\times 674^2 \\/g \\geq 454276$ ã§ããããïŒçµå±ãããæ±ããæå°å€ã§ããïŒ\r\n<details><summary>$g=6$ ã®å Žåãå³å¯ã«<\\/summary>\r\nãæ¡ä»¶ãç·©ãïŒ$a^\\prime\\neq c^\\prime, a^\\prime \\equiv 0, b^\\prime\\equiv 1, c^\\prime\\equiv 0 \\pmod{6}$ 㧠$({a^\\prime}-337\\/3)^2+({b^\\prime}-337\\/3)^2+({c^\\prime}-337\\/3)^2$ ãæå°åãããïŒãŸã $b^\\prime \\equiv 1 \\pmod{6}$ ã«æ³šæããã°ïŒ$(b^\\prime-337\\/3)^2$ åç¬ã§ã¯ $b^\\prime=115$ ã§æå°åãããïŒ$(a^\\prime-337\\/3)^2$ åç¬ã§ãåæ§ã« $a^\\prime=114$ ã§æå°åãããïŒ$(c^\\prime-337\\/3)^2$ ãåæ§ã«è©äŸ¡ãããã ãïŒ$a^\\prime\\neq c^\\prime$ ã«æ³šæããã°ïŒ$2$ çªç®ã«å°ããå€ãšãŸãšããŠæ¬¡ã®ããã«è©äŸ¡ããã°ãªããªãïŒ\r\n$$(a^\\prime-337\\/3)^2 + (c^\\prime-337\\/3)^2 \\geq (114-337\\/3)^2 + (108-337\\/3)^2$$\r\n$114+115+108=337$ ã§ããïŒ$\\gcd$ ã«é¢ããæ¡ä»¶ã«ãé©åããããïŒä»åã®ç¶æ³ã§ããã¹ãŠã®çå·ãåæã«å®çŸã§ããïŒ\r\n<\\/details>",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc139/editorial/2756"
}
] | ãæ£æŽæ° $a,b,c$ ã¯ä»¥äžã®æ¡ä»¶ãã¿ãããŸã.
$$a+b+c=2022,\quad \gcd(a,b) Ã \gcd(b,c) =\gcd(a,c)$$
ãã®ãšãïŒä»¥äžã®åŒã®ãšãããæå°å€ãæ±ããŠãã ããïŒ
$$\dfrac{a^2+b^2+c^2}{\gcd(a,b,c)}$$ |
OMC139 (for experts) | https://onlinemathcontest.com/contests/omc139 | https://onlinemathcontest.com/contests/omc139/tasks/5270 | D | OMC139(D) | 500 | 97 | 121 | [
{
"content": "ã äžè§åœ¢ $ABC$ ã®å€æ¥åã®ååŸã $R$ ãšãïŒ$BC$ ã®äžç¹ã $M$ ãšããïŒäžè§åœ¢ $HBC$ ã«ãããŠäžç·å®çãã\r\n$$HM = \\sqrt{\\frac{1}{2}(HB^2 + HC^2) - BM^2} = 6$$\r\nãåŸãïŒ$M$ ã«é¢ã㊠$H$ ãšå¯Ÿç§°ãªç¹ã $D$ ãšãããšïŒããã¯äžè§åœ¢ $ABC$ ã®å€æ¥åäžã«ããïŒãã£ãŠïŒäžè§åœ¢ $ODH$ ã«ãããŠäžç·å®çãã\r\n$$25 + R^2 = 2\\times(36 + OM^2)$$\r\nãåŸãïŒãŸãïŒäžå¹³æ¹ã®å®çãã\r\n$$OM^2 = R^2 - \\frac{361}{4}$$\r\nã§ããããïŒäºåŒãé£ç«ããŠè§£ãããšã§ $R^2 = \\dfrac{267}{2}$ ãåŸãïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{269}$ ãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc139/editorial/5270"
},
{
"content": "ã$\\overrightarrow{OA}=\\vec{a}, \\overrightarrow{OB}=\\vec{b}, \\overrightarrow{OC}=\\vec{c}$ ãšãïŒ$\\lvert \\vec{a} \\rvert= \\lvert \\vec{b} \\rvert= \\lvert \\vec{c} \\rvert= R$ ãšããïŒãã®ãšã $\\overrightarrow{OH}=\\vec{a}+\\vec{b}+\\vec{c}$ ã§ããããïŒæ¡ä»¶ã¯\r\n\r\n- $\\lvert \\vec{a}+\\vec{b}+\\vec{c} \\rvert^2=5^2$\r\n- $\\lvert \\vec{a}+\\vec{b} \\rvert^2+\\lvert \\vec{a}+\\vec{c} \\rvert^2=\\dfrac{505}{2}$\r\n- $\\lvert \\vec{b}-\\vec{c} \\rvert^2=19^2$\r\n\r\nãšæžããïŒ$(\\text{第1åŒ})-(\\text{第2åŒ})+(\\text{第3åŒ})$ ãèšç®ããããšã§ $R^2=\\dfrac{267}{2}$ ãåŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc139/editorial/5270/184"
}
] | ãäžè§åœ¢ $ABC$ ã«ã€ããŠïŒãã®åå¿ã $H$ïŒå€å¿ã $O$ ãšãããšïŒ
$$OH=5,\quad HB^2+HC^2=\frac{505}{2},\quad BC=19$$
ãæãç«ã¡ãŸããïŒãã®ãšãïŒäžè§åœ¢ $ABC$ ã®å€æ¥åã®ååŸã® $2$ ä¹ã¯ïŒäºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC139 (for experts) | https://onlinemathcontest.com/contests/omc139 | https://onlinemathcontest.com/contests/omc139/tasks/2442 | E | OMC139(E) | 700 | 9 | 37 | [
{
"content": "**è£é¡.**ã$p,k,d$ ãããããçŽ æ°ïŒæ£æŽæ°ïŒæŽæ°ãšããïŒãã ãïŒ$p=2$ ã®ãšã㯠$k\\geq3$ ãšããïŒ$d\\equiv a^2-b^2\\pmod{p^k}$ ãªã $p$ ãšäºãã«çŽ ãªæŽæ° $a,b$ ãååšããããã®ïŒ$p,k,d$ ã«é¢ããå¿
èŠååæ¡ä»¶ã¯ïŒ\r\n- ã$p=2$ ã〠$d\\equiv0 \\pmod8$ããŸã㯠ã$p=3,5$ ã〠$d\\not\\equiv \\pm1\\pmod{p}$ããŸãã¯ã$p\\geq7$ã\r\n\r\n**蚌æ.**ããŸã $p=2$ ã®ãšãïŒ$a,b$ ã¯å¥æ°ã ãã $a^2\\equiv b^2\\equiv 1\\pmod{8}$ ã§ããïŒ$d\\equiv 0\\pmod{8}$ ãå¿
èŠïŒéã« $d=8e$ ãªãæŽæ° $e$ ãååšãããšãïŒ$a=2e+1,b=2e-1$ãšãããš $a,b$ ã¯ãšãã«å¥æ°ã§ïŒ$a^2-b^2=8e=d$ ãšãªãããïŒæ¡ä»¶ãã¿ãã $a,b$ ãåŸãããïŒ\\\r\nãä»¥äž $p$ ã¯å¥çŽ æ°ãšããïŒ$d\\not\\equiv \\pm1\\\\pmod{p}$ ã®ãšãïŒ$a\\equiv\\dfrac{d+1}2,b\\equiv\\dfrac{d-1}{2}\\pmod{p^k}$ ãšãããšïŒäžãšåæ§ã«ããããé©ããïŒ\\\r\nã$d\\equiv \\pm1\\pmod{p}$ ã®ãšãïŒé©åœã« $x,y$ ãå®ããŠä»¥äžãæç«ãããããšãèããã°ããïŒ$x\\not\\equiv 0 \\pmod{p}$ ã«æ³šæïŒ\r\n$$\\displaystyle a\\equiv\\frac{x+y}2,\\quad b\\equiv\\frac{x-y}2,\\quad xy\\equiv d \\pmod{p^k}$$\r\n$x$ ãããšã« $y$ ãå®ãããšãïŒ$x\\pm y$ ããšãã« $p$ ãšäºãã«çŽ ãšãªãã«ã¯ïŒ$x$ ã«ã€ããŠ\r\n$$x^4-1\\equiv x^2(x^2-y^2)\\not\\equiv 0 \\pmod{p}$$\r\nãå¿
èŠååã§ããïŒåå§æ ¹ãèããã°ãã®ãã㪠$x\\not\\equiv 0 \\pmod{p}$ ã®ååšã¯ $p\\geq 7$ ãšåå€ïŒä»¥äžãã瀺ãããïŒ\r\n----\r\nãè£é¡ããïŒè¶
æ Œåç¹ $A(a,b),B(c,d)$ ã«å¯ŸãïŒ$e=a-c$ ããã³ $f=b-d$ 㯠$24$ ã®åæ°ã§ïŒ$5$ ã§å²ã£ãäœã㯠$0,2,3$ ã®ããããïŒéã«ããããã¿ããæŽæ° $e,f$ ã«å¯ŸãïŒ$e=a-c,f=b-d$ ãªãè¶
æ Œåç¹ãåæ§ã«ãšããïŒ\\\r\nãããã§ïŒ$AB$ ã軞ã«å¹³è¡ã§ãªãïŒ$AB$ ã®é·ã $g$ ãæŽæ°å€ã®ãšãïŒ$g^2=e^2+f^2$ ãã $g$ ã $24$ ã®åæ°ã§ããïŒ$e,f,g$ ããããã $24$ ã§å²ã£ãåã $h,i,j$ ãšãããšïŒ$h,i\\equiv 0,2,3\\pmod5$ ã§ããïŒããã«çæããŠïŒ$j$ ã®å°ããé ã«ãã¿ãŽã©ã¹æ°ãåæããã°ïŒ$g\\geq 13\\times 24$ ãåŸãããšããããïŒ\\\r\nããããçšããŠïŒæ¡ä»¶ãã¿ããäžè§åœ¢ $ABC$ ã®åšé·ãèŠç©ãããïŒãã¹ãŠã®èŸºã軞ãšå¹³è¡ã§ãªããšãïŒ$39\\times 24$ 以äžã§ããïŒãŸãïŒäºèŸºã軞ãšå¹³è¡ã§ãããšãïŒäžã®è°è«ãšåæ§ã«ãã¿ãŽã©ã¹æ°ãåæããã° $30\\times24$ 以äžã§ããïŒã¡ããã©äžèŸºã軞ãšå¹³è¡ã§ãããšãïŒ$29\\times 24$ 以äžãšããã«ã¯ïŒè»žãšå¹³è¡ãªèŸºã®é·ãã $3\\times 24$ 以äžã§ããå¿
èŠãããïŒãããïŒãã®ãããªäžè§åœ¢ã¯ãã¹ãŠé¢ç©ãç¡çæ°ã§ããïŒç¹ã«æ Œåäžè§åœ¢ã«ã¯ãªãããªãïŒ\\\r\nãéã«å蟺ã $5\\times 24,12\\times 24,13\\times 24$ ã®äžè§åœ¢ã®ååšã¯äžé£ã®è°è«ããåŸãïŒãã£ãŠæ±ããæå°å€ã¯ $\\textbf{720}$ ã§ããïŒ \r\n\r\n**è£è¶³.**ãæ¬è³ªã¯å¹³æ¹æ°ã $3,5,8$ ã§å²ã£ãäœãã§ããïŒè£é¡ã¯ãããã®èæ
®ã§ååã§ããããšã®è£ä»ãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc139/editorial/2442"
}
] | ãçŽäº€åº§æšå¹³é¢ã«ãããŠïŒæ¬¡ãã¿ããæ Œåç¹ $(x,y)$ ã**è¶
æ Œåç¹**ãšãã¶ããšãšããŸãïŒ
- $x\equiv a^2, ~ y\equiv b^2 \pmod{2022!}$ ãã¿ãããããªïŒ$2022!$ ãšäºãã«çŽ ãªæŽæ° $a,b$ ãååšããïŒ
ããã¹ãŠã®é ç¹ãè¶
æ Œåç¹ã§ããïŒãã€å蟺ã®é·ãããã¹ãŠæ£æŽæ°å€ã§ãããããªïŒééåãªïŒäžè§åœ¢ã«ã€ããŠïŒãã®åšé·ãšããŠããããæå°å€ãæ±ããŠãã ãã. |
OMC139 (for experts) | https://onlinemathcontest.com/contests/omc139 | https://onlinemathcontest.com/contests/omc139/tasks/2349 | F | OMC139(F) | 800 | 19 | 48 | [
{
"content": "ãã¹ã³ã¢ã®ç·å $S$ ã¯æ¬¡ã®åŒã§äžããããïŒãã ã $a_1,\\ldots,a_6$ ã¯éè² æŽæ°ãåãïŒ$S\\bmod{p}$ ã«ã€ããŠèãããïŒ\r\n$$S=\\sum_{\\sum a_i=N}\\left(\\dfrac{N!}{\\prod a_i!}\\times \\prod a_i^i\\right)$$\r\nãããã§**äžééä¹åª** $x^{\\underline{n}}$ ãå®æ° $x$ ããã³æ£æŽæ° $n$ ã«å¯Ÿã $x^{\\underline{n}}=x(x-1)\\cdots(x-n+1)$ ãšå®ããïŒ\r\nãã®ãšã $x$ ãå€æ°ãšã¿ãã° $x^{\\underline{n}}$ 㯠$x$ ã® $n$ 次åŒã§ããå®æ°é
ãå«ãŸãªãããïŒæ£æŽæ° $n,k$ ($n\\geq k$) ã«å¯Ÿã次ãã¿ããå®æ° $b_{n,k}$ ãäžæã«ååšããïŒä»¥äžã§ã瀺ãããããã«ïŒããã¯æŽæ°ã§ããïŒãŸãïŒ$n\\lt k$ ã®ãšã㯠$b_{n,k}=0$ ãšããïŒ\r\n$$x^n=\\sum_{k=1}^{n} b_{n,k} x^{\\underline{k}}$$\r\nãŸãä»»æã®éè² æŽæ°ã®çµ $p_i$ ($\\sum p_i\\leq N$) ã«å¯ŸãïŒ $T=\\sum p_i$ ãšãããšæ¬¡ãæãç«ã€ïŒ\r\n$$\\sum_{\\sum a_i=N}\\left(\\dfrac{N!}{\\prod a_i!}\\times \\prod a_i^{\\underline{p_i}}\\right)=\\sum_{\\sum a_i=N-T}\\dfrac{N!}{\\prod a_i!}=6^{N-T}\\times N^{\\underline{T}}$$\r\n以äžããïŒæ¬¡ã® $x$ ã®å€é
åŒ $P$ ãå±éãïŒ $x^n$ ã $6^{N-n}N^{\\underline{n}}$ ã§çœ®ãæãããã®ã $S$ ã§ããããšããããïŒ\r\n$$P=\\prod_{i=1}^{6}\\left(\\sum_{k=1}^{i}b_{i,k}x^{k}\\right)$$\r\nã $N=4p+7$ ãã $6^{N-n}N^{\\underline{n}}\\equiv 6^{N-n}7^{\\underline n}\\pmod{p}$ ã§ããããïŒç¹ã« $P$ ã®å±éã«ãã㊠$8$ 次以äžã®é
ã¯ç¡èŠã§ããïŒä»¥äžãã $b_{n,1},b_{n,2}$ ãæ±ããã°ããïŒ\r\n$$P=\\left(\\prod_{i=1}^{6}b_{i,1}\\right)x^6+\\left(\\prod_{i=1}^{6}b_{i,1}\\right)\\left(\\sum_{i=1}^{6}\\dfrac{b_{i,2}}{b_{i,1}}\\right)x^7+(8次以äžã®é
)$$\r\nãããã§æ¬¡ã®å€åœ¢ãæãç«ã€ããšïŒããã³ $b_{1,1}=b_{2,1}=b_{2,2}=1$ ããïŒ$b_{n,1}=1,b_{n,2}=2^{n-1}-1$ ãåŸãïŒ\r\n$$\\begin{aligned}\r\n\\sum_{k=1}^{n+1} b_{n+1,k} x^{\\underline{k}} &= x^{n+1}\\\\\\\\\r\n&=x\\left(x^n-(x-1)^n\\right)+x(x-1)^n\\\\\\\\\r\n&=\\sum_{k=1}^{n} b_{n,k} kx^{\\underline{k}}+\\sum_{k=1}^{n} b_{n,k} x^{\\underline{k+1}} \\\\\\\\\r\n&=\\sum_{k=1}^{n+1} (kb_{n,k}+b_{n,k-1})x^{\\underline{k}}\r\n\\end{aligned}$$\r\nãããã¯ïŒ$x=1,2$ ããããã代å
¥ããŠæ¯èŒããŠãããïŒãããã«ããïŒæ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$P=x^6+57x^7+(8次以äžã®é
),\\quad S\\equiv 6^{N-6}7^{\\underline 6}+57\\times 6^{N-7}7^{\\underline 7}=6^{N-3}\\times 245 \\pmod{p}$$\r\nã以äžãã $S\\equiv 6^8\\times 245\\equiv {\\bf 411505920} \\pmod{p}$ ãåŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc139/editorial/2349"
},
{
"content": "ãFPS ã®è§£æ³ã§ãïŒãããçšããã° 800 ç¹ã«ããŠã¯å®¹æã«è§£ãããšæããŸãïŒ\r\n\r\n---\r\n\r\nãåé¡ã®ç·åã¯ä»¥äžã®åœ¢åŒçåªçŽæ°ã® $x^{4p+7}$ ã®ä¿æ°ã§ããïŒ\r\n$$\r\n\\tag{1}(4 p+7) ! \\times \\prod_{k=1}^6\\left(\\frac{0^k}{0 !}+\\frac{1^k}{1 !} x+\\frac{2^k}{2 !} x^2+\\cdots\\right)\r\n$$\r\nããã§ïŒéè² æŽæ° $n$ ã«ã€ããŠä»¥äžãæãç«ã€ããšã«çæãã (â»1) ïŒ\r\n$$\r\n\\sum_{i=0}^{\\infty} \\frac{{}\\_{i}\\mathrm{P}_n}{i !} x^i=x^n e^x\r\n$$\r\nãããçšããã°ïŒ$(1)$ ã«ãããŠïŒäŸãã° $k=2$ ã®ãšãã® $\\prod$ ã®äžèº«ã¯æ¬¡ã®ããã«å€åœ¢ã§ããïŒ\r\n$$\r\n\\begin{aligned}\r\n& i^2={ }_i \\mathrm{P}_2+{ }_i \\mathrm{P}_1 \\\\\\\\\r\n\\Longrightarrow \\quad & \\frac{0^2}{0 !}+\\frac{1^2}{1 !} x+\\frac{2^2}{2 !} x^2+\\cdots=\\left(x^2+x\\right) e^x\r\n\\end{aligned}\r\n$$\r\nãŸãšããã°ïŒ$(1)$ å
šäœã§ã¯æ¬¡ã®ããã«å€åœ¢ãããïŒ\r\n$$\r\n(4 p+7) ! \\times e^{6 x} \\times P(x)\r\n$$\r\nãªãïŒããã§\r\n$$\r\nP(x)=x\\left(x^2+x\\right)\\left(x^3+3 x^2+\\cdots\\right)\\left(x^4+6 x^3+\\cdots\\right)\\left(x^5+10 x^4+\\cdots\\right)\\left(x^6+15 x^5+\\cdots\\right)\r\n$$\r\nã§ãã. $P(x)$ ã® $x^k$ ã®ä¿æ°ã $a_k$ ã§è¡šãã°ïŒ $(1)$ ã® $x^{4 p+7}$ ã®ä¿æ°ã¯\r\n$$\r\n\\sum\\_{k=0}^{21}\\left((4 p+7) ! \\times a_k \\times \\frac{6^{4 p+7-k}}{(4 p+7-k) !}\\right)\r\n$$\r\nããŸïŒ$\\sum$ ã®äžèº«ã«ã€ããŠïŒ$a_0=a_1=\\cdots=a_5=0$ ã§ãããã $k \\leq 5$ ã®å Žåã¯ç¡èŠããŠããïŒããã«æ±ããã¹ãå€ã¯äžåŒã®å€ã $p$ ã§å²ã£ãäœãã§ããããïŒ $k \\geq 8$ ã®å Žåãç¡èŠããŠããããšããããïŒããªãã¡ $k=6,7$ ã®å Žåã®ã¿èããã±ããïŒãããã $a_6=1, a_7=57$ ãšæ±ãããã (â»2) ãã, $p$ ãæ³ãšããŠäžåŒã®å€ã¯\r\n$$\r\n\\frac{1 \\cdot 6^{4 p+1}(4 p+7) !}{(4 p+1) !}+\\frac{57 \\cdot 6^{4 p}(4 p+7) !}{(4 p) !} \\equiv 6^5 \\times 7 !+57 \\times 6^4 \\times 7 !=\\mathbf{4 1 1 5 0 5 9 2 0}\r\n$$\r\nã«çããïŒ\r\n\r\n___\r\n\r\nã(â»1)ããã¯ããŒãªã³å±éãçšããå€åœ¢ã§ãïŒ \r\n\r\nã(â»2)ãæ¬è§£èª¬ã¯ããäžè¬çã« $b_{n,2}$ ãæ±ããŠããŸããïŒç§ã¯æçŽã« $b_{1,2}, \\cdots, b_{6,2}$ ãæ±ããŸããïŒ\r\n\r\nã(ãªãã±)ãéæ¬è³ªãªèª€æ€ããããŸãïŒèŠã€ããã«ãããšæãã®ã§ïŒæãªäººã¯æ¢ããŠã¿ãŠãã ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc139/editorial/2349/186"
},
{
"content": "æŽæ°è«çèå¯ã«ãã£ãŠããªãç°¡åã«è§£ãããšãã§ããŸã. è£é¡ãç¥ã£ãŠããã°600ç¹ãããã®é£æ床ã«æããããç¥ããŸãã.\r\n\r\nãŸãã¯æ¬è§£éã$$S=\\sum_{\\sum a_i=N}\\left(\\dfrac{N!}{\\prod a_i!}\\times \\prod a_i^i\\right)$$ãåŸã. ããã§æ¬¡ã®è£é¡ã䜿ã:\r\n\r\n**è£é¡.**\r\n\r\n$p$ãçŽ æ°ãšã, $\\displaystyle N=\\sum_{i=1}^m a_i$ ãšãã. ãã㧠$N, a_i$ ã¯éè² æŽæ°, $m$ ã¯æ£æŽæ°ã§ãã. ããã« $\\displaystyle a_i=\\sum_jb_{i, j}p^j,\\ N=\\sum_{j}n_jp^j$ ãš $p$ é²å±éãã. ãã®ãšã\r\n$$\\dfrac{N!}{\\prod a_i!}\\equiv\\begin{cases}0&(\\mathrm{if}\\ \\exists j, s.t. \\sum_ib_{i,j}\\neq n_j)\\\\\\\\\\displaystyle\\prod_j\\dfrac{n_j!}{\\prod_i b_{i, j}!}&(\\mathrm{otherwise})\\end{cases}\\pmod p$$\r\n(åè
ã®æ㯠$\\suma_i$ ã®$p$é²ã§ã®è¶³ãç®ã«ç¹°ãäžããããããšã, åŸè
ã¯ç¹°ãäžããããªããšãã§ãã)\r\n\r\n**蚌æ.**\r\n\r\n$\\displaystyle s_i=\\sum_{k=1}^ia_k$ ãšãããš, $P=\\displaystyle\\dfrac{N!}{\\prod a_i!}=\\prod_i {}\\_{s_i}\\mathrm{C}\\_{a_i}$ ãšãªã. ããã§Kummerã®å®çãçšããªãã $P\\equiv 0\\pmod p$ ãåŠãã§å Žååããã, Lucasã®å®çãçšããããšã§è£é¡ãåŸã.\r\n\r\n$N=4p+7$ ã $p$ é²æ°ã§ã®è¡šèšãªã®ã§ $a_i=pb_i+c_i$ ãš $p$ é²æ°ã§è¡šèšãããš\r\n\r\n$$\r\nS\\equiv\\sum_{\\sum b_i=4}\\sum_{\\sum c_j=7}\\dfrac{4!}{\\prod b_i!}\\cdot\\dfrac{7!}{\\prod c_j!}\\cdot\\prod c_j^j\\equiv6^4\\cdot\\dfrac{7!}{2}\\cdot\\sum_{i=1}^62^i\\equiv 6^4\\cdot7!\\cdot(2^6-1)\\equiv\\mathbf{411505920}\\pmod p\r\n$$\r\n\r\nãšãªã. ãã㧠$\\displaystyle\\sum_{j=1}^6c_j=7$ ãªãã° $(c_j)$ 㯠$(2,1,1,1,1,1)$ ã®äžŠã¹æ¿ãããããåŸãªãããšã䜿ã£ã.\r\n\r\nè£é¡ã«ã€ããŠäžèš. è¯ãçšããããLucasã®å®çãªã©ã¯ $n$ åã®äžãã $m$ åéžã¶æ¹æ³ã®åæ°ã $p$ ã§å²ã£ãäœããªã©ãèããŸãã, ãããæ¡åŒµãããªã $n$ åã®äžãã $m_1$ åéžã³, ãã®åŸ $m_2$ åéžã³... (å¥ã®ã¿ã€ãã³ã°ã§éžãã ãã®ã¯åºå¥ãã) ãšããæ¹æ³ã®åæ°ã $p$ ã§å²ã£ãäœããèããããªããšæããŸã. åŸã£ãŠãã®æ¡åŒµã¯èªç¶ãªãã®ãšèããããšãåºæ¥ãã§ããã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc139/editorial/2349/190"
}
] | ãçŽ æ° $p=10^9+7$ ã«ã€ããŠïŒ$N=4p+7$ ãšããŸãïŒ\
ã$1$ ä»¥äž $6$ 以äžã®æŽæ°ã®çµ $D=(d_1, d_2, \dots, d_N)$ ã«å¯ŸãïŒãã®äžã«å«ãŸãã $i$ ã®åæ°ã $a_i$ ãšãããšãïŒ$D$ ã®**ã¹ã³ã¢**ã
$$a_1\times a_2^2\times a_3^3\times a_4^4\times a_5^5\times a_6^6$$
ãšå®ããŸãïŒãã®ãšãïŒ$D$ ãšããŠãããã $6^N$ éããã¹ãŠã«ã€ããŠïŒã¹ã³ã¢ã®ç·åã $p$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ |
OMC138 (for beginners) | https://onlinemathcontest.com/contests/omc138 | https://onlinemathcontest.com/contests/omc138/tasks/3510 | A | OMC138(A) | 100 | 276 | 284 | [
{
"content": "ã$2022^{n}$ ã®äžäžæ¡ã¯ $2$, $4$, $8$, $6$, $2$, $ \\ldots$ ãšããåšæãç¹°ãè¿ã. ããŸèããã®ã¯ $n=\\underbrace{2022^{2022^{\\cdot^{\\cdot^{\\cdot^{2022}}}}}}_{2021åã®2022}$ ã§ãã, ãã® $n$ 㯠$4$ ã®åæ°ã§ãããã, æ±ããå€ã¯ $\\mathbf{6}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc138/editorial/3510"
}
] | ã以äžã®æ°ãåé²æ³è¡šèšãããšãïŒäžã®äœãæ±ããŠãã ããïŒ
$$\underbrace{2022^{2022^{\cdot^{\cdot^{\cdot^{2022}}}}}}_{2022åã®2022}$$
ããã ãïŒææ°ã¯å³äžã«ãã $2$ æ°ããé ã«èšç®ããŸãïŒ |
OMC138 (for beginners) | https://onlinemathcontest.com/contests/omc138 | https://onlinemathcontest.com/contests/omc138/tasks/4106 | B | OMC138(B) | 200 | 236 | 277 | [
{
"content": "ã$10$ ã§äœåå²ãåãããã¯çŽ å æ° $2,5$ ã®åæ°ã§æ±ºãŸã. $2$ ã¯ååå€ãã®ã§, æ±ããå€ã¯çŽ å æ° $5$ ã®åæ°ãšçãã. \r\n$$\\begin{aligned}\r\n\\prod_{k=1}^{100} k! &= 1! \\times 2! \\times \\ldots \\times 100! \\\\\\\\\r\n&= 1^{100} \\times 2^{99} \\times \\ldots \\times 100^1 \\\\\\\\\r\n&= \\prod_{n=1}^{100} n^{101 - n}\r\n\\end{aligned}$$ \r\nã§ãããã, $n$ ã $5$ ã®åæ°ã§ãããšã, ææ°ã®å€ã®ç·å㯠\r\n$$ 96+91+\\ldots+1=\\sum_{i=1}^{20} (101-5i)=970$$\r\nãåæ§ã«, $n$ ã $25$ ã®åæ°ã§ãããšã, ææ°ã®å€ã®ç·åã¯\r\n$$ 76+51+26+1=154$$\r\nããã£ãŠæ±ããå€ã¯ $970+154=\\mathbf{1124}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc138/editorial/4106"
}
] | ã$1! \times 2!\times 3!\times \cdots \times99!\times 100!$ 㯠$10$ ã§æ倧äœåå²ãåããŸããïŒ |
OMC138 (for beginners) | https://onlinemathcontest.com/contests/omc138 | https://onlinemathcontest.com/contests/omc138/tasks/1754 | C | OMC138(C) | 200 | 216 | 252 | [
{
"content": "ã$B$ ãã $AC$ ã«äžãããåç·ã®è¶³ã $H$ ãšãããšã, äžå¹³æ¹ã®å®çãã\r\n$$BA^2-AH^2=BH^2=BC^2-(5-AH)^2$$\r\nããã解ã㊠$AH=\\dfrac{7}{5},BH=\\dfrac{24}{5}$ ãåŸã. ããã«æ¹ã¹ãã®å®çãã\r\n$$\\frac{7}{5} \\times \\frac{18}{5} =AH\\times CH=BH\\times DH=\\dfrac{24}{5}DH$$\r\nãã£ãŠ $BD=BH+DH=\\dfrac{117}{20}$ ã§ãã, 解çãã¹ãå€ã¯ $\\textbf{137}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc138/editorial/1754"
}
] | ã$AB=AC=5,BC=6$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠïŒãã®å€æ¥åãš $B$ ãã $AC$ ã«ããããåç·ã®äº€ç¹ã $D ~ (\neq B)$ ãšãããšãïŒ$BD$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $m,n$ ã«ãã£ãŠ $\dfrac{m}{n}$ ãšè¡šãããŸãïŒ$m+n$ ã解çããŠãã ããïŒ |
OMC138 (for beginners) | https://onlinemathcontest.com/contests/omc138 | https://onlinemathcontest.com/contests/omc138/tasks/3171 | D | OMC138(D) | 200 | 224 | 252 | [
{
"content": "ãçžå ã»çžä¹å¹³åã®é¢ä¿ããïŒä»¥äžã®ããã«è©äŸ¡ã§ããïŒ\r\n$$\r\n\\frac{n^2}{5}+\\frac{200}{n}=\\frac{n^2}{5}+\\frac{100}{n}+\\frac{100}{n}\\geq 3 \\sqrt[3]{\\frac{n^2}{5}\\cdot \\frac{100}{n}\\cdot \\frac{100}{n}}=30\\sqrt[3]{2}\r\n$$\r\nçå·æç«æ¡ä»¶ã¯ $n=\\sqrt[3]{500}\\approx 7.9$ ã§ããïŒãã®å€ãå¢ã«äžåŒã¯å調ã«å€åããããšã確èªã§ããïŒåŸ®åãå®è¡ããŠãããïŒïŒãããã£ãŠïŒ$n=7,8$ ã§ã®å€ã®ã¿ç¢ºãããã°ããïŒ$n=8$ ã§ã® $189\\/5 =37.8$ ãããå°ããïŒãã£ãŠè§£çãã¹ãå€ã¯ $\\textbf{194}$ ã§ããïŒ \\\r\nãã¡ãªã¿ã«ïŒ $n=7$ ã§äžåŒã®å€ã¯$1343\\/35\\approx 38.4$ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc138/editorial/3171"
}
] | ã**æ£æŽæ°** $n$ ã«å¯ŸããŠïŒ$\dfrac{n^2}{5}+\dfrac{200}{n}$ ã®ãšãããæå°å€ã¯ïŒäºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC138 (for beginners) | https://onlinemathcontest.com/contests/omc138 | https://onlinemathcontest.com/contests/omc138/tasks/4295 | E | OMC138(E) | 300 | 125 | 145 | [
{
"content": "ãåè§åœ¢ $BCED$ ãå
æ¥åãæã€ããšã¯ïŒ$BC + DE = BD + CE$ ãšåå€ã§ããïŒåŸã£ãŠïŒäžè§åœ¢ $ADE$ ã®åšé·ã¯\r\n$$(AB - BD) + (AC - CE) + DE = AB + AC - (BD + CE - DE) = AB + AC - BC = 30$$\r\nã§ããïŒãŸãïŒäžè§åœ¢ $ABC$ ã®åšé·ã¯ $AB + BC + CA = 44$ ã§ããïŒäžè§åœ¢ $ABC$ ãšäžè§åœ¢ $AED$ ã¯çžäŒŒã§ããããïŒãã®çžäŒŒã®çžäŒŒæ¯ã¯ $22 : 15$ ã§ããïŒåŸã£ãŠ\r\n$$BD = AB - AD = 19 - 18\\times\\frac{15}{22} = \\frac{74}{11}$$\r\nãåŸãïŒç¹ã«è§£çãã¹ã㯠$\\bf{85}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc138/editorial/4295"
}
] | ã$AB=19,BC=7,CA=18$ ãªãäžè§åœ¢ $ABC$ ã®èŸº $AB$ äžã«ç¹ $D$ïŒèŸº $AC$ äžã«ç¹ $E$ ããããŸãïŒåè§åœ¢ $BCED$ ãå€æ¥åãšå
æ¥åããšãã«ãã€ãšãïŒ $BD$ ã®é·ãã¯äºãã«çŽ 㪠$a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC138 (for beginners) | https://onlinemathcontest.com/contests/omc138 | https://onlinemathcontest.com/contests/omc138/tasks/2721 | F | OMC138(F) | 400 | 98 | 159 | [
{
"content": "ãæ¡ä»¶ã«åãè¯ãæ°ã $10$ é²æ³è¡šèšã§ $n=\\overline{ a_1a_2a_3\\ldots a_{18} }$ ãšããïŒ$n$ 㯠$20$ ã®åæ°ã§ã¯ãªãã®ã§ $\\overline{ a_{17}a_{18} }$ ã$20$ã®åæ°ã§ã¯ãªãïŒãã㯠$a_{18}=2$ ãšåå€ã§ããïŒãŸãïŒ$n$ 㯠$22$ ã®åæ°ã§ãªãã®ã§ïŒ$11$ ã®åæ°å€å®æ³ãã $a_1+a_3+a_5+\\cdots +a_{17}\\neq a_2+a_4+a_6+\\cdots+a_{16}+2$ ã§ããïŒãã®åŒã®çå·ãæºãããã㪠$( a_1,a_2,\\ldots ,a_{17} )$ ã®çµã®åæ°ã¯ïŒ$2$ ã®åæ°ãåºå®ããŠæ°ãäžããããšã§ $\\displaystyle \\sum_{k=0}^8 {}\\_{9}\\mathrm{C}\\_{k+1}\\cdot {}\\_{8}\\mathrm{C}\\_{k}={}\\_{17}\\mathrm{C}\\_{8}$ åã§ãããšåããããïŒæ±ããåæ°ã¯ $2^{17}-{}\\_{17}\\mathrm{C}\\_{8}=\\textbf{106762}$ åã§ããïŒ\r\n\r\n----\r\n- $\\displaystyle \\sum_{k=0}^8 {}\\_{9}\\mathrm{C}\\_{k+1}\\cdot {}\\_{8}\\mathrm{C}\\_{k}={}\\_{17}\\mathrm{C}\\_{8}$ ã®å°åºã«ã€ããŠ\r\n\r\nã$\\displaystyle \\sum_{k=0}^8 {}\\_{9}\\mathrm{C}\\_{k+1}\\cdot {}\\_{8}\\mathrm{C}\\_{k}=\\displaystyle \\sum_{k=0}^8 {}\\_{9}\\mathrm{C}\\_{k+1}\\cdot {}\\_{8}\\mathrm{C}\\_{8-k}$ ãšå€åœ¢ããïŒ${}\\_{9}\\mathrm{C}\\_{k+1}$ 㯠$(1+x)^9$ ã«ããã $x^{k+1}$ ã®ä¿æ°ïŒ$\\_{8}\\mathrm{C}\\_{8-k}$ 㯠$(1+x)^8$ ã® $x^{8-k}$ ã®ä¿æ°ã§ããããïŒå€é
åŒã®ç³ã¿èŸŒã¿ãèããããšã§ $\\displaystyle \\sum_{k=0}^8 {}\\_{9}\\mathrm{C}\\_{k+1}\\cdot {}\\_{8}\\mathrm{C}\\_{8-k}$ 㯠$(1+x)^{17}$ ã® $x^9$ ã®ä¿æ°ã§ããããšããããïŒ\r\n\r\nãä»ã«ãïŒçµè·¯æ°ã«åž°çããŠå°åºããããšãå¯èœã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc138/editorial/2721"
}
] | ã$2022$ ã®ããã«ïŒåé²æ³è¡šèšã§åæ¡ã®æ°ã $0$ ãŸã㯠$2$ ã ãïŒäžæ¹ã®ã¿ã§ãããïŒãããªãæ£æŽæ°ã**è¯ãæ°**ãšãã¶ããšãšããŸãïŒ\
ã$20$ ã§ã $22$ ã§ãå²ãåããªã $10^{18}$ æªæºã®**è¯ãæ°**ã¯ããã€ãããŸããïŒ |
OMC137 | https://onlinemathcontest.com/contests/omc137 | https://onlinemathcontest.com/contests/omc137/tasks/4734 | A | OMC137(A) | 100 | 281 | 286 | [
{
"content": "ã$2$ ãš $4$ ãé£ãåããã®ãé€ãã°ããããïŒ$5!-2Ã4!=\\mathbf{72}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc137/editorial/4734"
}
] | ã$1, 2, 3, 4, 5$ ã® $5$ æ°ãå·Šå³äžåã«äžŠã¹ãæ¹æ³ã§ãã£ãŠïŒã©ã®é£ããã $2$ æ°ãäºãã«çŽ ã§ãããã®ã¯ããã€ãããŸããïŒãã ãïŒå·Šå³å転ã§äžèŽãããã®ãåºå¥ããŸãïŒ |
OMC137 | https://onlinemathcontest.com/contests/omc137 | https://onlinemathcontest.com/contests/omc137/tasks/1992 | B | OMC137(B) | 200 | 255 | 279 | [
{
"content": "ãçŽ å æ°å解 $10!=2^8\\times 3^4\\times 5^2\\times7$ ã«çæããã°, ããã¯æ£ã®çŽæ°ã $270$ åãã€ãã, $10!$ ãå¹³æ¹æ°ã§ãªãããšãšäœµããŠãããã®ç©ã¯ $(10!)^{135}$ ã§ãã. ãã£ãŠ, ããããã€æ£ã®çŽæ°ã®åæ°ã¯\r\n$$(8\\times 135+1)(4\\times 135+1)(2\\times 135+1)(1\\times 135+1)=\\textbf{21554162776}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc137/editorial/1992"
}
] | ã$10!$ ã®æ£ã®çŽæ°ã®ç·ç©ã«ã€ããŠïŒãã®æ£ã®çŽæ°ã®åæ°ãæ±ããŠãã ãã. |
OMC137 | https://onlinemathcontest.com/contests/omc137 | https://onlinemathcontest.com/contests/omc137/tasks/5565 | C | OMC137(C) | 300 | 239 | 252 | [
{
"content": "ãäžè¬ã«æ£æŽæ° $n$ ã«å¯ŸããŠä»¥äžã®ç·å\r\n$$ \\sum_{k=0}^{n-1} \\dfrac{{}\\_{n-1}\\mathrm{C}\\_{k}}{k+1} $$\r\nãæ±ãããïŒ\r\n\r\n----\r\n\r\n**解æ³1ïŒ**\r\näºé
ä¿æ°ã«é¢ãã次ã®äºã€ã®çåŒã«æ³šæããïŒ\r\n$$\\dfrac{{}\\_{n-1}\\mathrm{C}\\_{k}}{k+1}=\\dfrac{{}\\_{n}\\mathrm{C}\\_{k+1}}{n},\\quad\\sum_{k=0}^{n}{}\\_{n}\\mathrm{C}\\_{k}=2^n$$\r\næ±ããç·åã¯ïŒããããçšããŠæ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\sum_{k=0}^{n-1}\\dfrac{{}\\_{n-1}\\mathrm{C}\\_{k}}{k+1}\r\n=\\sum_{k=0}^{n-1}\\dfrac{{}\\_{n}\\mathrm{C}\\_{k+1}}{n}\r\n=\\left(\\frac{1}{n}\\sum_{k=0}^{n}{}\\_{n}\\mathrm{C}\\_{k}\\right)-\\frac{{}\\_{n}\\mathrm{C}\\_{0}}{n}\r\n=\\frac{2^n-1}{n}$$\r\n\r\n\r\n**解æ³2ïŒ**\r\nããŸïŒä»»æã®éè² æŽæ° $k$ ã«å¯ŸããŠ\r\n$$\\displaystyle\\frac{1}{k+1} = \\int_{0}^{1}x^{k}\\mathrm{d}x$$\r\nãæãç«ã€ããšã«æ³šæãïŒãããšäºé
å®çãçšããããšã§ïŒä»¥äžã®ããã«å€åœ¢ã§ããïŒ\r\n$$\\begin{aligned}\r\n\\sum_{k=0}^{n-1} \\dfrac{{}\\_{n-1}\\mathrm{C}\\_{k}}{k+1}\r\n& = \\sum_{k=0}^{n-1} \\Bigl({}\\_{n-1}\\mathrm{C}\\_{k} \\int_{0}^{1}x^{k}\\mathrm{d}x \\Bigr) \\\\\\\\\r\n& = \\int_{0}^{1} \\Bigl( \\sum_{k=0}^{n-1}{}\\_{n-1}\\mathrm{C}\\_{k}x^{k}\\mathrm{d}x \\Bigr) \\\\\\\\\r\n& = \\int_{0}^{1}(x+1)^{n-1}\\mathrm{d}x = \\dfrac{2^{n}-1}{n}\r\n\\end{aligned}$$\r\n\r\n----\r\n\r\nãç¹ã« $n=16$ ã®ãšã $\\dfrac{2^{16}-1}{16}=\\dfrac{65535}{16}$ ãšèšç®ã§ãïŒè§£çãã¹ãå€ã¯ $\\mathbf{65551}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc137/editorial/5565"
}
] | ã以äžã®ç·åã¯ïŒäºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ
$$ \dfrac{{}\_{15}\mathrm{C}\_{0}}{1} + \dfrac{{}\_{15}\mathrm{C}\_{1}}{2} + \cdots + \dfrac{{}\_{15}\mathrm{C}\_{14}}{15} + \dfrac{{}\_{15}\mathrm{C}\_{15}}{16} $$ |
OMC137 | https://onlinemathcontest.com/contests/omc137 | https://onlinemathcontest.com/contests/omc137/tasks/1814 | D | OMC137(D) | 300 | 149 | 201 | [
{
"content": "ãäžè§åœ¢ $HEB$ ã«ã€ããŠ, $â EHB$ ã®å€è§ã®äºçåç·ã $DH$ ã§ãããã,\r\n$$EH:BH=ED:BD=1:2$$\r\nãåãã. $EH=x$ ãšããã° $EB=ED= \\sqrt{3}x$ ã§, ãŸãäžè§åœ¢ $EHD$ ãš $EAC$ ã®çžäŒŒã«ãã\r\n$$EC= \\sqrt{3}EA= \\sqrt{3}Ã2 \\sqrt{3}x=6x$$\r\nãåŸãã®ã§ $HC=5x$ ã§ãã, $A, E, F, C$ ã®å
±åããæ¹ã¹ãã®å®çãã\r\n$$AHÃHF=EHÃHC=5x^2$$\r\nãæãç«ã€. äžæ¹, äžè§åœ¢ $AEH$ ã«äžå¹³æ¹ã®å®çãçšããããšã§$AH=\\sqrt{13}x$ ãåŸãã®ã§, $HF=\\frac{5}{\\sqrt{13}}x$ ãåŸã. ãããã£ãŠ $AH+HF= \\frac{18}{\\sqrt{13}} x=18$ ãã $x=\\sqrt{13}$ ã§ãããã $AB=3\\sqrt{3}x=3\\sqrt{39}=\\sqrt{\\textbf{351}}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc137/editorial/1814"
}
] | ã$H$ ãåå¿ãšããéè§äžè§åœ¢ $ABC$ ã«ãããŠïŒè§ $BHC$ ã®äºçåç·ãšèŸº $AB$ ã亀ãã£ãã®ã§ãã®äº€ç¹ã $D$ ãšãïŒ$CH$ ãšèŸº $AB$ ã®äº€ç¹ã $E$ ãšãããšïŒ
$$AD=DE=EB$$
ãæãç«ã¡ãŸããïŒ$AH$ ãš $BC$ ã®äº€ç¹ $F$ ã«ã€ããŠïŒ$AF=18$ ã§ãããšãïŒ$AB^2$ ãæ±ããŠãã ãã. |
OMC137 | https://onlinemathcontest.com/contests/omc137 | https://onlinemathcontest.com/contests/omc137/tasks/2716 | E | OMC137(E) | 500 | 49 | 151 | [
{
"content": "ãæ¡ä»¶ãã¿ããæ£æŽæ° $x$ ã¯æ£æŽæ° $a,b$ ãçšããŠ\r\n$$x=a(a+p)=b(b+2p)$$\r\nããªãã¡\r\n$$x=\\left( a+\\frac p2 \\right)^2 -\\frac{p^2}{4} = (b+p)^2-p^2$$\r\nãšè¡šã, ãããå€åœ¢ããããšã§\r\n$$\\left( a+b+\\frac{3p}{2} \\right) \\left( b-a+\\frac p2 \\right) = \\frac{3p^2}{4}$$\r\n$p=2$ ã¯æããã«äžé©ã§ãããã, 巊蟺ã®å æ°ã¯ããããåæŽæ°ã§ãã, ããåŸãå解ã¯ä»¥äžã®ããããã§ãã.\r\n$$\\dfrac{3p^2}{2}\\times\\dfrac{1}{2},\\quad \\dfrac{p^2}{2}\\times\\dfrac{3}{2}$$\r\nãåè
ã®ãšã, $a,b$ ã¯ç¢ºãã«æ£æŽæ°ã§ãã, 以äžã®ããã«èšç®ã§ãã.\r\n$$x=\\frac{(3p+1)(3p-1)(p+1)(p-1)}{16}$$\r\nãããç¹ã« $337$ ã®åæ°ã«ãªãå Žåãèããããšã§, $p$ ãšã㊠$(337\\times 4-1)\\/3 = 449$ ãæå°ãšããã.\\\r\nãåŸè
ã®ãšã, $a,b$ ã¯ç¢ºãã«æ£æŽæ°ã§ãã, 以äžã®ããã«å€åœ¢ã§ãã.\r\n$$x=\\frac{(p+3)(p-3)(p+1)(p-1)}{16}$$\r\nåæ§ã«ã㊠$p$ ãšã㊠$337\\times 2-1=673$ ãæå°ã§ãã.\\\r\nã以äžãã, æ±ããçã㯠$\\bf{449}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc137/editorial/2716"
},
{
"content": "ã解説ã«ã¡ãã£ãšããä»ã足ããããŠãããŸãïŒ\r\n\r\n---\r\n\r\n1. ã(解説 7 è¡ç®) ã $p=2$ ã¯æããã«äžé©ããšãããŸããïŒãªãã§ããããïŒ\r\n<details>\r\n<summary>çç±<\\/summary>\r\nã解説㮠$a,b$ ãåŒãç¶ããš\r\n$$(a+b+3)(b-a+1)=3$$\r\nãšãªããŸãïŒ$a,b$ ã¯æ£ã®æŽæ°ãªã®ã§ $a+b+3$ ãš $b-a+1$ ã¯ãšãã«æŽæ°ã§ããïŒ$a+b+3$ 㯠$3$ ãã倧ããããäžé©ãšãªããŸãïŒ \r\nãïŒ $p=2$ ã ãšåé¡ã®çãã $2$ ã«ãªã£ãŠå€ïŒãšããã¡ã¿èªã¿ãå¯èœã§ãã...ïŒ\r\n<\\/details>\r\n\r\n2. ã(解説 8 è¡ç®)ãããåŸãå解ããªãããã ããªã®ã§ããããïŒ\r\n<details>\r\n<summary>çç±<\\/summary>\r\nãäºã€ã®å æ°ãåæŽæ°ãªã®ã¯ $p\\neq 2$ ããåãããŸãïŒåæŽæ°ãšã¯ $2$ ãæããŠå¥æ°ã«ãªãæ°ã®ããšã§ãïŒïŒ\\\r\nãããã«çæããŠïŒ$\\dfrac{3p^2}{4}$ ã®å解ãæžãåºããŸãïŒãããš\r\n$$\\left(\\frac{3p^2}{2}, \\frac{1}{2} \\right),ã\\left(\\frac{p^2}{2}, \\frac{3}{2}\\right),ã\\left(\\frac{3p}{2}, \\frac{p}{2}\\right)$$\r\nã® $3$ éããèŠã€ãããŸãïŒãããïŒ$a+b+\\dfrac{3p}{2}$ 㯠$\\dfrac{3p}{2}$ ãã倧ããããïŒã©ã¡ãã $\\dfrac{3p}{2}$ 以äžã§ãã 3 ã€ç®ã®å解ã¯äžé©ã ãšåãããŸãïŒ\r\n<\\/details>\r\n\r\n3. ã(解説 11 è¡ç®ã»ãªãã±)ã$x$ ã $2022$ ã®åæ°ã§ããããã«ïŒ$x$ 㯠$337$ ã®åæ°ã§ããããšãå¿
èŠã§ãïŒãããå®ã¯ïŒããã¯ååã§ããããŸãïŒããã«ïŒãã®ãšã $x$ 㯠$20220$ ã®åæ°ã«ããªããŸãïŒïŒãªãã§ããããïŒ\r\n<details>\r\n<summary>çç±<\\/summary>\r\nãå¥æ° $n$ ã«ã€ããŠïŒ$(n+1)(n-1)$ 㯠$8$ ã®åæ°ãšãªããŸãïŒããã¯ïŒ$n+1$ ãš $n-1$ ã¯äž¡æ¹å¶æ°ã§ïŒãããçæ¹ã¯ $4$ ã®åæ°ã§ããããã§ãïŒã㟠$p, 3p$ ã¯å¥æ°ãªã®ã§ïŒåå㯠$8\\times 8=64$ ã®åæ°ã§ãïŒã€ãŸãïŒ$x$ 㯠$4$ ã®åæ°ã§ãïŒ \r\nãäžæ¹ïŒ$x$ ã $337$ ã®åæ°ãªã®ã§ïŒ$p=3$ ã¯é©ããŸããïŒã€ãŸã $p$ 㯠$3$ ã®åæ°ã§ã¯ãããŸããïŒãã£ãŠïŒ$p+1, p-1$ ã®ãã¡ã©ã¡ãããå¿
ã $3$ ã®åæ°ã«ãªãã®ã§ïŒåå㯠$3$ ã®åæ°ã«ãªããŸãïŒåæ¯ã® $16$ 㯠$3$ ã®åæ°ã§ãªãããïŒ$x$ 㯠$3$ ã®åæ°ã§ãïŒ \r\nã以äžããïŒ$x$ ã¯å°ãªããšã $337\\times 4\\times 3=4044$ ã®åæ°ã«ãªãããšãåãããŸããïŒ \r\nã$x$ ã $5$ ã®åæ°ã«ãªãããšã瀺ãã°ïŒäžãšåãã㊠$20220$ ã®åæ°ã«ãªãããšã瀺ããŸãïŒããã§ã¯å²æããŸããïŒããŸãé£ãããªãã®ã§èããŠã¿ãŠãã ããïŒãåŸè
ã®å Žåã(解説äžãã 4 è¡ç®) ã«é¢ããŠãïŒåæ§ã®è°è«ãããããšãã§ããŸãïŒ\r\n<\\/details>",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc137/editorial/2716/178"
}
] | ãéè² æŽæ° $n$ ã«å¯ŸãïŒå·®ã $n$ ã§ãã $2$ ã€ã®æ£æŽæ°ã®ç©ãšããŠè¡šããæ°ã $n$ **çæ°**ãšãã¶ããšã«ããŸãïŒäŸãã° $15=3\times 5=1\times 15$ ããïŒ$15$ 㯠$2$ çæ°ã〠$14$ çæ°ã§ãïŒ\
ããã®ãšãïŒä»¥äžã®æ¡ä»¶ãã¿ããæå°ã®çŽ æ° $p$ ãæ±ããŠãã ããïŒ
- $p$ çæ°ã〠$2p$ çæ°ã§ããïŒããã« $2022$ ã®åæ°ã§ããæ£æŽæ°ãååšããïŒ |
OMC137 | https://onlinemathcontest.com/contests/omc137 | https://onlinemathcontest.com/contests/omc137/tasks/2254 | F | OMC137(F) | 600 | 8 | 76 | [
{
"content": "ãåž $(n+2)$ è§åœ¢ã«äºãã«äº€ãããªããã察è§ç·ã $n-1$ æ¬åŒã $n$ åã®äžè§åœ¢ã«åå²ããå Žåã®æ°ã¯ïŒã«ã¿ã©ã³æ°\r\n$$C_n=\\dfrac{(2n)!}{n!(n+1)!}$$\r\nã§ããããšãç¥ãããŠããïŒ\\\r\nãããããïŒæ£åè§åœ¢ã«äºãã«äº€ãããªããã察è§ç·ã $7$ æ¬åŒã $8$ åã®äžè§åœ¢ã«åå²ããæ¹æ³ã¯ $C_8=1430$ éãããïŒ\r\nãã®åå² ((a)ãšãã) ãã察è§ç·ã $2$ æ¬åé€ããŠã§ããåå² (ååå²ã«ã€ã $21$ éã) ã¯æ¬¡ã® $2$ çš®ã«åé¡ã§ããïŒ\r\n\r\n- åå²(b)ïŒ$4$ åã®äžè§åœ¢ãš $2$ åã®åè§åœ¢ãžã®åå² (åã®åå²)\r\n- åå²(c)ïŒ$5$ åã®äžè§åœ¢ãš $1$ åã®äºè§åœ¢ãžã®åå²\r\n\r\nåŸè¿°ããéã, åå²(c)ã¯äºè§åœ¢ã®åœ¢ç¶ã§å ŽååãããŠæ°ãããš $2002$ éãã§ããïŒå¯Ÿè§ç·ãåé€ããåã®åå²(a)ã¯ïŒååå²(b)ã«å¯ŸããŠã¯ $4$ éãïŒååå²(c)ã«å¯ŸããŠã¯ $5$ éãèããããããšããïŒæ±ããå€ã¯\r\n$$\\dfrac{1430\\times 21-2002\\times 5}{4}=\\bm{5005}$$\r\n\r\n### åå²(c)ã®æ°ãäžã\r\n\r\n次ã®ããã«å ŽååãããŠæ°ããããšãã§ãïŒåèš $2002$ éãã§ããïŒ\r\n\r\n- $[5,0,0,0,0]$ ã®å ŽåïŒ$10\\times C_5=420$ éã\r\n- $[4,1,0,0,0]$ ã®å ŽåïŒ$10\\times {4 \\choose 1}\\times C_4=560$ éã\r\n- $[3,2,0,0,0]$ ã®å ŽåïŒ$10\\times {4 \\choose 1}\\times C_3\\times C_2=400$ éã\r\n- $[3,1,1,0,0]$ ã®å ŽåïŒ$10\\times {4 \\choose 2}\\times C_3=300$ éã\r\n- $[2,2,1,0,0]$ ã®å ŽåïŒ$10\\times {4 \\choose 2}\\times C_2^2=240$ éã\r\n- $[2,1,1,1,0]$ ã®å ŽåïŒ$10\\times {4 \\choose 1}\\times C_2=80$ éã\r\n- $[1,1,1,1,1]$ ã®å ŽåïŒ$2$ éã\r\n\r\nãã ã $[a,b,c,d,e]$ ã¯æ£åè§åœ¢ã«ãããŠé ç¹ãäœåé£ã°ããŠäºè§åœ¢ã®èŸºãçµã°ããŠããããïŒé çªãç¡èŠããŠäžŠã¹ããã®ã§ããïŒ\r\näŸãã°äžå³ã®ããã«äºè§åœ¢ãã§ããåå²ã¯ $[2,2,1,0,0]$ ã«åé¡ãããïŒ\r\n![figure 1](\\/images\\/y8rmffMaEFvWV0pNWv9oGT7YpzOKZJ2CG6Wy1Gpl)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc137/editorial/2254"
},
{
"content": "ãäžè§åœ¢åå²ã®è£è¶³ã§ã\r\n\r\n---\r\n\r\nãåž $n(\\geq 3)$ è§åœ¢ã®äžè§åœ¢åå²ã $a_n$ åãããšããïŒãŸã $a_2=1$ ãšããïŒ\r\nåž $(n+1)$ è§åœ¢ã®ãã蟺ã«çç®ãïŒãã®èŸºãå«ãäžè§åœ¢ã®åœ¢ã§å ŽååãããŠèããã°\r\n$$a_{n+1}=a_{2}a_{n}+a_{3}a_{n-1}+\\cdots+a_{n}a_{2}$$\r\nããããïŒæ¬è§£èª¬ã®ããã«äžè¬é
ãæ±ããããšãã§ãããïŒæ¬åã§å¿
èŠãªç¯å²ã®å€ã¯æ¬¡ã®ããã«æ¯èŒç容æã«èšç®ã§ããïŒ\r\n$$\\begin{aligned}\r\na_3&=1^2=1,\\\\\\\\\r\na_4&=2(1\\cdot 1)=2,\\\\\\\\\r\na_5&=2(1\\cdot 2)+1^2=5,\\\\\\\\\r\na_6&=2(1\\cdot 5+1\\cdot 2)=14,\\\\\\\\\r\na_7&=2(1\\cdot 14+1\\cdot 5)+2^2=42,\\\\\\\\\r\na_8&=2(1\\cdot 42+1\\cdot 14+2\\cdot 5)=132,\\\\\\\\\r\na_9&=2(1\\cdot 132+1\\cdot 42+2\\cdot 14)+5^2=429,\\\\\\\\\r\na_{10}&=2(1\\cdot 429+1\\cdot 132+2\\cdot 42+5\\cdot 14)=1430.\\\\\\\\\r\n\\end{aligned}$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc137/editorial/2254/185"
}
] | ãæ£åè§åœ¢ã«ãããŠïŒäºãã«äº€ãããªãããã«ïŒç«¯ç¹ã¯å
±æããŠãããïŒ$5$ æ¬ã®å¯Ÿè§ç·ãåŒãïŒ$4$ åã®äžè§åœ¢ãš $2$ åã®åè§åœ¢ã«åå²ããæ¹æ³ã¯äœéããããŸããïŒ\
ããã ãïŒãã¹ãŠã®é ç¹ã¯åºå¥ããŠèããŸãïŒããªãã¡ïŒå転ãå転ã«ãã£ãŠäžèŽãããã®ãåºå¥ããŠæ°ããŸãïŒ |
OMC136 (for beginners) | https://onlinemathcontest.com/contests/omc136 | https://onlinemathcontest.com/contests/omc136/tasks/3295 | A | OMC136(A) | 100 | 192 | 253 | [
{
"content": "ãé·æ¹åœ¢ã®çžŠãšæšªã®é·ãã $a,b$ ãšããïŒ$ab=1000$ ããïŒçžå ã»çžä¹å¹³åã®é¢ä¿ãã\r\n$$2(a+b)\\geq4\\sqrt{ab}=40\\sqrt{10}\\approx 126.5$$\r\nãªã®ã§ïŒããããåšé·ã®æå°ã®æŽæ°å€ã¯ $\\textbf{127}$ ã§ããïŒãªãïŒãã®ãããªé·æ¹åœ¢ã¯ç¢ºãã«ååšããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc136/editorial/3295"
}
] | ãé¢ç©ã $1000$ ã§ããé·æ¹åœ¢ã«ã€ããŠïŒåšé·ã®ãšãåŸãæå°ã®æŽæ°å€ãæ±ããŠãã ããïŒ |
OMC136 (for beginners) | https://onlinemathcontest.com/contests/omc136 | https://onlinemathcontest.com/contests/omc136/tasks/2334 | B | OMC136(B) | 200 | 212 | 230 | [
{
"content": "ãæ£æŽæ° $a,b$ ã«ãã£ãŠïŒäžèŸºã®é·ãã $20-a\\ (a\\lt 20),20,20+b$ ãšè¡šãã°ïŒäžè§äžçåŒããå¿
èŠååæ¡ä»¶ã¯\r\n$$ 20+b \\lt 20+(20-a) \\iff (2\\leq)a+b\\lt 20$$\r\nãããã£ãŠïŒæ±ããå Žåã®æ°ã¯ $1+2+\\cdots+18=\\textbf{171}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc136/editorial/2334"
}
] | ãäžèŸºã®é·ããçžç°ãªãæ£æŽæ°å€ã§è¡šãããäžè§åœ¢ã®ãã¡ïŒ$2$ çªç®ã«é·ã蟺ã®é·ãã $20$ ã§ãããã®ã¯äœéããããŸããïŒãã ãïŒåå㪠$2$ ã€ã®äžè§åœ¢ã¯ãã¹ãŠåããã®ã§ãããšã¿ãªããŸãïŒ |
OMC136 (for beginners) | https://onlinemathcontest.com/contests/omc136 | https://onlinemathcontest.com/contests/omc136/tasks/3199 | C | OMC136(C) | 200 | 185 | 231 | [
{
"content": "**ç¥è§£**\\\r\nã$100\\times100\\times1$ ã®çŽæ¹äœã®è¡šé¢ã®ãã¡ïŒ$2$ ã€ã® $100\\times100$ ã®é¢ã«ã¯ $3$ ãŸã㯠$4$ ãé
眮ãïŒæ®ã $4$ ã€ã®é¢ã®ãã¡ $2$ ã€ã®ïŒå¯Ÿé¢ããŠããïŒé¢ã«ã¯ $6$ ãïŒæ®ãã® $2$ ã€ã®é¢ã«ã¯ $5$ ãé
眮ããããšãã§ããïŒãã®é
眮ã®æ¹æ³ã¯èªæãªäžçã§ããããïŒçã㯠$(3+4)\\times 100+6\\times2\\times 100+5\\times2\\times 100=\\mathbf{72200}$ ã§ããïŒ\r\n\r\n**解説**\\\r\nã以äžïŒ$i,j$ 㯠$1$ ä»¥äž $100$ 以äžã®ä»»æã®æŽæ°ãè¡šãïŒ\\\r\nã$1$ 蟺 $1$ ã®ãããã $10000$ åã $xyz$ 空éã«ãããé å $0\\leq x\\leq 100,0\\leq y\\leq 100, 0\\leq z\\leq 1$ ã®å
éšã«äžŠã¹ããšããŠããïŒç¹ $(i-0.5,j-0.5,0.5)$ ãå
éšã«å«ããããªããããã $(i,j)$ ã§è¡šãïŒ$(i,j)$ ã® $x$ 軞æ£ã®æ¹åã®é¢ã®ç®ã $x^+(i,j)$ ãªã©ãšè¡šãããšã«ããïŒãŸã $s(x)$ 㯠$x$ ãå¥æ°ã®ãšã $-$ïŒ$x$ ãå¶æ°ã®ãšã $+$ ãè¡šãïŒ\r\nãã®ãšã $z^-(i,j)+z^+(i,j)=7$ ã§ããïŒãŸã $x^-(1,j)=x^{s(i)}(i,j),\\ y^-(i,1)=y^{s(j)}(i,j)$ ã«æ³šæããã° $x^-(1,j)=x^+(100,j)\\neq y^-(i,1)=y^+(i,100)$ ãåŸãããïŒãããããæ±ããå€ $S$ ã«ã€ããŠæ¬¡ãæãç«ã€ããšããããïŒ\r\n$$S\\leq 7\\times 100^2+6\\times 2\\times 100+5\\times 2\\times 100=72200$$\r\néã« $x^{s(i)}(i,j)=6,y^{s(j)}(i,j)=5$ ãã¿ããããã«äžŠã¹ãã°çå·ãæç«ãïŒå®éãã®ãããªäžŠã¹æ¹ã¯å¯èœã§ããïŒãã£ãŠè§£çãã¹ãå€ã¯ $\\bf{72200}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc136/editorial/3199"
}
] | ãäžèŸºã®é·ãã $1$ ã§ããäžè¬çãªå
é¢äœã®ããããã $10000$ åããïŒãããã $100\times100\times1$ ã®çŽæ¹äœç¶ã«ãã£ã€ããŠäžŠã¹ãŸãïŒããã§ïŒäºãã«æ¥è§ŠããŠãã $2$ ã€ã®é¢ã«ã€ããŠïŒããããã®ç®ãçãããªãããã«ããŸãïŒãã®ãšãïŒè¡šé¢ïŒä»ã®é¢ãšæ¥è§ŠããŠããªãé¢ïŒå
šäœã«ã€ããŠïŒãã®ç®ã®åã®æ倧å€ãæ±ããŠãã ããïŒ\
ããã ãïŒäžè¬çãªå
é¢äœã®ããããã«ãããŠïŒ$6$ ã€ã®é¢ã®ç®ã¯ãããã $1,2,3,4,5,6$ ã§ããïŒå察åŽã«äœçœ®ãã $2$ ã€ã®é¢ã®ç®ã®å㯠$7$ ã§ãããšããŸãïŒ |
OMC136 (for beginners) | https://onlinemathcontest.com/contests/omc136 | https://onlinemathcontest.com/contests/omc136/tasks/3277 | D | OMC136(D) | 300 | 76 | 146 | [
{
"content": "ã$N$ ã $k$ é²æ°è¡šèšããéã«æ«å°Ÿã« $0$ ãã¡ããã© $(n-k+1)$ å䞊ã¶ããšã¯ïŒ$N$ ã $k$ ã§æ倧 $(n-k+1)$ åå²ãåãããšèšãæããããïŒåäžã® $N$ ã«ã€ããŠã¯æ¡ä»¶ãã¿ãã $n$ ã¯é«ã
$1$ åã§ããããšã«æ³šæããïŒ\\\r\nã$N$ ã $2$ ã§å²ãåããæ倧ã®åæ° $v_2(N)$ ã¯ïŒ$k=2$ ãèããã° $v_2(N)=n-1$ïŒäžæ¹ã§ïŒ$n\\geq4$ ã®ãšã $k=4$ ãèããã° $v_2(N)=2(n-3)$ ãŸã㯠$v_2(N)=2(n-3)+1$ ã§ããïŒããããäžèŽããããšããïŒ$n\\leq 5$ ã«ã€ããŠèããã°ååãšãããïŒä»¥äž $m_i$ 㧠$i$ ãšäºãã«çŽ ãªæŽæ°ãè¡šãïŒ\r\n- $n=2$ ã§æ¡ä»¶ãæºããã®ã¯ïŒ$N=2\\times m_2$ ãšè¡šããã $2500$ åïŒ\r\n- $n=3$ ã§æ¡ä»¶ãæºããã®ã¯ïŒ$N=2^2\\times3\\times m_6$ ãšè¡šããã $278$ åïŒ\r\n- $n=4$ ã§æ¡ä»¶ãæºããã®ã¯ïŒ$N=2^3\\times3^2\\times m_6$ ãšè¡šããã $46$ åïŒ\r\n- $n=5$ ã§æ¡ä»¶ãæºããã®ã¯ïŒ$N=2^4\\times3^3\\times5\\times m_{30}$ ãšè¡šããã $1$ åïŒ\r\n\r\nã以äžãåèšããã°ïŒè§£çãã¹ãå€ã¯ $\\bf{2825}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc136/editorial/3277"
}
] | ã次ã®æ¡ä»¶ãæºãã $2$ 以äžã®æŽæ° $n$ ãååšãããããªïŒ$10000$ 以äžã®æ£æŽæ° $N$ ã¯äœåãããŸããïŒ
- $2\leq k \leq n$ ãªãä»»æã®æŽæ° $k$ ã«ã€ããŠïŒ$N$ ã $k$ é²æ³ã§è¡šèšãããšæ«å°Ÿã« $0$ ãã¡ããã© $(n-k+1)$ å䞊ã¶ïŒ |
OMC136 (for beginners) | https://onlinemathcontest.com/contests/omc136 | https://onlinemathcontest.com/contests/omc136/tasks/3281 | E | OMC136(E) | 300 | 55 | 86 | [
{
"content": "ã$AB$ ã®äžç¹ã $M$ïŒ$AC$ ã®äžç¹ã $N$ ãšãããšïŒäžç·å®çãã\r\n$$\\begin{aligned}4AP^2+3BP^2+CP^2&=3(AP^2+BP^2)+(AP^2+CP^2)\\\\\\\\\r\n&=6(MP^2+AM^2)+2(NP^2+AN^2)\\\\\\\\\r\n&=2(3MP^2+NP^2)+\\frac{3}{2}AB^2+\\frac{1}{2}AC^2\r\n\\end{aligned}$$\r\nãããã«ïŒ$MN$ ã®äžç¹ã $K$ïŒ$MK$ ã®äžç¹ã $L$ ãšãããšïŒäžç·å®çãç¹°ãè¿ãçšããŠ\r\n$$\\begin{aligned}3MP^2+NP^2&=2MP^2+2(KP^2+MK^2)\\\\\\\\\r\n&=4(LP^2+ML^2)+2MK^2\\\\\\\\\r\n&=4LP^2+\\frac{3}{16}BC^2\r\n\\end{aligned}$$\r\nã§ããããïŒæ¬¡ãåŸãããïŒ\r\n$$4AP^2+3BP^2+CP^2=8LP^2+\\frac{3}{8}BC^2+\\frac{1}{2}CA^2+\\frac{3}{2}AB^2=8LP^2+\\frac{145}{2}$$\r\nããããæ¡ä»¶ã¯ $LP^2\\leq\\dfrac{55}{16}$ ã§ããããïŒç¹ $P$ ãååšãããé å㯠$L$ ãäžå¿ãšããååŸ $\\dfrac{\\sqrt{55}}{4}$ ã®ååšããã³å
éšïŒãã£ãŠ $S=\\dfrac{55}{16}\\pi$ ã§ããïŒç¹ã«è§£çããå€ã¯ $\\bf{880}$ïŒ\r\n\r\nããªãïŒ$3MP^2+NP^2$ ã«ãããåŒå€åœ¢ã¯ Stewart ã®å®çãçšããããšãå¯èœã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc136/editorial/3281"
}
] | ã$BC=4,CA=5,AB=6$ ãªãäžè§åœ¢ $ABC$ ããããŸãïŒæ¬¡ãã¿ããç¹ $P$ ãååšãããé åã®é¢ç© $S$ ãæ±ããŠãã ããïŒ
$$4AP^2+3BP^2+CP^2\leq100$$
ããã ã $S$ ã¯äºãã«çŽ ãªæ£æŽæ° $p,q$ ãçšã㊠$S=\dfrac{p}{q}\pi$ ãšè¡šããã®ã§ïŒ**ç©** $pq$ ã解çããŠãã ããïŒ |
OMC136 (for beginners) | https://onlinemathcontest.com/contests/omc136 | https://onlinemathcontest.com/contests/omc136/tasks/2348 | F | OMC136(F) | 400 | 24 | 71 | [
{
"content": "ãæ£ $100$ è§åœ¢ã®é ç¹ããäžã€ãéžãã§ã§ããäžè§åœ¢ã®å
è§ã¯ïŒãã¹ãŠ $180^\\circ\\/100$ ã®æŽæ°åã§ããããšã«çæããïŒ\\\r\nãããŸïŒå¯Ÿç§°æ§ãã $A_1$ãæ倧ã®å
è§ $k\\times 180^\\circ\\/100$ (ã®äžã€) ããšããããªäžè§åœ¢ãèãããšïŒæ®ãã®å
è§ã«ã€ããŠ\r\n\r\n- $k=50,\\cdots,98$ ã®ãšãïŒæ®ãã®äºã€ã®å
è§ã®çµã¯ $99-k$ éãããïŒ\r\n- $k=34,\\cdots,49$ ã®ãšãïŒæ®ãã®äºã€ã®å
è§ã®çµã¯ $3k-99$ éãããïŒ\r\n- $k\\leq 33$ ã®ãšãïŒ$A_1$ ã¯æ倧ã®å
è§ããšãåŸãªãïŒ\r\n\r\nããã§ïŒ$k=34,\\cdots,49$ ã®ãšãïŒæ倧ã®å
è§ $k\\times 180^\\circ\\/100$ ãäºã€ååšããå¯èœæ§ã«æ³šæããŠæ°ãäžããã°ïŒ\r\n$$\\sum_{k=50}^{98} (99-k)\\times k\\times180^\\circ+\\sum_{k= 34}^{49}(3k-99)\\times k\\times180^\\circ -\\sum_{k= 34}^{49}k\\times180^\\circ=\\textbf{17664840}^\\circ$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc136/editorial/2348"
}
] | ãæ£ $100$ è§åœ¢ $A_1A_2\cdots A_{100}$ ã® $3$ é ç¹ãçµãã§ã§ãããã¹ãŠã®äžè§åœ¢ã«å¯ŸããŠïŒ$3$ ã€ã®å
è§ã®ãã¡æ倧ã®ãã®ã®ç·åã床æ°æ³ã§æ±ããŠãã ããïŒãã ãïŒæ·»ãåã®é åºãéãã ãã®äžè§åœ¢ã¯åºå¥ããïŒæ倧ã®å
è§ãè€æ°ããå Žåã¯ãã®ãã¡é©åœãªäžã€ãæ倧ã®ãã®ãšããŸãïŒ |
OMC135 | https://onlinemathcontest.com/contests/omc135 | https://onlinemathcontest.com/contests/omc135/tasks/2301 | A | OMC135(A) | 100 | 246 | 248 | [
{
"content": "ã$2$ æ°ã $m,m+1000$ ãšããã°ïŒäºé€æ³ã«ãã $\\gcd (m,m+1000)=\\gcd (1000,m)$ ã§ããïŒéã«é©åœã« $m$ ãéžã¹ã°æ倧å
¬çŽæ°ãšã㊠$1000$ ã®ä»»æã®æ£ã®çŽæ°ãå®çŸå¯èœã§ããïŒ$1000=2^3\\times 5^3$ ã®æ£ã®çŽæ°ã¯ $\\textbf{16}$ åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc135/editorial/2301"
}
] | ãå·®ã $1000$ ã§ãã $2$ ã€ã®æ£æŽæ°ã®æ倧å
¬çŽæ°ãšããŠããããå€ã¯ããã€ãããŸããïŒ |
OMC135 | https://onlinemathcontest.com/contests/omc135 | https://onlinemathcontest.com/contests/omc135/tasks/3161 | B | OMC135(B) | 200 | 224 | 237 | [
{
"content": "ãç·åãæ£åäºé¢äœã®é¢äžã«ãªããã°è¯ãïŒ$2$ ã€ã®é ç¹ãçµã¶æ¹æ³ã¯ ${}\\_{20}\\mathrm{C}\\_{2}=190$ éãã§ããïŒæ£åäºé¢äœã®èŸºã®æ°ã¯ $30$ïŒåé¢ã«é·ã $\\phi$ ã®å¯Ÿè§ç·ã $5$ æ¬ãã€åŒããããïŒè§£ç㯠$190-30-5\\times 12=\\bf{100}$ ãšãªã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc135/editorial/3161"
}
] | ã äžèŸºã $1$ ã§ããæ£äºè§åœ¢ã®å¯Ÿè§ç·ã®é·ãã $\phi$ ãšããŸãïŒäžèŸºã $1$ ã®æ£åäºé¢äœã® $2$ é ç¹ãçµã¶ç·åã§ãã£ãŠïŒãã®é·ãã $\phi$ ãã倧ãããã®ã¯äœæ¬ãããŸããïŒ\
ããã ãïŒæ£åäºé¢äœã¯æ£äºè§åœ¢ãåé¢ã«ãã¡ãŸãïŒ |
OMC135 | https://onlinemathcontest.com/contests/omc135 | https://onlinemathcontest.com/contests/omc135/tasks/2504 | C | OMC135(C) | 400 | 144 | 199 | [
{
"content": "ãããæ¢çŽåæ° $\\dfrac{p}{q}$ ãæéå°æ°ã§ãããšãïŒ$q$ 㯠$2,5$ 以å€ã®çŽ å æ°ãæããªãããšã«æ³šæãã.\\\r\nã$m,n$ ã®çŽ å æ°å解ã«çŸãã $5$ 以å€ã®å¥çŽ æ°ãïŒé©åœã« $p_1,p_2,\\cdots$ ãšããïŒãã®ãšã\r\n$$m=5^s p_1^{a_1}p_2^{a_2}\\cdots,\\quad n=5^t p_1^{b_1} p_2^{b_2}\\cdots$$\r\nãšè¡šãã°ïŒ$s,t$ ã®å°ãªããšãäžæ¹ã¯ $0$ ã§ããïŒããã§ïŒ$\\dfrac{1}{m}+\\dfrac{1}{n}=\\dfrac{m+n}{mn}$ ãæéå°æ°ãšãªãã«ã¯\r\n$$(m+n\\ ã\\ p_i\\ ã§å²ãåããåæ°)\\geq (mn\\ ã\\ p_i\\ ã§å²ãåããåæ°)$$\r\nããã¹ãŠã® $i$ ã«å¯ŸããŠæãç«ãŠã°ããïŒ$a_i\\neq b_i$ ã®ãšãïŒäžåŒã¯\r\n$$\\min \\\\{a_i,b_i\\\\}\\geq a_i +b_i$$\r\nãšãªãïŒããã¯æããã«æãç«ããªãïŒãããã£ãŠïŒä»»æã® $i$ ã«ã€ã㊠$a_i=b_i$ ã§ããããïŒ$m\\lt n\\lt 1000m$ ãã $s=0$ ããã³ $t=1,2,3,4$ ã§ããïŒãã®ãšã,\r\n$$\\dfrac{1}{m}+\\dfrac{1}{n}=\\dfrac{m+n}{mn}=\\dfrac{(5^t+1)m}{5^tm^2}=\\dfrac{5^t+1}{5^t}\\times\\dfrac{1}{m}$$\r\nãããã£ãŠïŒ$m$ ã $5^t+1$ ã®çŽæ°ã§ããã°ããïŒ$t=1,2,3,4$ ã«å¯ŸãïŒãããã\r\n$$5^1+1=2\\times3,\\quad 5^2+1=2\\times13,\\quad 5^3+1=2\\times3^2\\times 7,\\quad 5^4+1=2\\times313$$\r\nã§ããããïŒ è§£ç㯠$13+(1+3+3^2)\\times (1+7)+313=\\textbf{430}$ ã§ããïŒ$3$ ã®éè€ã«æ³šæãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc135/editorial/2504"
}
] | ãæ£ã®**å¥æ°**ã®çµ $(m,n)$ ã以äžã®æ¡ä»¶ããã¹ãŠã¿ãããŸãïŒ
- $m\lt n\lt 1000m$ïŒ
- $m$ ãš $n$ ã®å°ãªããšãäžæ¹ã¯ $5$ ã§å²ãåããªãïŒ
- $\dfrac{1}{m}+\dfrac{1}{n}$ ã¯ïŒåé²æ³è¡šèšã§ïŒæéå°æ°ãšããŠè¡šçŸã§ããïŒ
ãã®ãšãïŒ$m$ ãšããŠããããå€ã®ç·åãæ±ããŠãã ããïŒ |