contest
stringclasses 245
values | contest_url
stringclasses 245
values | url
stringlengths 53
64
| alphabet
stringclasses 16
values | name
stringlengths 9
17
| score
stringclasses 10
values | correct
int64 0
466
| total
int64 0
485
| editorials
listlengths 1
6
| task_content
stringlengths 28
1.49k
|
---|---|---|---|---|---|---|---|---|---|
OMC215 (ãè¶ãŒãâ+æ¯) | https://onlinemathcontest.com/contests/omc215 | https://onlinemathcontest.com/contests/omc215/tasks/9284 | A | OMC215(A) | 100 | 387 | 412 | [
{
"content": "$$\\frac{a^2-1001a+1001^2}{b^2-1001b+1001^2}\\leq\\frac{\\max\\lbrace a^2-1001a+1001^2\\rbrace}{\\min\\lbrace b^2-1001b+1001^2\\rbrace}$$\r\nã§ããïŒçå·ãæç«ããã®ã¯ $a=1,1000$ ã〠$b=500,501$ ã®ãšãã§ããã®ã§è§£çãã¹ãå€ã¯\r\n$$(1+500)+(1+501)+(1000+500)+(1000+501)=\\mathbf{4004}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/9284"
}
] | ã $1\leq a\leq 1000, ~ 1\leq b\leq 1000$ ãªãæŽæ° $a,b$ ã«ã€ããŠïŒ
$$\frac{a^2-1001a+1001^2}{b^2-1001b+1001^2}$$
ãããããæ倧ã®å€ããšããšãïŒ$a+b$ ãšããŠããããå€ã®ç·åãæ±ããŠãã ããïŒ |
OMC215 (ãè¶ãŒãâ+æ¯) | https://onlinemathcontest.com/contests/omc215 | https://onlinemathcontest.com/contests/omc215/tasks/9826 | B | OMC215(B) | 100 | 309 | 398 | [
{
"content": "ã次ã®å³ã®ããã«ãã¹ç®ãåå²ããïŒ\\\r\n![figure 1](\\/images\\/t1lfq5x34JWQ3THfWVCZuPRNV0yBhrJJoJvpTEeb)\r\nãå $A$ ã® $3$ ãã¹ã«å
šãŠæã眮ãããšã¯äžå¯èœãªã®ã§æã¯é«ã
$2$ æ¬ã§ããïŒãããã£ãŠïŒå
šäœã§æã®æ°ã¯é«ã
$1+3333\\cdot 2=6667$ ã§ããïŒäžã®ããã«æãé
眮ããã°å®éã« $6667$ æ¬æã眮ãããšãå¯èœã§ããïŒ\r\n![figure 1](\\/images\\/gGjPkkpbod2jQ3AXugqUKgWTtKKeEn483U1rJnwv)\r\n\r\n以äžãã眮ãããæã®æ°ã®æ倧å€ã¯ $\\mathbf{6667}$ ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/9826"
}
] | ã $100\times 100$ ã®ãã¹ç®ããããŸãïŒ$N$ åã®ãã¹ãéžãã§æãåãã¹ã« $1$ æ¬ãã€çœ®ããšïŒæ¬¡ãæç«ããŸããïŒ
- å·Šå³ãŸãã¯äžäžã«é£ç¶ããŠé£ãåãä»»æã® $3$ ãã¹ã«ã€ããŠïŒãã®ãã¡å°ãªããšã $1$ ãã¹ã«ã¯æã眮ãããŠããªãïŒ
ã$N$ ãšããŠããããæ倧å€ãæ±ããŠãã ããïŒ |
OMC215 (ãè¶ãŒãâ+æ¯) | https://onlinemathcontest.com/contests/omc215 | https://onlinemathcontest.com/contests/omc215/tasks/9285 | C | OMC215(C) | 200 | 381 | 405 | [
{
"content": "ã $10^5=2^5\\cdot5^5$ ã®çŽæ°ã¯ $2^a\\cdot5^bã(a,b\\in\\lbrace 0,1,2,3,4,5\\rbrace)$ ãšãããïŒ\\\r\n$$2^a\\cdot5^b\\equiv(-1)^{a+b}\\mod3$$\r\nãªã®ã§çŽæ° $2^a\\cdot5^b$ ã $3$ ã§å²ã£ãäœãã $1$ ã§ããããšã¯ $a,b$ ã®å¶å¥ãäžèŽããããšãšåå€ã§ããïŒãã£ãŠæ±ããç·åã¯\r\n$$(2^0+2^2+2^4)(5^0+5^2+5^4)+(2^1+2^3+2^5)(5^1+5^3+5^5)=\\mathbf{150381}ïŒ$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/9285"
}
] | ã $10^5$ ã®æ£ã®çŽæ°ã§ãã£ãŠ $3$ ã§å²ã£ãäœãã $1$ ã§ãããã®ã®ç·åãæ±ããŠãã ããïŒ |
OMC215 (ãè¶ãŒãâ+æ¯) | https://onlinemathcontest.com/contests/omc215 | https://onlinemathcontest.com/contests/omc215/tasks/10790 | D | OMC215(D) | 200 | 266 | 305 | [
{
"content": "ã蟺 $BC$ äžã®ç¹ $P$ ã§ãã£ãŠïŒç·å $XP$ ãå°åœ¢ $ABCD$ ã®é¢ç©ã $2$ çåãããã®ãèããïŒå
·äœçã«ã¯ $BP=1999$ ãæºããç¹ã§ããïŒ\\\r\nãäžè§åœ¢ $XYZ,XPZ$ ã¯é¢ç©ãçããã®ã§ $XZ\\parallel YP$ ãæãç«ã€ïŒãããã£ãŠçŽç· $XY$ ãšèŸº $BC$ ã®äº€ç¹ã $Q$ ãšããã° $PQ:PZ=YQ:YX=YC:YA=3:1$ ã§ããïŒãã㧠$CQ=3AX=9$ ãã $BQ=2995$ ãªã®ã§ïŒ$BP=1999$ ãšåãããŠïŒ$PQ=996$ ããããïŒä»¥äžãã $PZ=332$ ã§ããïŒ$BZ=BP-PZ=\\bf1667$ ãå°ãããïŒ\r\n----\r\n\r\n**å¥è§£.** \\\r\nã$Y$ ãéã $AD(BC)$ ã«å¹³è¡ãªçŽç·ãš $AB,CD$ ã®äº€ç¹ããããã $P,Q$ ãšããïŒ$AY:YC=1:3$ ããïŒ $PY=751,YQ=750$ ãåŸãããïŒãŸãïŒå°åœ¢ $APYX,DQYX,PBZY,QCZY$ ã®é«ãã¯ãããã $h,h,3h,3h$ ãšè¡šãããïŒãããã£ãŠ $|APYX|+|PBZY|=|DQYX|+|QCZY|$ ããïŒæ¬¡ã®åŒãåŸãïŒ\r\n$$\\frac{h}{2}(3+751)+\\frac{3h}{2}(751+BZ)=\\frac{h}{2}(997+750)+\\frac{3h}{2}(750+(3004-BZ))$$\r\nããã解ãããšã§ $BZ=\\bf1667$ ãåŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/10790"
}
] | ã$AD\parallel BC$ ãªãå°åœ¢ $ABCD$ ããããŸãïŒèŸº $AD$ äžã«ç¹ $X$ ãïŒç·å $AC$ äžã«ç¹ $Y$ ãïŒèŸº $BC$ äžã«ç¹ $Z$ ããšããšïŒæ¬¡ãæç«ããŸããïŒ
$$\begin{aligned}
AB=1001, \quad BC=3004, \quad CD=2001, \\\\
AX=3, \quad XD=997, \quad AY:YC=1:3
\end{aligned}$$
æãç· $XYZ$ïŒïŒç·å $XY$ ãšç·å $YZ$ ãã€ãªãããã®ïŒãå°åœ¢ $ABCD$ ã®é¢ç©ã $2$ çåãããšãïŒç·å $BZ$ ã®é·ããæ±ããŠãã ããïŒ |
OMC215 (ãè¶ãŒãâ+æ¯) | https://onlinemathcontest.com/contests/omc215 | https://onlinemathcontest.com/contests/omc215/tasks/9288 | E | OMC215(E) | 300 | 275 | 339 | [
{
"content": "ã $999=p, ~ 1001=q$ ãšãïŒ$S=f(1)+f(2)+\\cdots+f(pq)$ ãšããïŒ\\\r\nãè¯ãæ° $a$ ã§ãã£ãŠ $1\\leq a\\leq pq$ ãæºãããã®å
šäœã®éåã $A$ ãšããïŒ$p,q$ ã¯äºãã«çŽ ãªã®ã§ $|A|=p+q-1$ ã§ããïŒ\\\r\nããã㧠$a\\in A$ ã«å¯ŸããŠïŒ$n$ 以äžã®è¯ãæ°ãšã㊠$a$ ãååšãããã㪠$1\\leq n\\leq pq$ 㯠$pq+1-a$ ã ãããïŒ\\\r\nãããªãã¡ $a\\in A$ 㯠$pq+1-a$ ã ã $S$ ã«å¯äžããã®ã§ïŒ\r\n$$\\begin{aligned}\r\nS&=\\sum_{a\\in A}(pq+1-a)\\\\\\\\\r\n &=(pq+1)|A|-\\sum_{a\\in A}a\\\\\\\\\r\n &=(pq+1)(p+q-1)-(\\sum_{k=1}^{q}pk+\\sum_{k=1}^{p}qk-pq)\\\\\\\\\r\n &=\\(pq+1)(p+q-1)-\\frac{pq}{2}(p+q)\\\\\\\\\r\n &=1000000\\cdot 1999-999999\\cdot 1000\\\\\\\\\r\n &=\\bf 999001000\r\n\\end{aligned}$$\r\n----\r\n\r\n**å¥è§£.** \\\r\nã$999=p, ~ 1001=q$ãšããïŒ$p,q$ã¯äºãã«çŽ ãªã®ã§æ¬¡ãæãç«ã€ïŒ\r\n$$f(n)=\r\n\\begin{cases}\r\n\\bigg\\lfloor\\dfrac{n}{p}\\bigg\\rfloor+\\bigg\\lfloor\\dfrac{n}{q}\\bigg\\rfloorã&(n=1,2,...,pq-1)\\\\\\\\\r\np+q-1&(n=pq)\r\n\\end{cases}$$\r\nãã£ãŠæ±ãããå€ $S$ ã¯\r\n$$\\begin{aligned}\r\nS&=\\sum_{n=1}^{pq}f(n)\\\\\\\\\r\n&=\\sum_{n=0}^{pq-1}\\bigg(\\bigg\\lfloor\\dfrac{n}{p}\\bigg\\rfloor+\\bigg\\lfloor\\dfrac{n}{q}\\bigg\\rfloor\\bigg)+p+q-1\\\\\\\\\r\n&=\\sum_{a=0}^{q-1}\\sum_{b=0}^{p-1}\\bigg(\\bigg\\lfloor\\dfrac{ap+b}{p}\\bigg\\rfloor+\\bigg\\lfloor\\dfrac{a+bq}{q}\\bigg\\rfloor\\bigg)+p+q-1\\\\\\\\\r\n&=\\sum_{a=0}^{q-1}\\sum_{b=0}^{p-1}(a+b)+p+q-1\\\\\\\\\r\n&=\\frac{1}{2}pq(p-1)+\\frac{1}{2}pq(q-1)+p+q-1\\\\\\\\\r\n&=\\frac{1}{2}(pq+2)(p+q-2)+1\\\\\\\\\r\n&=\\frac{1}{2}\\cdot 1000001\\cdot1998+1\\\\\\\\\r\n&=\\bf999001000\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/9288"
}
] | ã$999$ ãŸã㯠$1001$ ã®å°ãªããšãäžæ¹ã§å²ããããæ£æŽæ°ã**è¯ãæ°**ãšåŒã³ãŸãïŒæ£æŽæ° $n$ ã«ã€ããŠïŒ$n$ 以äžã®è¯ãæ°ã®åæ°ã $f(n)$ ãšãããšãïŒæ¬¡ã®å€ãæ±ããŠãã ããïŒ
$$f(1)+f(2)+\cdots+f(999999)$$ |
OMC215 (ãè¶ãŒãâ+æ¯) | https://onlinemathcontest.com/contests/omc215 | https://onlinemathcontest.com/contests/omc215/tasks/11246 | F | OMC215(F) | 300 | 79 | 135 | [
{
"content": "ã次ã®è§åºŠã®è©äŸ¡ã«ãã $\\angle ABD\\gt \\angle CAD$ ãªã®ã§ïŒäžè§åœ¢ $ABE$ ã®å€æ¥åãšèŸº $AD$ 㯠$A$ ã§ãªãç¹ã§åã³äº€ããããšããããïŒ\r\n$$\\angle ABD=180^\\circ-\\angle ACD=\\angle CAD+\\angle ADC\\gt \\angle CAD$$\r\nãã®äº€ç¹ã $F$ ãšãããš\r\n$$\\angle AFE=180^\\circ-\\angle ABD=\\angle DCE$$\r\nããïŒ$F$ ã¯äžè§åœ¢ $CDE$ ã®å€æ¥åäžã«ãããïŒãããã£ãŠæ¹ã¹ãã®å®çãã次ãæãç«ã€ïŒ\r\n$$AF\\cdot AD=61\\cdot 82=5002, \\quad DF\\cdot AD=51\\cdot 98=4998.$$\r\nãããã£ãŠ $AD^2=AF\\cdot AD+DF\\cdot AD=10000$ ããïŒ$AD=\\bf100$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/11246"
},
{
"content": "$\\angle AEB= \\angle DEC$ ãªã®ã§çŽç· $CE$ äžã«äžè§åœ¢ $ABE$ ãšäžè§åœ¢ $DFE$ ãçžäŒŒã§ãããããªç¹ $F$ ãåããïŒ\\\r\näžè§åœ¢ $DCF$ ãäºç蟺äžè§åœ¢ã«ãªãããšã«æ³šæããã°ïŒç¹ $D$ ããçŽç· $EF$ ã«åç·ãäžããããšã§ $\\cos \\angle DEC$ ãæ±ãŸãïŒ\\\r\nããšã¯äžè§åœ¢ $AED$ ã«äœåŒŠå®çãé©çšããã° $AD$ ãæ±ããããšãã§ããïŒ",
"text": "äžè§åœ¢ã移åïŒçž®å°ãã解æ³",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/11246/446"
}
] | $$\angle ABD+\angle ACD=180^\circ$$
ãªãåžåè§åœ¢ $ABCD$ ãããïŒãã® $2$ æ¬ã®å¯Ÿè§ç·ã®äº€ç¹ã $E$ ãšãããšïŒ
$$AE=61, \quad BE=47, \quad CE=21, \quad DE=51$$
ãæãç«ã¡ãŸããïŒèŸº $AD$ ã®é·ããæ±ããŠãã ããïŒ |
OMC215 (ãè¶ãŒãâ+æ¯) | https://onlinemathcontest.com/contests/omc215 | https://onlinemathcontest.com/contests/omc215/tasks/9287 | G | OMC215(G) | 300 | 61 | 138 | [
{
"content": "ãåé¡æã®æ¡ä»¶ãæºããçµ $(a_1,...,a_{20})=A$ ã**è¯ãçµ**ãšåŒã¶ïŒ\\\r\nãè¯ãçµã«å¯Ÿã㊠$a_p=20$ ãªã $1\\leq p\\leq 20$ ãåãïŒåé¡æã®äžçåŒã«ãã㊠$j=p$ ãšããã°\r\n$$20a_i=a_ia_p\\leq ip+20\\leq20(i+1)$$\r\nãšãªãã®ã§å
šãŠã®æŽæ° $1\\leq i\\leq20$ ã«å¯Ÿã㊠$a_i\\leq i+1$ ãå¿
èŠã§ããïŒ\\\r\nã$a_i=i+1$ ã§ãããšãäžããããäžçåŒããïŒ$(i+1)^2\\leq i^2+20$ ãªã®ã§ $i=1,2,...,9$ ãå¿
èŠã§ããïŒ\\\r\nã以äžãã次ã®æ¡ä»¶ã $A$ ãè¯ãçµã§ããããã®å¿
èŠæ¡ä»¶ã§ããïŒãã®æ¡ä»¶ãæºãã $A$ ãè¯ãçµã§ããããšã¯å®¹æã«ç¢ºãããããïŒ\\\r\n$$a_i\\leq\r\n\\begin{cases}\r\ni+1&ã(i=1,2,...,9)\\\\\\\\\r\ni &ã(i=10,11,...,20)\r\n\\end{cases}$$\r\nããã£ãŠãã®æ¡ä»¶ãæºãã $(a_1,a_2,...,a_{20})$ ã®çµã®æ°ãæ±ããã°è¯ãïŒ$a_1$ ããé 次å®ããŠãããš $a_9$ ãŸã§ã¯ãããã $2$ éããã€ïŒ$a_{10}$ ãã $a_{20}$ ãŸã§ã¯ $1$ éããã€ããã®ã§ïŒæ±ããé åã®æ°ã¯ $2^9=\\mathbf{512}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/9287"
}
] | ã$1,2,\ldots,20$ ã®äžŠã¹æ¿ã $a_1,a_2,\ldots,a_{20}$ ã§ãã£ãŠïŒ$1$ ä»¥äž $20$ 以äžã®ä»»æã®æŽæ° $i,j$ ã«å¯Ÿã㊠$a_ia_j\leq ij+20$ ãæç«ãããããªãã®ã¯ããã€ãããŸããïŒ |
OMC215 (ãè¶ãŒãâ+æ¯) | https://onlinemathcontest.com/contests/omc215 | https://onlinemathcontest.com/contests/omc215/tasks/10031 | H | OMC215(H) | 400 | 14 | 41 | [
{
"content": "ã $a_1=2,a_2=40$ ã§ããïŒä»¥äžïŒ$n\\geq 3$ ãšããïŒ\\\r\næ£ $3n$ è§åœ¢ã®é ç¹ãæèšåãã« $A_1,...,A_n,B_1,...,B_n,C_1,...,C_n$ ãšããïŒä»¥äžïŒåé¡æã®æ¡ä»¶ãæºããåå $f$ ã**è¯ãåå**ãšåŒã¶ïŒè¯ãååã¯åå°ã§ããïŒãã $1\\leq i \\leq n$ ãååšã㊠$\\\\{f(A_i),f(B_i),f(C_i)\\\\}=\\\\{A_n,B_n,C_n\\\\}$ ãæãç«ã€ã®ã§ïŒ$i$ ã $n$ ãšçãããã«ãã£ãŠå ŽååããããïŒ\r\n\r\n- $i=n$ ã®ãšã\\\r\n $( f(A_n),f(B_n),f(C_n) )$ 㯠$(B_n,C_n,A_n),(C_n,A_n,B_n)$ ã® $2$ éãã§ããïŒæ®ã $3(n-1)$ åã®é ç¹ãèããŠïŒè¯ãåå㯠$2a_{n-1}$ åããïŒ\r\n\r\n- $1\\leq i \\leq n-1$ ã®ãšã\\\r\n$f^2=f\\circ f$ ãšããïŒ\\\r\nã$(f^2(A_i),f^2(B_i),f^2(C_i))=(A_i,B_i,C_i),(A_i,C_i,B_i),(C_i,B_i,A_i),(B_i,A_i,C_i)$ ãªãã°æ®ã $3(n-2)$ åã®é ç¹ãèããã°ããã®ã§ãã®ãããªè¯ãåå㯠$24(n-1)a_{n-2}$ åããïŒ\\\r\nãããã§ãªããã°ïŒãã®åå $f$ ããïŒæ£ $3(n-1)$ è§åœ¢ã«å¯Ÿããè¯ãåå $f^\\prime$ ã次ã®ããã«æ§æããããšã§ïŒæ£ $3(n-1)$ è§åœ¢ã«å¯Ÿããè¯ãååãšã®äžå¯Ÿäžå¯Ÿå¿ãåŸãããïŒ\r\n$$(f^\\prime(A_k),f^\\prime(B_k),f^\\prime(C_k))=\r\n\\begin{cases}\r\n(f(A_k),f(B_k),f(C_k))&(k\\neq i)\\\\\\\\\r\n(f^2(A_k),f^2(B_k),f^2(C_k))&(k=i)\r\n\\end{cases}$$\r\nãããã£ãŠãã®ãããªè¯ãåå㯠$6(n-1)a_{n-1}$ åããïŒ\r\n\r\n以äžãã次ã®æŒžååŒãåŸãïŒ\r\n$$a_n=2a_{n-1}+24(n-1)a_{n-2}+6(n-1)a_{n-1}$$\r\nãããå€åœ¢ããŠæ¬¡ã®åŒãåŸãïŒ\r\n$$a_n-6na_{n-1}=-4(a_{n-1}-6(n-1)a_{n-2})$$\r\nãããš $a_1=2,a_2=40$ ããïŒæ°å $\\lbrace a_{n+1}-6(n+1)a_{n}\\rbrace$ ã¯åé
$16$ïŒå
¬æ¯ $-4$ ã®çæ¯æ°åã§ããïŒ\r\nãã£ãŠ $a_{n+1}-6(n+1)a_{n}=(-4)^{n+1}$ ãªã®ã§æ¬¡ã®èšç®ãå¯èœã§ããïŒ\r\n$$\\begin{aligned}\r\na_{100000}-\\sum_{n=1}^{99999}(6n+5)a_n&=a_{100000}-\\sum_{n=1}^{99999}(a_{n+1}-a_n-(-4)^{n+1})\\\\\\\\\r\n&=a_1+\\sum_{n=1}^{99999}(-4)^{n+1}\\\\\\\\\r\n&=2+\\frac{1}{5}(16+4^{100001})\\\\\\\\\r\n&\\equiv 2+\\frac{1}{5}(16+\\frac{1}{4})\\pmod{100003}\\\\\\\\\r\n&\\equiv \\frac{21}{4}\\pmod{100003}\\\\\\\\\r\n&\\equiv \\mathbf{25006}\\pmod{100003}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/10031"
},
{
"content": "$\\\\{1,2,\\cdots,n\\\\}$ ã®çœ®æ $\\sigma$ ã«å¯ŸããŠãã®åºå®ç¹ã®åæ°ã $F(\\sigma)$ ãšãããš\r\n$$a_n=\\sum_{\\sigma}2^{F(\\sigma)}6^{n-F(\\sigma)}$$\r\nãæãç«ã€ïŒ$n$åã®æ£äžè§åœ¢ãã©ã®ããã«å
¥ãæ¿ããããæå®ããããšïŒããããã®é ç¹ãã©ã®ããã«å
¥ãæ¿ããããæå®ããããšãèããã°ãããïŒïŒ$|F(\\sigma)|=0$ ãšãªã眮æã®ç·æ°ïŒã¢ã³ã¢ãŒã«æ°ïŒã $M_n$ ãšãããšïŒ$|F(\\sigma)|=k$ ãšãªã眮æã®ç·æ°ã¯ $\\binom{n}{k}M_{n-k}$ ãªã®ã§\r\n$$a_n=\\sum_{k=0}^n\\binom{n}{k}M_{n-k}2^k6^{n-k}$$\r\nãšãªãïŒãã£ãŠ$a_n$ã®ææ°åæ¯é¢æ°ã¯\r\n$$\\sum_{n=0}^\\infty\\dfrac{a_n}{n!}x^n=\\biggl(\\sum_{i=0}^\\infty\\dfrac{2^i}{i!}x^i\\biggr)\\biggl(\\sum_{j=0}^\\infty\\dfrac{M_j6^j}{j!}x^j\\biggr)=e^{2x}\\cdot \\dfrac{e^{-6x}}{1-6x} = \\dfrac{e^{-4x}}{1-6x}$$\r\nã§ããïŒäž¡èŸºã« $1-6x$ ãæãããš\r\n$$\\sum_{n=0}^\\infty\\dfrac{a_{n+1}-(6n+6)a_n}{(n+1)!}x^{n+1}=e^{-4x}$$\r\nãšãªããã $a_{n+1}-(6n+6)a_n$ ãçæ¯æ°åã§ããããšããããïŒããšã¯å
¬åŒè§£èª¬ãšåæ§ã§ããïŒ",
"text": "æ¯é¢æ°ã䜿ãæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc215/editorial/10031/445"
}
] | ãæ£ $3n$ è§åœ¢ãããïŒãã®é ç¹å
šäœãããªãéåã $S_n$ ãšããŸãïŒæ¬¡ã®æ¡ä»¶ãã¿ããåå $f\colon S_n\to S_n$ ã®åæ°ã $a_n$ ãšããŸãïŒ
- ä»»æã® $S_n$ ã®èŠçŽ $a$ ã«ã€ã㊠$f(a)\neq a$ïŒ
- ä»»æã® $S_n$ ã®çžç°ãªãèŠçŽ $a,b$ ã«ã€ã㊠$f(a)\neq f(b)$ïŒ
- $S_n$ ã®çžç°ãªãèŠçŽ $a,b,c$ ãæ£äžè§åœ¢ã®é ç¹ããªããªãã° $f(a),f(b),f(c)$ ã¯æ£äžè§åœ¢ã®é ç¹ããªãïŒ
ãã®ãšãïŒæ¬¡ã®å€ãçŽ æ° $100003$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ
$$a_{100000}-\sum_{n=1}^{99999}(6n+5)a_n$$ |
OMC214 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc214 | https://onlinemathcontest.com/contests/omc214/tasks/10457 | A | OMC214(A) | 100 | 419 | 437 | [
{
"content": "ã$3$ ã€ä»¥äžã®æ¥œããç¹ãåäžçŽç·äžã«äžŠã¶ãšãïŒãã®çŽç·ã¯ããšã®æ£æ¹åœ¢ã®èŸºã®ããããã延é·ãããã®ãšäžèŽããïŒãããã£ãŠïŒæ¥œããç¹ãã $2$ ç¹ãéžã¶æ¹æ³ã§ãã ${}_{20} \\mathrm{C}_2 = 190$ éãã®ãã¡ïŒæ£æ¹åœ¢ã®åã蟺äžã«ãã $2$ ç¹ãéžã¶æ¹æ³ $4 \\cdot {}_6 \\mathrm{C}_2 = 60$ éããé€ãã $130$ éãã«ã¯ïŒããããã¡ããã© $2$ åã®æ¥œããç¹ãéãçžç°ãªãçŽç·ã察å¿ããïŒãããã£ãŠïŒæ±ããå€ã¯ $\\mathbf{130}$ æ¬ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc214/editorial/10457"
}
] | ãå¹³é¢äžã«æ£æ¹åœ¢ãããïŒãã®åé ç¹ãšïŒå蟺ã $5$ çåããç¹ãåãããèš $20$ åã®ç¹ã**楜ããç¹**ãšãã³ãŸãïŒã¡ããã© $2$ ã€ã®æ¥œããç¹ãéãçŽç·ã¯ãã®å¹³é¢äžã«ããã€ãããŸããïŒ
![figure 1](\/images\/rdOjkIyiMC2YBDj5VYegvhYLQc6f2aaYLDPvL8LP) |
OMC214 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc214 | https://onlinemathcontest.com/contests/omc214/tasks/5001 | B | OMC214(B) | 200 | 322 | 397 | [
{
"content": "ããã®å¹³é¢ã¯ $A(0,0,0), X(3, 0, 1), Y(0, 4, 1)$ ãéãå¹³é¢ãšããŠããïŒãŸãïŒç©ºéå
ã®ç¹ $P$ ã $xy$ å¹³é¢äžã«æ£å°åœ±ããç¹ã $P^\\prime$ ãšãã. \\\r\nãçŽç· $XY$ äžã®ä»»æã®ç¹ $P$ ã«ã€ããŠïŒ$PP^\\prime = 1$ ã«æ°ãã€ããã° $AP$ æ¹åã®åŸé
㯠$\\dfrac{1}{AP^\\prime}$ ã§ããïŒãŸãïŒ$P$ ãä»»æã®åããšã $P^\\prime$ ã¯çŽç· $X^\\prime Y^\\prime$ äžãä»»æã®åãã®ã§ïŒæ±ããçã㯠$A$ ãšçŽç· $X^\\prime Y ^\\prime$ ã®è·é¢ã®éæ°ã§ããïŒçŽç· $X^\\prime Y^\\prime$ 㯠$4x + 3y - 12 = 0$ ã§è¡šãããã®ã§ïŒ\r\n$$s = \\frac{\\sqrt{4^2 + 3^2}}{|4\\times0 + 3\\times 0 - 12|} = \\frac{5}{12}$$\r\nãåŸãïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf{17}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc214/editorial/5001"
},
{
"content": "ãå³ãã€ã¡ãŒãžããã®ãäžçªæ©ããšæããŸãïŒåŸé
ã®å®çŸ©ã¯ïŒ$\\dfrac{é«ãã®å€åé}{ãã®æ¹åãžã®å€åé}$ ãšãã¿ãªãïŒæ¬è§£ã®ããã«ç¹ãåä»ãããšïŒé«ãã®å€åé㯠$1$ ãšãªãïŒçµå±ïŒãã®æ¹åãžã®å€åéãæå°åããã°ããã§ãïŒããã¯ïŒ$XZ=3,YZ=4,\\angle{Z}=90^\\circ$ ãªãäžè§åœ¢ $XYZ$ ã«ãããŠïŒ$Z$ ãã $XY$ ã«ããããåç·ã®é·ã($=x$)ãªã®ã§ïŒ$XY=5$ ã«æ³šæããã°ïŒé¢ç©ã $2$ éãã«è¡šãããšã«ããïŒ\r\n$$\\triangle{XYZ}=\\dfrac12XZ\\cdot YZ=\\dfrac12XY\\cdot x$$\r\nãªã®ã§ïŒ$x=\\dfrac{12}{5}$ ãšæ±ãŸããŸãïŒããã®éæ°ãçãã§ãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc214/editorial/5001/444"
}
] | ãæ°Žå¹³é¢ãšïŒããã«å¯ŸããŠåŸããå¹³é¢ããããŸãïŒãã®å¹³é¢ã®è¥¿æ¹åãžã®åŸé
㯠$-\dfrac13$ïŒåæ¹åãžã®åŸé
㯠$-\dfrac14$ ã§ããïŒãã®ãšãïŒä»»æã®æ¹åã«ã€ããŠåŸé
ã $s$ 以äžã§ãããããªå®æ° $s$ ãšããŠèããããæå°å€ãååšããŸãïŒãã®æå°å€ã¯ïŒäºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ
----
ãããã§ïŒæ°Žå¹³é¢äžã®ããæ¹åã«ã€ããŠã®åŸé
ãšã¯ïŒãã®æ¹åã«æ°Žå¹³æ¹å $1$ ã ãé²ãã ãšãã®é«ãã®å€åã®ããšããããŸãïŒ |
OMC214 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc214 | https://onlinemathcontest.com/contests/omc214/tasks/5288 | C | OMC214(C) | 300 | 309 | 379 | [
{
"content": "ã$1$ ãã $9$ ãŸã§ã®æŽæ°ã以äžã®ããã«åé¡ããïŒåãã°ã«ãŒãã«å±ãããã®ã¯ãŸãšããŠèããŠããïŒ\r\n$$A\\colon\\lbrace 1,5,7\\rbrace, \\quad B\\colon\\lbrace 2,4,8\\rbrace, \\quad C\\colon\\lbrace 3,9\\rbrace, \\quad D\\colon\\lbrace 6\\rbrace.$$\r\n\r\nãã®ããã«åé¡ãããšãïŒé£ãåã£ãŠã¯ãããªãæ°ã®çµã¯ $BB,CC,BD,CD,DD$ ã§ããïŒç¹ã«ïŒ$D$ ã®äž¡ç«¯ã¯ $A$ ã§ããå¿
èŠãããïŒ$(A,D,A)$ ãåºå®ãããšãïŒæ®ãã® $A,B,B,B,C,C$ ã®äžŠã¹æ¹ã¯ä»¥äžã® $10$ éãã§ããïŒ\r\n- $(B,C,B,C,B)$ ã®ä»»æã®ç®æïŒäž¡ç«¯ãå«ãïŒã« $A$ ãæ¿å
¥ãã $6$ éã\r\n- $(B,A,B,C,B,C),(B,C,B,A,B,C),(C,B,A,B,C,B),(C,B,C,B,A,B)$\r\n\r\n$D$ ã®äœçœ®ãåºå®ããŠïŒåã°ã«ãŒããžã®æ°ã®å²ãæ¯ããèããã°ïŒæ±ããçã㯠$10\\times 3!\\times 3!\\times 2!\\times 1!=\\mathbf{720}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc214/editorial/5288"
}
] | ã$1$ ãã $9$ ãŸã§ã®æŽæ°ã $1$ ã€ãã€åç°ç¶ã«äžŠã¹ãæ¹æ³ã§ãã£ãŠïŒã©ã®é£ãåã $2$ æ°ãäºãã«çŽ ã§ãããããªãã®ã¯ããã€ãããŸããïŒãã ãïŒå転ããŠäžèŽãããããªäžŠã¹æ¹ã¯åäžèŠãïŒå転ã«ãã£ãŠäžèŽãããã®ã¯åºå¥ããŸãïŒ |
OMC214 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc214 | https://onlinemathcontest.com/contests/omc214/tasks/5004 | D | OMC214(D) | 400 | 62 | 141 | [
{
"content": "ã$f(x)=x^4+a(x-1)^4+b(x+1)^4+c(x-2)^4+d(x+2)^4$ ãšãããšåé¡æã®äž4åŒãã\r\n$$f\\bigg(\\frac{1}{20}\\bigg)\r\n=f\\bigg(\\frac{1}{30}\\bigg)\r\n=f\\bigg(\\frac{1}{40}\\bigg)\r\n=f\\bigg(\\frac{1}{50}\\bigg)=0$$\r\nã§ããïŒ$f(x)$ 㯠$x$ ã® $4$ 次åŒãªã®ã§ïŒããå®æ° $r$ ãååšããŠæ¬¡ãæççã«æãç«ã€ïŒ\r\n$$f(x)\r\n=r\\bigg(x-\\frac{1}{20}\\bigg)\r\n\\bigg(x-\\frac{1}{30}\\bigg)\r\n\\bigg(x-\\frac{1}{40}\\bigg)\r\n\\bigg(x-\\frac{1}{50}\\bigg)$$\r\n䞡蟺㮠$4$ 次ã®é
ã®ä¿æ°ïŒ$2$ 次ã®é
ã®ä¿æ°ïŒå®æ°é
ãæ¯èŒããŠæ¬¡ã® $3$ åŒãåŸã. \r\n$$\\begin{cases}\r\n1+(a+b)+(c+d)=r\\\\\\\\\r\n6(a+b)+24(c+d)\r\n=\\cfrac{71r}{12\\cdot10^3}\\\\\\\\\r\n(a+b)+16(c+d)\r\n=\\cfrac{r}{12\\cdot10^5}\r\n \\end{cases}$$ \r\nããã解ãã°\r\n$r=\\dfrac{288\\times10^5}{288\\cdot10^5-355\\cdot10^2+6}$\r\nãåŸãïŒåŸã£ãŠïŒ\r\n$$e=10^4f\\bigg(\\frac{1}{10}\\bigg)\r\n=\\frac{2880000}{14382253}$$ \r\nã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{17262253}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc214/editorial/5004"
},
{
"content": "$f(x)=a(10x-1)^4+b(10x+1)^4+c(20x-1)^4+d(20x+1)^4$ ãšå®ãããš\r\n$$\\begin{cases}f(2)=f(3)=f(4)=f(5)=-1\\\\\\e=f(1)+1\\end{cases}$$ã§ããïŒå æ°å®çããïŒå®æ° $k$ ãçšããŠ\r\n$$f(x)=k(x-2)(x-3)(x-4)(x-5)-1=k(x^4-14x^3+71x^2-154x+120)-1$$\r\nãšè¡šãããšãã§ããïŒ$k$ ã決å®ããããã«ïŒ$f(x)$ ã®ä¿æ°ã®éã®é¢ä¿åŒãåŸããïŒ$g_\\lambda(x)=(\\lambda x-1)^4$ ãšå®ãããšïŒ$f(x)$ 㯠$g_{10}(x),g_{-10}(x), g_{20}(x),g_{-20}(x)$ ã®ç·åçµåã§ããïŒãã㧠$g_\\lambda(x)$ ã®ä¿æ°ã®éã®é¢ä¿åŒãèããïŒ\r\n$$g_\\lambda(x)=\\lambda^4x^4-4\\lambda^3 x^3+6\\lambda^2 x^2-4\\lambda x+1$$\r\nãã $g_\\lambda(x)$ ã®ä¿æ°ã¯ $\\lambda^4,-4\\lambda^3,6\\lambda^2,-4\\lambda,1$ ã§ããïŒãã㧠$\\lambda=10,-10,20,-20$ ã«å¯ŸããŠ\r\n$$0=(\\lambda-10)(\\lambda+10)(\\lambda-20)(\\lambda+20)=\\lambda^4-500\\lambda^2+40000$$\r\nãæãç«ã€ã®ã§\r\n$$(g_\\lambda(x)\\text{ã®}x^4\\text{ã®ä¿æ°})-\\dfrac{500}{6}(g_\\lambda(x)\\text{ã®}x^2\\text{ã®ä¿æ°})+40000(g_\\lambda(x)\\text{ã®å®æ°é
})=0$$\r\nãšãªãïŒãã®æ§è³ªã¯ç·åçµåãåã£ãŠãä¿ãããã®ã§\r\n$$(f(x)\\text{ã®}x^4\\text{ã®ä¿æ°})-\\dfrac{500}{6}(f(x)\\text{ã®}x^2\\text{ã®ä¿æ°})+40000(f(x)\\text{ã®å®æ°é
})=0$$\r\nãåŸãããïŒãã®åŒãã $k=\\dfrac{120000}{14382253}$ ã§ããããšããããïŒ$e=f(1)+1$ ãèšç®ã§ããïŒ",
"text": "é£ç«æ¹çšåŒãåé¿ããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc214/editorial/5004/443"
}
] | ãå®æ° $a,b,c,d,e$ ã次ã®åŒãæºãããŸãïŒ$e$ ãæ±ããŠãã ããïŒ
$$\begin{cases}
9^4a&+&11^4b&+&19^4c&+&21^4d&=&-1+e\\\\
19^4a&+&21^4b&+&39^4c&+&41^4d&=&-1\\\\
29^4a&+&31^4b&+&59^4c&+&61^4d&=&-1\\\\
39^4a&+&41^4b&+&79^4c&+&81^4d&=&-1\\\\
49^4a&+&51^4b&+&99^4c&+&101^4d&=&-1
\end{cases}$$
ãã ãïŒ$e$ ã¯äºãã«çŽ ãªæ£ã®æŽæ° $p,q$ ãçšã㊠$e=\dfrac{p}{q}$ ãšè¡šãããã®ã§ïŒ$p+q$ ã解çããŠãã ãã |
OMC214 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc214 | https://onlinemathcontest.com/contests/omc214/tasks/8073 | E | OMC214(E) | 400 | 184 | 258 | [
{
"content": "ã$n$ ãä»»æã®æ£ã®æŽæ°ãšãïŒ$100$ ã $2n$ ã«çœ®ãæããŠèããïŒ\\\r\nãäžãã $a$ è¡ç®ïŒå·Šãã $b$ åç®ã«ãããã¹ã $(a,b)$ ãšåŒã¶ïŒãŸãïŒ\r\n$$(1,n+1),\\quad (2,n),\\quad (3,n+1),\\quad (4,n),\\quad \\cdots, \\quad (2n-1,n+1),\\quad (2n,n)$$\r\nããäžå€®ã®ãã¹ããšåŒã³ïŒäžå€®ã®ãã¹ããå·ŠåŽã«ãããã¹ãåã«ãå·ŠåŽã®ãã¹ãïŒäžå€®ã®ãã¹ããå³åŽã«ãããã¹ãåã«ãå³åŽã®ãã¹ããšåŒã¶ããšã«ããïŒãŸãïŒ$a+b$ ãå¶æ°ãªãã° $(a,b)$ ãçœã«å¡ãïŒå¥æ°ãªãã° $(a,b)$ ãé»ã«å¡ãïŒ\\\r\nãå·ŠåŽã®ãã¹ã®å
ïŒ$(1,n)$ ãšåãè²ã®ãã¹ã¯ $n^2$ ãã¹ïŒéãè²ã®ãã¹ã¯ $n^2-n$ ãã¹ããïŒã©ã®ã¿ã€ã«ãé»ã®ãã¹ãšçœã®ãã¹ã$1$ ã€ãã€èŠãã®ã§ïŒå·ŠåŽã®ãã¹ã®ã¿ãèŠã£ãŠããã¿ã€ã«ã¯é«ã
$n^2-n$ æãããªãïŒåæ§ã«ïŒå³åŽã®ãã¹ã®ã¿ãèŠã£ãŠããã¿ã€ã«ãé«ã
$n^2-n$ æãããªãïŒããã«ïŒå·ŠåŽã®ãã¹ãšå³åŽã®ãã¹ãåæã«èŠãã¿ã€ã«ã¯ååšããªãã®ã§ïŒäžå€®ã®ãã¹ã§ãã£ãŠ $n^2-n+1$ 以äžã®æŽæ°ãæžãããã¿ã€ã«ã«èŠãããŠãããã¹ãååšããïŒãã£ãŠïŒ\r\n$$N_{1,n+1} + N_{2,n} + \\cdots + N_{2n-1,n+1} + N_{2n,n} \\le n^2-n+1 + \\sum_{k=0}^{2n-2}(2n^2 - k) = n(4n^2-3n+2)$$\r\nã§ããïŒ\\\r\nããŸãïŒçå·ãæç«ãããããªã¿ã€ã«ã®é
眮ãååšããããšã確èªã§ããïŒåŸã£ãŠïŒ$n=50$ ã®å Žåãèããããšã§ïŒæ±ããçã㯠$\\bf{492600}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc214/editorial/8073"
}
] | ã$1$ ä»¥äž $5000$ 以äžã®æŽæ°ã®ãã¡ $1$ ã€ãæžãããŠãã $1\times2$ ã®ã¿ã€ã«ã $5000$ æããïŒã©ã® $2$ æã®ã¿ã€ã«ã«ã€ããŠãæžãããŠããæ°ã¯çžç°ãªããŸãïŒãããã®ã¿ã€ã«ãéãªããééããªã $100\times100$ ã®ãã¹ç®ã«æ·ãè©°ãããšïŒæ¬¡ã®æ¡ä»¶ãæºãããŠããŸããïŒ
- $1$ ä»¥äž $4999$ 以äžã®ä»»æã®æŽæ° $k$ ã«ã€ããŠïŒ$k$ ãæžãããã¿ã€ã«ãš $k+1$ ãæžãããã¿ã€ã«ã¯é·ã $1$ 以äžã®ç·åãå
±æããŠé£ãåãïŒ
ãŸãïŒäžãã $a$ è¡ç®ïŒå·Šãã $b$ åç®ã«ãããã¹ãèŠãã¿ã€ã«ã«æžãããæ°ã $N_{a,b}$ ãšããŸãïŒãã®ãšãïŒ
$$N_{1,51} + N_{2,50} + N_{3,51} + N_{4,50} + \cdots + N_{99,51} + N_{100,50}$$
ãšããŠèããããæ倧ã®å€ã解çããŠãã ããïŒ |
OMC214 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc214 | https://onlinemathcontest.com/contests/omc214/tasks/5005 | F | OMC214(F) | 500 | 28 | 74 | [
{
"content": "ã$F$ ã¯åè§åœ¢ $BCED$ ã«å¯Ÿãããã±ã«ç¹ã§ããããäžè§åœ¢ $FBC$ ãš $FDE$, äžè§åœ¢ $FBD$ ãš $FCE$ ãš $FMN$ ã¯ããããçžäŒŒã§ãã. $DF = EF$ ã§ãããã, ç¹ã«äžè§åœ¢ $FBD$ ãš $FCE$ ã¯ååã§ãã, äžè§åœ¢ $FBC$ ã¯äºç蟺äžè§åœ¢ã§ãã. åŸã£ãŠ $BD=CE$ ã§ãã,ãã®é·ãã $x$ ãšããã° $BE\\perp CD$ ãã次ãæãç«ã€ïŒ\r\n$$2x^2 = BD^2 + CE^2 = BC^2 + DE^2$$\r\nãŸã, \r\n$$BD : MN = DF : FN = 13 : 12$$\r\nã§ãã. ããã«, äžè§åœ¢ $ABC$ ã®å€å¿ã $O$, ç·å $BF$ ã®äžç¹ã $K$ ãšãããš, äžè§åœ¢ $FOK$ ãš $FBM$ ã¯çžäŒŒãªã®ã§, \r\n$$BC = 2BM = 2\\times KO\\times \\frac{BF}{FO} = 4\\times\\frac{5}{13}FO\\times\\frac{FK}{FO} = \\frac{240}{169}FO = 240$$\r\nã§ãããã, äœåŒŠå®çããæ±ããå€ã¯æ¬¡ã®ããã«æ±ãŸãïŒ\r\n$$\\begin{aligned}\r\n\\cos\\angle MXN\r\n&=\\frac{XM^2+XN^2-MN^2}{2\\times XM\\times XN}\\\\\\\\\r\n&=\\frac{BC^2+DE^2-4\\times\\Big(\\dfrac{12}{13}x\\Big)^2}{2\\times BC\\times DE}\\\\\\\\\r\n&=-\\bigg(2\\times\\Big(\\dfrac{12}{13}\\Big)^2-1\\bigg)\\times\\frac{BC^2+DE^2}{2\\times BC\\times DE}\\\\\\\\\r\n&=-\\frac{119}{120}\r\n\\end{aligned}$$\r\nåŸã£ãŠæ±ããçã㯠$\\bf{239}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc214/editorial/5005"
}
] | ãååŸ $169$ ã®åã«å
æ¥ããäžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $AB,AC$ äžã«ããããç¹ $D,E$ ãããïŒäžè§åœ¢ $ABC,ADE$ ããããã®å€æ¥åã®äº€ç¹ã $A$ ã§ãªãç¹ã§äº€ãã£ãã®ã§ããã $F$ ãšãããšïŒæ¬¡ãæãç«ã¡ãŸããïŒ
$$DF=EF=130,\quad DE=100.$$
ããã«ïŒç·å $BE$ ãšç·å $CD$ ã¯ç¹ $X$ ã§çŽäº€ããŸããïŒç·å $BC,DE$ ã®äžç¹ããããã $M,N$ ãšãããšãïŒäºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\cos\angle MXN=-\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC213 (for beginners) | https://onlinemathcontest.com/contests/omc213 | https://onlinemathcontest.com/contests/omc213/tasks/4775 | A | OMC213(A) | 100 | 424 | 451 | [
{
"content": "ããŸãïŒæé«äœã¯ $1$ ã§ãªããŠã¯ãªããªãïŒæ®ãã® $8$ ã«å¯Ÿããæ¡ã¯ãããã $0,1$ ã® $2$ éãïŒãã以å€ã® $0$ ã«å¯Ÿããæ¡ã¯ãããã $10$ éãååšããããïŒæ±ããå Žåã®æ°ã¯\r\n$$1Ã2^5Ã10^6=\\textbf{32000000}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc213/editorial/4775"
}
] | ãããæã«ã¯ææ°ã $9\times 10^{11}$ 人ããïŒããããã«çžç°ãªã $12$ æ¡ïŒæé«äœã¯ $0$ ã§ãªãïŒã®**å人ã³ãŒã**ãä»äžãããŠããŸãïŒãã®æã§ã¯ïŒä»¥äžã®æ¡ä»¶ãã¿ããçžç°ãªãäºäººã®ææ°ã«ã€ããŠã®ã¿ïŒäºããããäžæ¹ã®å人ã«ãªãããšãã§ããŸãïŒ
- äºäººã®å人ã³ãŒãã $10$ é²æ³ã«ãããŠè¶³ãåããããšãã«ïŒç¹°ãäžãããçºçããªãïŒ
ãææ°ã§ãã $U$ åã®å人ã³ãŒã㯠$808080808080$ ã§ãïŒ$U$ åãšå人ã«ãªããææ°ã¯äœäººããŸããïŒ |
OMC213 (for beginners) | https://onlinemathcontest.com/contests/omc213 | https://onlinemathcontest.com/contests/omc213/tasks/6843 | B | OMC213(B) | 100 | 418 | 437 | [
{
"content": "ã$3$ ã€ã®çŽç·ãäžè§åœ¢ããªããªããšãïŒ$3$ çŽç·ãäžç¹ã§äº€ãã£ãŠãããïŒ$2$ çŽç·ãå¹³è¡ã§ãããã®ããããã§ããïŒ\r\n- åè
ã®å ŽåïŒ$ y=ax+2 $ ã $ y=x-8 $ ãš $ 3x-2y=6 $ ã®äº€ç¹ $(-10, -18)$ ãéãã®ã§ïŒ$a=2$ ã§ããïŒ\r\n- åŸè
ã®å ŽåïŒ$ y=ax+2 $ ã $ y=x-8 $ ãšå¹³è¡ãªã $ a=1 $ïŒ$ 3x-2y=6 $ ãšå¹³è¡ãªã $ a=\\dfrac 32 $ ã§ããïŒ\r\n\r\nã以äžããïŒæ±ããç·å㯠$\\dfrac 92$ ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{11}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc213/editorial/6843"
}
] | ã$a$ ãå®æ°ãšããŸãïŒä»¥äžã® $3$ ã€ã®çŽç·ã§ $xy$ å¹³é¢ãåå²ãããšïŒäžè§åœ¢ãã§ããŸããã§ããïŒ
$$y=x-8, \quad 3x-2y=6, \quad y=ax+2$$
ãã®ãšãïŒ$a$ ãåãåŸãå€ã®ç·åã¯äºãã«çŽ ãªæ£æŽæ° $ p, q $ ãçšã㊠$\dfrac pq $ ãšè¡šããã®ã§ïŒ$ p+q $ ã解çããŠãã ããïŒ |
OMC213 (for beginners) | https://onlinemathcontest.com/contests/omc213 | https://onlinemathcontest.com/contests/omc213/tasks/6902 | C | OMC213(C) | 200 | 413 | 434 | [
{
"content": "ã$n$ ãçŽ å æ°å解ãããšãã®ææ°ãå
šãŠ $1$ ã®å ŽåïŒæããã«åé¡ã®æ¡ä»¶ã¯æºããããïŒéã«ïŒããã§ãªãå Žå $n$ 㯠$2$ 以äžã®å¹³æ¹æ°ã§ããæ£ã®çŽæ° $m$ ãæã¡ïŒãã®ãšã $\\dfrac{n}{m}Ãn=\\dfrac{n^2}{m}$ ã¯å¹³æ¹æ°ã§ããããïŒåé¡ã®æ¡ä»¶ãæºãããªã. \\\r\nããã£ãŠïŒåé¡ã®æ¡ä»¶ãæºãã $n$ 㯠\r\n$$2,3,5,6,7,10,11,13,14,15,17,19,21,22,23$$\r\n ã§ããïŒãããã®ç·å㯠$\\mathbf{188}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc213/editorial/6902"
}
] | ã$2$ ä»¥äž $25$ 以äžã®æ£ã®æŽæ° $n$ ã§ãã£ãŠïŒæ¬¡ãæºãããã®ã®ç·åã解çããŠäžããïŒ
- $n-1$ 以äžã®å
šãŠã®æ£æŽæ° $k$ ã«ã€ããŠïŒ$kn$ ã¯å¹³æ¹æ°ã§ãªã |
OMC213 (for beginners) | https://onlinemathcontest.com/contests/omc213 | https://onlinemathcontest.com/contests/omc213/tasks/3395 | D | OMC213(D) | 200 | 301 | 374 | [
{
"content": "ãç¹°ãäžãããçºç**ããªã**çµ $(a,b,c)$ ã®æ°ãæ°ããïŒ\\\r\nã$a$ ã® $1$ ã®äœïŒ$10$ ã®äœïŒ$100$ ã®äœããããã $A_0,A_1,A_2$ ãšãïŒ$b,c$ ã«ã€ããŠãåæ§ã« $B_0,B_1,B_2,C_0,C_1,C_2$ ãå®çŸ©ããïŒ$a+b+c$ ã®çç®ã«ãããŠç¹°ãäžãããçºçããªãããšã¯æ¬¡ãšåå€ã§ããïŒ\r\n$$A _i+B_i+C_i\\leq 9 \\quad (i=0,1,2)$$\r\n $i$ ã®å€ã«ãããããäžã®åŒãæºãã $0$ ä»¥äž $9$ 以äžã®æŽæ°ã®çµ $(A _i,B_i,C_i)$ 㯠${}\\_{12}\\mathrm{C}\\_{3}$ ã ãããïŒãã£ãŠç¹°ãäžãããçºçããªãçµ $(a,b,c)$ ã®æ°ïŒããªãã¡ $0$ ä»¥äž $9$以äžã®æŽæ°ã®çµ $(A _0,B_0,C_0,A _1,B_1,C_1,A _2,B_2,C_2)$ 㯠$({}\\_{12}\\mathrm{C}\\_{3})^3$ ã ãããïŒ\\\r\n以äžããïŒç¹°ãäžãããçºç**ãã**çµ $(a,b,c)$ ã®æ°ã¯ïŒæ¬¡ã®ãšããã§ããïŒ\r\n$$1000^3-({}\\_{12}\\mathrm{C}\\_{3})^3=\\bf989352000$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc213/editorial/3395"
}
] | ã$0$ ä»¥äž $999$ 以äžã®æŽæ°ã®çµ $(a,b,c)$ ã®ãã¡ïŒ$a+b+c$ ãïŒåé²æ³è¡šèšã®ïŒçç®ã§èšç®ãããšãã«ç¹°ãäžãããçºçãããã®ã¯ããã€ãããŸããïŒ |
OMC213 (for beginners) | https://onlinemathcontest.com/contests/omc213 | https://onlinemathcontest.com/contests/omc213/tasks/4213 | E | OMC213(E) | 200 | 197 | 225 | [
{
"content": "ã蟺 $AC$ äžã« $AB = AQ$ ãæºããç¹ $Q$ ããšãïŒãã®ãšãäžè§åœ¢ $ABQ$ ã¯æ£äžè§åœ¢ãªã®ã§\r\n$$QB = AB = PC,\\quad QC=AC-AB=AC-PC=PB$$\r\nãããããæç«ããïŒåŸã£ãŠäžè§åœ¢ $PBC$ ãšäžè§åœ¢ $QCB$ ã¯ååã§ããããïŒ\r\n$$\\triangle ABQ = \\triangle ABC - \\triangle QCB = \\triangle ABC - \\triangle PBC = 2028$$\r\nã§ããïŒäžæ¹\r\n$$\\triangle ABQ = \\frac{1}{2}BQ^2\\sin60^\\circ =\\frac{\\sqrt{3}}{4}CP^2$$\r\nã§ãããã $\\dfrac{\\sqrt{3}}{4}CP^2=2028$ ïŒä»¥äžãã $CP^4 = \\bf{21934848}$ ãåŸãïŒ\r\n\r\n----\r\n**å¥è§£ïŒ**\\\r\nãäžè§åœ¢ $ABC,PBC$ ã«äœåŒŠå®çãçšããããšã§æ¬¡ã®å€ã¯ $BC^2$ ã«çããããšããããïŒ\r\n$$AB^2+AC^2-AB\\cdot AC=BP^2+CP^2-2BP\\cdot CP\\cdot\\cos\\angle BPC$$\r\n $AC=BP+CP, ~ AB=CP$ ãäžã®åŒã«ä»£å
¥ããããšã§æ¬¡ãåŸãïŒ\r\n$$CP^2+(BP+CP)^2-CP\\cdot (BP+CP)=BP^2+CP^2-2BP\\cdot CP\\cdot\\cos\\angle BPC$$\r\n$$\\Longleftrightarrow ~ \\cos\\angle BPC=-\\frac{1}{2}$$\r\nãã£ãŠ $\\angle BPC=120^\\circ$ ãªã®ã§é¢ç©ã«ã€ããŠæ¬¡ã®åŒãåŸãïŒ\r\n$$\\frac{1}{2}AB\\cdot AC\\sin 60^\\circ=\\frac{\\sqrt{3}}{4}CP(BP+CP)=4017$$\r\n$$\\frac{1}{2}CP\\cdot BP\\sin 120^\\circ=\\frac{\\sqrt{3}}{4}CP\\cdot BP=1989$$\r\näºåŒã®å·®ãèããããšã§ $\\dfrac{\\sqrt{3}}{4}CP^2=2028$ ãåŸãã®ã§ $CP^4=\\bf21934848$ ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc213/editorial/4213"
}
] | ã$ \angle{A}=60^{\circ}$ ãæºããäžè§åœ¢ $ABC$ ã®å
éšã« $P$ ããšã£ããšããïŒ$$BP+CP=AC,\quad AB=CP$$
ãæãç«ã¡ãŸããïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã $4017$ïŒäžè§åœ¢ $PBC$ ã®é¢ç©ã $1989$ ã®ãšã $CP$ ã®é·ãã® $4$ ä¹ãæ±ããŠãã ããïŒ |
OMC213 (for beginners) | https://onlinemathcontest.com/contests/omc213 | https://onlinemathcontest.com/contests/omc213/tasks/7166 | F | OMC213(F) | 300 | 187 | 249 | [
{
"content": "ã$a_{n+1} = 3{a_n}^2 - 4a_n + 2$ ãå€åœ¢ãããšïŒ$3a_{n+1} - 2 = (3a_n - 2)^2$ ãåŸãããã®ã§ïŒæ¬¡ãæãç«ã€ïŒ\r\n$$3a_{3334}-2=(3a_1-2)^{2^{3333}}=10000^{2^{3333}}=10^{2^{3335}}$$\r\nãã£ãŠ\r\n$$a_{3334} = \\cfrac{10^{2^{3335}} + 2}{3}$$\r\nãåŸããïŒããã¯æé«äœãã $2^{3335} - 1$ åã ã $3$ ã䞊ã³ïŒäžã®äœã®ã¿ $4$ ãšãªããããªæ£æŽæ°ã§ããïŒãã£ãŠïŒ\r\n$$M = 3 \\times (2^{3335} - 1) + 4 = 3 \\times 2^{3335} + 1$$\r\nãšåããïŒåŸã£ãŠïŒãã§ã«ããŒã®å°å®çãã\r\n$$M\\equiv 3\\times2^{5}+1 = \\mathbf{97}\\pmod{3331}$$\r\nãåŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc213/editorial/7166"
}
] | ã$a_1 = 3334, ~ a_{n+1} = 3{a_n}^2 - 4a_n + 2$ $(n \geq 1)$ ã§å®ãŸãæ°å $\lbrace a_n \rbrace$ ã«ã€ããŠïŒ$a_{3334}$ ã¯æ£ã®æŽæ°ãšãªãã®ã§ïŒ$a_{3334}$ ã®åæ¡ã®åã $M$ ãšããŸãïŒãã®ãšãïŒ$M$ ãçŽ æ° $3331$ ã§å²ã£ãäœãã解çããŠäžããïŒ |
OMC213 (for beginners) | https://onlinemathcontest.com/contests/omc213 | https://onlinemathcontest.com/contests/omc213/tasks/5557 | G | OMC213(G) | 300 | 80 | 102 | [
{
"content": "ãçŽç· $XY$ ãš $\\Gamma_2$ ã®äº€ç¹ã $R$ ãšããïŒ\r\n\r\n---\r\n**è£é¡.** çŽç· $XY$ 㯠$â PXQ$ ã®äºçåç·ã§ããïŒ\r\n\r\n**蚌æ.** $\\Gamma_1,\\Gamma_2$ ã®äžå¿ããããã $O_1,O_2$ ãšããïŒãã®ãšãïŒ$X$\r\nãäžå¿ãšãã $\\Gamma_1$ ã $\\Gamma_2$ ã«ç§»ãæ¡å€§ã«ãã£ãŠ $Y$ 㯠$R$ ã«ïŒ$O_1$ 㯠$O_2$ ã«ãããã移ãïŒç¹ã«çŽç· $YO_1$ ãš $RO_2$ ã¯å¹³è¡ã§ããïŒãŸã $YO_1$ 㯠$PQ$ ã«åçŽã§ããããïŒ$RO_2$ 㯠$PQ$ ã«åçŽã§ããïŒãããã $PR=QR$ ãæãç«ã€ããïŒ$â PXY=â QXY$ ã瀺ãããïŒ\r\n---\r\n\r\nãè£é¡ããïŒ$PY:QY=20:23$ ã§ãããã $PY=20x, ~ QY=23x$ ãšãããïŒããã«ïŒ$XY:YR=4:5$ ã§ããããïŒæ¹ã¹ãã®å®çãã\r\n$$XYÃYR=PY\\times QY = 460x^2$$\r\nãæç«ããããšãšäœµããŠïŒ$XY^2=368x^2$ ãåŸãïŒãŸãïŒStewartã®å®çãã\r\n$$XY^2=XPÃXQ-PYÃQY=460-460x^2$$\r\nãæç«ããã®ã§ïŒããã解ã㊠$x^2=\\dfrac{5}{9}$ ãåŸãïŒåŸã£ãŠïŒ$XY^2=\\dfrac{1840}{9}$ ã§ããããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{1849}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc213/editorial/5557"
},
{
"content": "ãå $\\Gamma_1$ ãš $XP, XQ$ ã®äº€ç¹ããããã $ P^{\\prime}, Q^{\\prime}$ ãšããïŒãã®ãšãæ¥åŒŠå®çããïŒ$\\triangle XPQ$ ãš $\\triangle XP^{\\prime} Q^{\\prime}$ ã¯çžäŒŒã§ããïŒå€æ¥åã®ååŸã®æ¯ããïŒãã®çžäŒŒæ¯ã¯ $9:4$ ã§ããïŒ\\\r\nãåŸã£ãŠïŒ$XP^{\\prime}, XQ^{\\prime}$ ã®é·ããããããæ±ãŸãïŒæ¹ã¹ãã®å®çãçšã㊠$YP,YQ$ ã®é·ããããããæ±ãŸãïŒ\\\r\nããã®åŸã®æ¹éã¯ïŒå
¬åŒè§£èª¬ãšåæ§ã« Stewart ã®å®çãçšããŠããããïŒå
¬åŒè§£èª¬ã®ç¹ $R$ ãçšã㊠$XY:YR=4:5$ ãšç¹ $Y$ ã®åšãã®æ¹ã¹ãã®å®çãçšããŠãããïŒ",
"text": "çžäŒŒãçšããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc213/editorial/5557/438"
}
] | ãäºã€ã®å $\Gamma_1,\Gamma_2$ ãããïŒ$\Gamma_1$ 㯠$\Gamma_2$ ã«ç¹ $X$ ã§å
æ¥ããŠããŸãïŒãŸãïŒ$\Gamma_1$ äžã« $X$ ã§ãªãç¹ $Y$ ãåããšïŒ$\Gamma_1$ ã®ç¹ $Y$ ã«ãããæ¥ç·ãš $\Gamma_2$ ãçžç°ãªã $2$ ç¹ $P,Q$ ã§äº€ãããŸããïŒ
$$XP=20,\quad XQ=23$$
ãæãç«ã¡ïŒ$\Gamma_1$ ã®ååŸãš $\Gamma_2$ ã®ååŸã®æ¯ã $4:9$ ã§ãããšãïŒç·å $XY$ ã®é·ãã®äºä¹ãæ±ããŠäžããïŒ \
ããã ãïŒæ±ããå€ã¯ïŒäºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠${\dfrac{a}{b}}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠäžããïŒ |
OMC213 (for beginners) | https://onlinemathcontest.com/contests/omc213 | https://onlinemathcontest.com/contests/omc213/tasks/8567 | H | OMC213(H) | 400 | 46 | 90 | [
{
"content": "ãäžè¬ã«æ£ $N$ è§åœ¢ïŒ$N$ 㯠$3$ 以äžã®æŽæ°ïŒã«å¯ŸããŠèããïŒ æ£ $N$ è§åœ¢ã®é ç¹ãé ã« $A_1,A_2, \\ldots ,A_N$ ãšãïŒé ç¹ã®æ·»å㯠$N$ ãæ³ãšããŠèããïŒãŸãïŒé ç¹ $A_i$ ã«å¡ãããè²ã $C_i$ ãšããïŒ \\\r\nã以äžïŒã¹ã³ã¢ã® $2$ ä¹ã®ç·åãæ±ããïŒããã§ïŒ\r\n$$\\begin{aligned}\r\n(ã¹ã³ã¢ã®äºä¹) &= (C_i=C_{i+1}ãšãªã\\\\, i\\\\, ã®åæ°)^2 \\\\\\\\\r\n&= (C_i=C_{i+1}ãšãªã\\\\, i\\\\, ã®åæ°) \\times (C_j=C_{j+1}ãšãªã\\\\, j\\\\, ã®åæ°)\r\n\\end{aligned}$$\r\nã«ããïŒäºã€ã®èŸºãããªãçµããããã®å¯äžãèããã°è¯ãïŒ\r\n\r\n----\r\n\r\ni) $i=j$ ã®ãšã \\\r\nã $i=j$ ã®éžã³æ¹ã¯ $N$ éãïŒ $C_i=C_{i+1}$ ã®éžã³æ¹ã¯ $3$ éãïŒä»ã®è²ã®éžã³æ¹ã¯ $3^{N-2}$ éãããïŒ\r\n\r\n$$N \\times 3 \\times 3^{N-2}=3N \\times 3^{N-2}$$\r\n\r\nii) $|i-j|=1$ ã®ãšã \\\r\nã $i,j$ ã®éžã³æ¹ã¯ $2N$ éãïŒ $C_{\\min(i,j)}=C_{\\min(i,j)+1}=C_{\\min(i,j)+2}$ ã®éžã³æ¹ã¯ $3$ éãïŒä»ã®è²ã®éžã³æ¹ã¯ $3^{N-3}$ éãããïŒ\r\n\r\n$$2N \\times 3 \\times 3^{N-3}=2N \\times 3^{N-2}$$\r\n\r\niii) $|i-j| \\geq 2$ ã®ãšã \\\r\nã $i,j$ ã®éžã³æ¹ã¯ $N(N-3)$ éãïŒ $C_i=C_{i+1},C_j=C_{j+1}$ ã®éžã³æ¹ã¯ $3^2$ éãïŒä»ã®è²ã®éžã³æ¹ã¯ $3^{N-4}$ éãããïŒ\r\n\r\n$$N(N-3) \\times 3^2 \\times 3^{N-4}=N(N-3) \\times 3^{N-2}$$\r\n\r\n----\r\n\r\nãi),ii),iii) ããïŒã¹ã³ã¢ã® $2$ ä¹ã®åèšã¯\r\n\r\n$$3N \\times 3^{N-2} + 2N \\times 3^{N-2} + N(N-3) \\times 3^{N-2} = N(N+2) \\times 3^{N-2}.$$\r\n\r\nãã£ãŠïŒå¹³å㯠$\\dfrac{N(N+2)}{9}$ ã§ããïŒç¹ã« $N=333$ ã®ãšããã®å€ã¯ $\\mathbf{12395}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc213/editorial/8567"
},
{
"content": "ãäžè¬ã«æ£ $N$ è§åœ¢ã«å¯ŸããŠèããïŒ$N$ æ¬ã®èŸºã«å¯ŸããŠïŒæ¬¡ã®ããã«ã¹ã³ã¢ $x_1, \\cdots, x_n$ ãå®çŸ©ããïŒ\r\n\r\n- 䞡端ã®é ç¹ãåãè²ã§ããã° $x_i=1$ïŒããã§ãªããã° $x_i=0$\r\n\r\nãè²ã®å¡ãæ¹ $3^N$ éããåæ§ã«ç¢ºãããããšä»®å®ãããšïŒå $x_i$ ã¯ç¢ºçå€æ°ã§ããïŒããŸæ±ããã¹ã㯠$\\left( \\sum\\limits_{i=1}^{N} x_i \\right)^2$ ã®æåŸ
å€ã«äžèŽããïŒä»¥äžïŒæåŸ
å€ã¯ $E(*)$ ã§è¡šãïŒ\\\r\næããã« $E(x_i)=E(x_i^2)=\\dfrac{1}{3}$ ã§ããïŒ$E(x_i x_j)=E(x_i)E(x_j)=\\dfrac{1}{9}$ ã§ããããšïŒ$x_i$ ãš $x_j$ ã®ç¬ç«æ§ïŒã容æã«ç¢ºèªã§ããïŒåŸã£ãŠ\r\n$$E(\\left( \\sum\\limits_{i=1}^{N} x_i \\right)^2) =\\sum\\limits_{i=1}^{N} E(x_i^2)+\\sum\\limits_{i \\neq j} E(x_i x_j)=NÃ\\dfrac{1}{3}+N(N-1)Ã\\dfrac{1}{9}=\\dfrac{N(N+2)}{9}$$",
"text": "æåŸ
å€ã®æ§è³ªãçšããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc213/editorial/8567/440"
},
{
"content": "ãäžè¬ã«, $N$ è§åœ¢ $N\\ge 1$ ã®å ŽåãèããŸã. \r\nå
šãŠã®å¡ãæ¹ã®ãã¡, äžåºŠ $k$ ç®æã®èŸºã«ã€ããŠäž¡ç«¯ã®è²ãçãããªããããªå¡ãæ¹ã®ç·æ°ã $f(k)$ ãšãããš, æ±ãããã®ã¯ \r\n$$Ans=\\frac{\\sum\\_{k=0}\\^{N}k\\^{2}f(k)}{3\\^{N}}$$\r\nã§ã. \r\nãŸã $f(k)$ ãæ±ããŸããã. \r\n\r\n$k\\lt N$ ã®æãèããŸã. \r\n$N$ åã®é ç¹ã«æèšåãã« $1,2,\\dots,N$ ãšçªå·ãã€ã, é ç¹ $i-1,i$ ã®è²ãçãããããªé ç¹ $i$ ããè¯ãé ç¹ããšåŒã¶ããšã«ããŸã. ãã ã, é ç¹ $0$ ãšã¯ é ç¹ $N$ ã®ããšã§ã. \r\nãããš, è¯ãé ç¹ãäžåºŠ $k$ åéžã¶æ¹æ³ã¯ $\\binom{N}{k}$ éããããŸã. \r\nããã§, è¯ãé ç¹ã®éžã³æ¹ãäžã€åºå®ã, è¯ãé ç¹ã®éåããããªããããªçè²æ¹æ³ãèããŸã. \r\n\r\nè¯ãé ç¹ãé£ç¶ããåºéã¯é ç¹ãåãè²ã§å¡ããããã, è¯ãé ç¹ã®é£ç¶åºéãã²ãšã€ã®ãããŸããšãšãããããšã§, ããã¯ä»¥äžã®åé¡ã® $n=N-k$ ã®å Žåã«åž°çãããŸã. \r\n\r\n---\r\n\r\næ£ $n$ è§åœ¢ã®åé ç¹ã« $3$ çš®é¡ã®è²ãå¡ãæ¹æ³ã§ãã£ãŠ, 蟺ã§é£æ¥ãã $2$ é ç¹ã«ã¯ç°ãªãè²ãå¡ãããå¡åãæ¹ã¯ããã€ããã? \r\n\r\n---\r\n\r\nãã®åé¡ã®çãã, $g(n)$ ãšããŸã. \r\nçµè«ããè¿°ã¹ããš, ãã®åé¡ã¯ä»¥äžã®ãããªäžè¬é
ã§æ瀺çã«è¡šãããŸã. \r\n\r\n$$g(n)=\\begin{cases}\r\n1&(n=0)\\\\\\\\\r\n2\\^{n}+2\\times (-1)\\^{n}&(n\\neq 0)\r\n\\end{cases}$$\r\n\r\n<details> <summary> å°åºã®æŠç¥ <\\/summary> \r\n\r\né ç¹ $1,n-1$ ã®è²ãç°ãªãæ, é ç¹ $n$ ã«æžã蟌ãè²ã¯ $1$ éã, é ç¹ $1,n-1$ ã®è²ãçããæ, é ç¹ $1, n-2$ ã®è²ãç°ãªã, é ç¹ $n-1,n$ ã®è²ã®æ±ºãæ¹ã¯ $2$ éããã. ãã£ãŠ, \r\n\r\n$$g(n)=g(n-1)+2g(n-2)\\ (n\\ge 3)$$ \r\n\r\nãšãã挞ååŒããã€. ããã解ã, $n$ ãå°ããå Žåã確èªããã°äžèšã®äžè¬é
ãåŸã.\r\n <\\/details>\r\n\r\n(泚: $n=1$ ã®å Žåã«é£ãåãé ç¹ãç¡ããã $g(1)=3$ ã§ã¯? ãšæã£ãæ¹ããããããããŸããã, ä»åã®èšå®ã®å Žåé ç¹ $1$ ãšé ç¹ $1$ ã¯èŸºã§çµã°ããŠãããšèãããã, åžžã«äžé©åããªãã¡ $g(1)=0$ ãšãªããŸã. ) \r\n\r\nåŸã£ãŠ, $f(k)=\\binom{N}{k}g(N-k)=\\binom{N}{k}(2\\^{N-k}+2\\times(-1)\\^{N-k})$ ãšãªããŸã. \r\nããã§, é€å€ãããŠãã $k=N$ ã®å Žåããã®åŒãæç«ããããšã確ãããããŸã. \r\n\r\n以äžãæŽçãããš, æ±ããçãã¯\r\n\r\n$$\\begin{aligned}\r\n3\\^{N}\\times Ans&=\\sum\\_{k=0}\\^{N}k\\^{2}f(k)\\\\\\\\\r\n&=\\sum\\_{k=0}\\^{N}k\\^{2}\\binom{N}{k}(2\\^{N-k}+2(-1)\\^{N-k})\\\\\\\\\r\n&=N\\times 3\\^{N-2}\\times(N+2)\r\n\\end{aligned}$$\r\n\r\nããææã®çããåŸãŸã. \r\n\r\nãã ã, æçµè¡ã«ãããŠã¯, \r\n\r\n$$\\sum\\_{k=0}\\^{N}k\\^2\\binom{N}{k}a\\^{N-k}=N(1+a)\\^{N-2}(N+a)$$\r\n\r\nãçšããŠãã, ããã®å°åºã¯äŸãã°ä»¥äžã®åé¡ã®è§£èª¬ãåèã«ãªããŸã. \r\n<details> <summary> éå»ã®åé¡äŸ <\\/summary> \r\n\r\n- OMC161(E)\r\n- OMC210(C)\r\n\r\n <\\/details>",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc213/editorial/8567/442"
}
] | ãåããåºå®ããæ£ $333$ è§åœ¢ã®åé ç¹ãïŒèµ€ã»éã»ç·ã®äžè²ããäžã€ãã€éžãã§å¡ãïŒããããã®å¡ãæ¹ã«å¯ŸããŠãã®**ã¹ã³ã¢**ã以äžã§å®ããŸãïŒ
- æ£ $333$ è§åœ¢ã®èŸºã®ãã¡ïŒäž¡ç«¯ã®é ç¹ã®è²ãçãããã®ã®æ°
ãå転ã«ãã£ãŠäžèŽããè²ã®å¡ãæ¹ãåºå¥ããå Žåã® $3^{333}$ éããã¹ãŠã«ã€ããŠïŒããããã®ã¹ã³ã¢ã® $2$ ä¹ã®ïŒçžå ïŒå¹³åãæ±ããŠãã ããïŒ |
OMC212 | https://onlinemathcontest.com/contests/omc212 | https://onlinemathcontest.com/contests/omc212/tasks/8775 | A | OMC212(A) | 200 | 323 | 336 | [
{
"content": "ã$N=1$ ã®å Žåã¯æ¡ä»¶ãæºãããªãïŒä»¥äžã§ã¯ïŒ$N\\ge2$ ã®å ŽåãèããïŒ\\\r\nã$x$ ã $N$ ã®çŽæ°ã§ãããšã $N\\/x$ ã $N$ ã®çŽæ°ã§ããããšããïŒ$N$ ã®æã€çŽæ°ã®åæ°ã $d(N)$ ãšãããš $$m(N)\r\n=\\prod_{x\\mid N}x\r\n=\\Bigg(\\prod_{x\\mid N}x\\cdot \\frac Nx\\Bigg)^{1\\/2}\r\n=N^{d(N)\\/2}$$\r\nãæãç«ã€ïŒãã£ãŠïŒä»¥äžãåããïŒ\r\n$$\\begin{aligned}\r\n&N^{4} \\lt m(N) \\lt N^{5}\\\\\\\\\r\n\\Longleftrightarrowã&4 \\lt \\frac{d(N)}{2} \\lt 5\\\\\\\\\r\n\\Longleftrightarrowã&d(N)=9\r\n\\end{aligned}$$\r\nãããã£ãŠ $N$ ã¯çžç°ãªãçŽ æ° $p,q$ ãçšããŠæ¬¡ã®ïŒã€ããããã®åœ¢ã§è¡šãã.\r\n$$N=p^8,ãN=p^2q^2$$\r\nãã®ãã¡, ç¹ã« $1 \\leq N \\leq 100$ ãæºããã®ã¯ $2^{2} à 3^{2} = 36$ ãš $2^{2} à 5^{2} = 100$ ã®ã¿ã§ãã. ãã£ãŠ, 解çãã¹ãå€ã¯ $\\mathbf{136}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc212/editorial/8775"
}
] | ãæ£æŽæ° $N$ ã«å¯ŸããŠïŒãã®æ£ã®çŽæ°ã®**ç·ç©**ã $m(N)$ ã§è¡šãããšãšããŸãïŒãã®ãšãïŒ$1$ ä»¥äž $100$ 以äžã®æŽæ° $N$ ã®ãã¡ïŒ$\ N^{4} \lt m(N) \lt N^{5}$ ãæºãããã®ã®ç·åã解çããŠäžããïŒ |
OMC212 | https://onlinemathcontest.com/contests/omc212 | https://onlinemathcontest.com/contests/omc212/tasks/7165 | B | OMC212(B) | 300 | 75 | 121 | [
{
"content": "ãäžè§åœ¢ $ABC$ ãéè§äžè§åœ¢ã§ããããšããïŒ$â BHC = â BOC = â BIC = 120^\\circ$ ã§ããããšïŒåã³ïŒ$3$ ç¹ $H$, $O$, $I$ ã蟺 $BC$ ã«é¢ããŠåãåŽã«ããããšãåããïŒãã£ãŠ $5$ ç¹ $B, H, O, I, C$ ã¯åäžååšäžã«ããïŒäžè§åœ¢ $BOC$ ã®å€æ¥åã®ååŸã $\\cfrac{14}{\\sqrt{3}}\\$ ãšãªãããšãåããïŒ$â BOC= 120^\\circ$ ããïŒ$BC = 14$ ãåããïŒ$AB = a, AC = b$ ãšããããšã§ïŒäœåŒŠå®çãã\r\n$$a^2 + b^2 - ab = 196$$\r\nãåŸãïŒ$a,b$ ããšãã«æŽæ°ã§ããããšïŒäžè§åœ¢ $ABC$ ãéè§äžè§åœ¢ã§ããããšïŒåã³ $H, O, I$ ãäžè§åœ¢ããªãããšïŒã€ãŸãïŒäžè§åœ¢ $ABC$ ãæ£äžè§åœ¢ã§ã¯ãªããšããããšïŒãèžãŸãããšïŒ$\\min(a,b)^2\\lt196=14^2$ ãåããã®ã§ïŒãã®ç¯å²ã§é ã«ä»£å
¥ããããšã§ $\\\\{a,b\\\\}=\\\\{10,16\\\\}$ ãåããïŒåŸã£ãŠïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã® $2$ ä¹ãšããŠããåŸãå€ã¯ $\\mathbf{4800} $ ã®ã¿ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc212/editorial/7165"
}
] | ã$â A = 60^\circ$ ã§ããïŒå
šãŠã®èŸºã®é·ããæŽæ°ã§ãããããªéè§äžè§åœ¢ $ABC$ ã®åå¿ïŒå€å¿ïŒå
å¿ããããã $H,O,I$ ãšããŸãïŒ$3$ ç¹ $H,O,I$ ãäžè§åœ¢ãæãïŒãã®å€æ¥åã®é¢ç©ã $\cfrac{196}{3}\pi$ ã§ãããšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã® $2$ ä¹ãšããŠããããå€ã®ç·åã解çããŠäžãã. |
OMC212 | https://onlinemathcontest.com/contests/omc212 | https://onlinemathcontest.com/contests/omc212/tasks/7869 | C | OMC212(C) | 300 | 103 | 237 | [
{
"content": "ã$2\\times n$ ã®ãã¹ç®ã®åãã¹ãçœãšé»ã§å¡ãæ¹æ³ã§ãã£ãŠïŒå·Šäžã®ãã¹ãé»ã§å¡ãïŒããã«åé¡ã®æ¡ä»¶ã®ãå³äžã®ãã¹ãããå³ç«¯ã® $2$ ãã¹ã®ãããããã«å€ããæ¡ä»¶ãã¿ããæ¹æ³ã®æ°ãèããïŒãã®ãããªæ¹æ³ã®ãã¡ïŒ$n$ åç®ãäžããé ã«é»ãšé»ã§å¡ãæ¹æ³ã®æ°ã $a_n$ïŒé»ãšçœã§å¡ãæ¹æ³ã®æ°ã $b_n$ïŒçœãšé»ã§å¡ãæ¹æ³ã®æ°ã $c_n$ ãšããïŒçœãšçœã§å¡ãå Žåã¯é»ã®ãã¹ã®ã¿ããã©ã£ãŠå³ç«¯ã«å°éã§ããªãããïŒèããªããŠããïŒïŒãã®ãšãïŒ$ a_n , b_n , c_n $ ã®éã«æ¬¡ã®æŒžååŒãæãç«ã€ïŒ\r\n$$ a_{n+1} = b_n + c_n,\\quad b_{n+1} = a_n + b_n,\\quad c_{n+1} = a_n + c_n,\\quad a_1 = 1, \\quad b_1 = 1 , \\quad c_1 = 0$$\r\nããããïŒ\r\n$$a_n + b_n + c_n=2(a_{n-1}+b_{n-1}+c_{n-1})=\\cdots=2^{n-1}(a_1+b_1+c_1)=2^n,$$\r\n$$b_n-c_n=b_{n-1}-c_{n-1}=\\cdots=b_1-c_1=1$$\r\n ãåããïŒãŸãïŒ\r\n$$ b_{n+1} + c_{n+1} = 2(a_n + b_n + c_n) - (b_n + c_n) = 2^{n+1} - (b_n + c_n)$$\r\nããïŒ$b_1+c_1=1$ ãšäœµããŠ\r\n$$ b_n + c_n = \\cfrac{(-1)^n + 2^{n+1}}{3} $$\r\nãåŸãïŒãã£ãŠïŒ\r\n$$ c_n = \\frac{(b_n + c_n) - (b_n - c_n)}{2} = \\cfrac{(-1)^n + 2^{n+1} -3}{6}$$\r\nãšåããïŒ\\\r\nã以äžããïŒåãã®æ¡ä»¶ãæºããå¡ãæ¹ã®æ°ã¯ $a_{2024} + c_{2024} = c_{2025} = \\cfrac{2^{2026}-4}{6} $ ã§ããïŒå·Šäžã®ãã¹ãçœè²ã®å Žåãåæ§ã«èããããšã§ïŒçµå±æ¡ä»¶ãæºããå¡ãæ¹ã¯\r\n$ \\cfrac{2^{2026}-4}{3} $ éããšåããïŒãã£ãŠïŒãã§ã«ããŒã®å°å®çãçšããããšã§ïŒè§£çãã¹ãå€ã¯ $ \\mathbf{340} $ ãšåãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc212/editorial/7869"
},
{
"content": "ãå
¬åŒè§£èª¬ããæãããšã¯æããŸãããïŒæ¬¡ã®ãããªç«åŒãããå Žåã¯ã©ããªãã®ãïŒã«å¯Ÿããåçã§ãïŒ\r\n$$ {}\\_{2024}\\mathrm{C}\\_{1}+{}\\_{2023}\\mathrm{C}\\_{2}\\cdot 2+{}\\_{2022}\\mathrm{C}\\_{3}\\cdot 2^2+\\cdots +{}\\_{1013}\\mathrm{C}\\_{1012}\\cdot 2^{1011}$$\r\n\r\n---\r\n\r\nïŒç«åŒã«è³ããŸã§ã®ããã»ã¹ïŒ\\\r\nãå
¬åŒè§£èª¬ãšåæ§ã«ïŒäžçªå·Šäžã®ãã¹ãé»è²ã§å¡ã£ãå ŽåãèããïŒããåã $2$ è¡ãšãé»ã§å¡ã£ãå ŽåïŒãã®é£æ¥ããåã $2$ è¡ãšãé»ã§å¡ãããšã¯ã§ããªãïŒãã£ãŠïŒ$2024$ åã®ãã¡ $2$ è¡ãšãé»ã§ããåãïŒå·Šãã $x_1, x_2, \\cdots , x_n$ åç®ãšãããšïŒãã®æ°åãæºããã¹ãæ¡ä»¶ã¯ïŒ\r\n$$1 \\leq x_1 \\lt x_2 \\lt \\cdots \\lt x_n \\leq 2024, x_{n+1}-x_n \\geq 2$$\r\nã§ããïŒãã®å€ã¯ ${}\\_{2025-n}\\mathrm{C}\\_{n}$ ãšãªãïŒãªãïŒ$n$ 㯠$1$ ä»¥äž $1012$ 以äžãåãå€æ°ã§ããïŒïŒ\\\r\nãããã«ïŒåé¡æã®æ¡ä»¶ãæºããããã«ã¯ïŒ$1$ åç®ãã $x_1$ åç®ãŸã§ã¯äžã®è¡ããã£ãšé»ã§å¡ãïŒ$x_1$ åç®ãã $x_2$ åç®ãŸã§ã¯äžäžããããã®è¡ããã£ãšé»ã§å¡ãïŒ$\\cdots$ïŒ$x_n$ åç®ãã $2024$ åç®ãŸã§ã¯äžã®è¡ããã£ãšé»ã§å¡ãã°ããïŒãã®ãããªå¡ãæ¹ã¯ $2^{n-1}$ éãã§ããïŒ\\\r\nã以äžã®è°è«ããïŒæåã«èšããåŒãåŸãïŒ\r\n\r\n---\r\n\r\nïŒæåã®åŒã解ãïŒ\r\nã$$S_n={}\\_{n}\\mathrm{C}\\_{0}+{}\\_{n-1}\\mathrm{C}\\_{1}\\cdot 2+{}\\_{n-2}\\mathrm{C}\\_{2}\\cdot 2^2+\\cdots +{}\\_{n-\\lfloor \\frac{n}{2} \\rfloor}\\mathrm{C}\\_{\\lfloor \\frac{n}{2} \\rfloor}\\cdot 2^{\\lfloor \\frac{n}{2} \\rfloor}$$\r\nãšããïŒããŸæ±ãããå€ã¯ïŒ$2Ã\\dfrac{S_{2025}-1}{2}$ ã§ããïŒ\\\r\nãæ°å $\\lbrace S_n \\rbrace$ ã«ã€ããŠæŒžååŒãäœãããïŒåºé¢æ°ãåä»ãªã®ã§ïŒ$n \\lt k$ ã®ç¯å²ã§ ${}\\_{n}\\mathrm{C}\\_{k}=0$ ã§ãããšå®çŸ©ããïŒãã®ããã«å®çŸ©ããã°ïŒ$S_n=\\sum\\limits_{k=0}^{n} {}\\_{n-k}\\mathrm{C}\\_{k}\\ 2^k$ ã§ããïŒãŸãéèŠãªããšãšã㊠${}\\_{n}\\mathrm{C}\\_{k}+{}\\_{n}\\mathrm{C}\\_{k+1}={}\\_{n+1}\\mathrm{C}\\_{k+1}$ ãæºããããïŒ\r\nã$$S_{n+1}=\\sum\\limits_{k=0}^{n+1} {}\\_{n+1-k}\\mathrm{C}\\_{k}\\ 2^k=1+\\sum\\limits_{k=1}^{n+1} {}\\_{n+1-k}\\mathrm{C}\\_{k}\\ 2^k=1+2 \\sum\\limits_{k=0}^{n} {}\\_{n-k}\\mathrm{C}\\_{k+1}\\ 2^k$$\r\nãšå€åœ¢ãããšïŒ\r\n$$\\begin{aligned}\r\nS_{n+1}+2 S_n &=1+2 \\sum\\limits_{k=0}^{n} {}\\_{n-k}\\mathrm{C}\\_{k+1}\\ 2^k +2 \\sum\\limits_{k=0}^{n} {}\\_{n-k}\\mathrm{C}\\_{k}\\ 2^k \\\\\\\\\r\n&= 1+ 2 \\sum\\limits_{k=0}^{n} {}\\_{n+1-k}\\mathrm{C}\\_{k+1}\\ 2^k\\\\\\\\\r\n&= 1+ \\sum\\limits_{k=0}^{n} {}\\_{n+1-k}\\mathrm{C}\\_{k+1}\\ 2^{k+1}\\\\\\\\\r\n&= 1+ \\sum\\limits_{k=1}^{n+1} {}\\_{n+2-k}\\mathrm{C}\\_{k}\\ 2^{k}\\\\\\\\\r\n&= S_{n+2}\r\n\\end{aligned}$$\r\n ãåŸãïŒããšã¯ïŒ$S_1=1$ïŒ$S_2=3$ ãã挞ååŒã解ã㊠$S_n=\\dfrac{2^{n+1}+(-1)^n}{3}$ ãšãªãïŒ\r\n\r\n---\r\n\r\nïŒäœè«ïŒ\\\r\nãã»ãŒåæ§ã®çºæ³ã§ïŒ\r\nã$$S_n={}\\_{n}\\mathrm{C}\\_{0}+{}\\_{n-1}\\mathrm{C}\\_{1}+{}\\_{n-2}\\mathrm{C}\\_{2}+\\cdots +{}\\_{n-\\lfloor \\frac{n}{2} \\rfloor}\\mathrm{C}\\_{\\lfloor \\frac{n}{2} \\rfloor}$$\r\nãšãããšãïŒ$S_n$ ã¯ãã£ããããæ°åã«ãªãããšã瀺ãããŸãïŒ\\\r\nã蚌æããããšããªã人ã¯æ¯éãã£ãŠã¿ãŠãã ããïŒ",
"text": "äºé
å®çã«äŒŒãåŒããèããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc212/editorial/7869/434"
}
] | ã$2$ è¡ $2024$ åã®é·æ¹åœ¢ç¶ã®ãã¹ç®ããããŸãïŒãã®ãšãïŒ$ 4048 $ åã®ãã¹ãããããçœãé»ã§å¡ãæ¹æ³ã®ãã¡ïŒä»¥äžã®æ¡ä»¶ãæºãããã®ã®æ°ãçŽ æ° $2017$ ã§å²ã£ãäœãã解çããŠäžããïŒ
- æãå·Šäžã®ãã¹ããå§ãïŒé£æ¥ãããã¹ã®ãã¡ä»ãããã¹ãšåãè²ã®ãã¹ãžç§»åããããšãç¹°ãè¿ããŠæãå³äžã®ãã¹ãŸã§å°éããããšãã§ããïŒããã§ïŒåããã¹ã®äžãè€æ°åéãããšãã§ããªããšãããšãïŒãã®ãããªç§»åã®æ¹æ³ã¯ã¡ããã© $1$ éãååšããïŒ |
OMC212 | https://onlinemathcontest.com/contests/omc212 | https://onlinemathcontest.com/contests/omc212/tasks/7380 | D | OMC212(D) | 400 | 56 | 88 | [
{
"content": "$a,b$ ã®æ倧å
¬çŽæ°ã$g$ ãšã, äºãã«çŽ ãªæ£æŽæ° $a^\\prime, b^\\prime$ ã«ãã£ãŠ $a = ga^\\prime, b = gb^\\prime$ ãšè¡šããããšãã. ãã®ãšã, \r\n$$\\gcd(b^2-a^2, b^2+a^2) = g^2\\gcd({b^\\prime}^2-{a^\\prime}^2, {b^\\prime}^2+{a^\\prime}^2) = g^2\\gcd(2{b^\\prime}^2, {b^\\prime}^2+{a^\\prime}^2)$$\r\nãšãªã. ããã§, \r\n$\\gcd(2{b^\\prime}^2, {b^\\prime}^2+{a^\\prime}^2)$ ãå¥çŽ æ° $p$ ã§å²ãåãããšãããšïŒ$a^\\prime$ ãš $b^\\prime$ ãå
±ã« $p$ ã§å²ãåããããšãšãªãïŒãã® $2$ ã€ãäºãã«çŽ ã§ããããšã«ççŸããïŒãŸãïŒ$a^\\prime$ ãš $b^\\prime$ ã®å
å°ãªããšãäžæ¹ã¯å¥æ°ã§ããããïŒ$a^{\\prime2} + b^{\\prime2}$ 㯠$4$ ã®åæ°ã§ãªãïŒãã£ãŠïŒ$$\\gcd(b^2-a^2, b^2+a^2) = g^2,2g^2\\tag1$$\r\nãšåããïŒåŸã£ãŠïŒæåŸã«æžãããæ° $c$ ãå²ãåãçŽ æ°ã¯ïŒ$2$ ãŸãã¯æåã«æžããã $2024$ åã®æ°ãå
šãŠå²ãåãçŽ æ°ã®ã¿ã§ããïŒæåã«æžããã $2024$ åã®æ°ã®æ倧å
¬çŽæ°ã¯ $1$ ã§ããããïŒ$c$ 㯠$2$ ã¹ãã§ããïŒ\\\r\nã以äžã§ã¯ïŒ$c$ ã $2$ ã§å²ãåããæ倧ã®åæ°ãæ±ããïŒ$k$ åæäœãããåŸã«é»æ¿ã«æžãããŠãã $2024-k$ åã®æ°ã®ãã¡ïŒ$2$ ã§å²ãåããåæ°ãæãå°ãªããã®ã® $2$ ã§å²ãåããåæ°ã $e_k$ ãšããïŒãã®ãšãïŒ(1)ãã $e_{k+1}\\le 2e_{k}+1$ ã§ããïŒ$e_0 = 0$ ã§ããããïŒ$e_{2023} \\le 2^{2023}-1$ ã§ããïŒãŸãïŒé»æ¿ã«\r\n$$1,\\quad 3,\\quad 2^{2^{1}-1},\\quad 2^{2^{2}-1},\\quad \\ldots,\\quad 2^{2^{2022}-1}$$\r\nãæžãããŠãããšãïŒæ¯åå·Šã®äºã€ãéžãã§æäœãè¡ãããšã§çå·ãéæãããïŒãã£ãŠïŒ$N = 2^{2^{2023}-1}$ ã§ããïŒåŸã£ãŠïŒãã§ã«ããŒã®å°å®çããïŒæ±ããçã㯠$\\bf{127}$ ãšèšç®ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc212/editorial/7380"
}
] | ãOMCåã¯ïŒé»æ¿ã«æ倧å
¬çŽæ°ã $1$ ã§ãããããªçžç°ãªã $2024$ åã®æ£æŽæ°ãæžããåŸïŒæ¬¡ã®æäœã $2023$ åè¡ãããšã«ããŸããïŒ
- é»æ¿ã«æžãããæ°ã®äžãã $2$ ã€ã®æŽæ° $a,b$ ãéžãã§é»æ¿ããæ¶ãïŒä»£ããã« $\gcd(b^2-a^2, b^2+a^2)$ ãé»æ¿ã«æžãïŒãã ãïŒåãæŽæ°ã $2$ ã€ä»¥äžæžãããŠããå Žåã¯ãããã®äžãã $2$ ã€éžãã§ãè¯ãïŒ
ããã®ãšãïŒé»æ¿ã«ã¯ã¡ããã© $1$ ã€ã®æŽæ°ãæžãããç¶æ
ã«ãªããŸãïŒOMCåãæåã«æžããæ°ãè¡ãæäœã«ãããïŒãã®æŽæ°ãå¿
ã $n$ 以äžãšãªããããªæŽæ° $n$ ã®ãã¡æå°ã®ãã®ãååšããã®ã§ïŒããã $N$ ãšããŸãïŒ$N$ ã $1$ æ¡ã®çŽ æ°ã§å²ãåããåæ°ã®åèšãçŽ æ° $2017$ ã§å²ã£ãäœãã解çããŠäžããïŒ
<details><summary>$1$ æ¡ã®çŽ æ°ã§å²ãåããåæ°ã®åèšãšã¯<\/summary>
$1320 = 2^3 \times 3 \times 5 \times 11$ ã $1$ æ¡ã®çŽ æ°ã§å²ãåããåæ°ã®åèšã¯ $3+1+1 = 5$ åã§ããïŒ
<\/details> |
OMC212 | https://onlinemathcontest.com/contests/omc212 | https://onlinemathcontest.com/contests/omc212/tasks/7957 | E | OMC212(E) | 500 | 9 | 41 | [
{
"content": "ãåæç¶æ
ã«ãããŠåãæ°åã«å«ãŸããŠãã $2$ ã€ã®æŽæ°ïŒã€ãŸã $ 1 \\leq n \\leq 256 $ ãçšã㊠$ 2n-1 , 2n $ ãšè¡šããã $2$ æŽæ°ïŒãåãããŠ**ãã¢**ãšåŒã¶ããšã«ããïŒä»»æã®ãã¢ã«ã€ããŠïŒãã®ãã¢ãå«ãæ°åã察象ãšããŠæäœãè¡ããã³ã«ãã¢ã® $2$ æ°ã®éã«ããæ°ã®åæ°ã $1, 3, 7, \\dots $ åãšå¢ããŠããïŒãŸãæ°åã®é·ãã«çç®ããã°ïŒãã®ãã¢ãå«ãæ°åã¯åèšã§ $8$ åæäœã®å¯Ÿè±¡ã«ãªããšãããïŒããããïŒæçµçãªæ°å $T$ ã§ã¯ãã¢ã®é¢ä¿ã«ãã $2$ æ°ã®éã«ã¯ $255$ åã®æ°ãããããïŒ$T$ ã® $1$ çªç®ãã $256$ çªç®ã®æ°ã¯å¥æ°ïŒæ®ãã¯å¶æ°ã§ããããšããããïŒãŸãå·Šãã $1$ çªç®ãã $256$ çªç®ã®æ°ã決ãŸãã°æ®ãã®æ°ãäžæã«æ±ºãŸãããïŒ$f(1) + f(2) + \\cdots + f(256)$ ã®å€ãæ±ããŠããã $2$ åããã°ããïŒ\\\r\nã$T=(K_0,K_1,\\dots,K_{511})$ ãšããïŒåé¡æãšã¯éãïŒæ·»åã $0$ ããå§ãŸãããšã«æ³šæããïŒïŒæåŸã®æäœã®çŽåã®ç¶æ
ã§ã¯é·ã $256$ ã® $2$ ã€ã®æ°å\r\n$$(K_0,K_2,\\dots,K_{510})(=T_0),\\quad (K_1,K_3,\\dots,K_{511})(=T_1)$$\r\nãããïŒæäœã«ãããèŠçŽ ã®å€§å°é¢ä¿ã«ã€ããŠã®å¶çŽããïŒ$K_{2k}\\leq K_{2k+1}\\ (0\\leq k\\leq 255)$ ãæãç«ã€ïŒããã¯æ¬¡ã®ããã«è¡šçŸã§ããïŒ\r\n- $K_n,K_m$ ãé·ã $256$ ã®åãåã«å«ãŸããããã®å¿
èŠååæ¡ä»¶ã¯ïŒ$n,m$ ãäºé²æ°è¡šèšãããšãäž $1$ æ¡ãäžèŽããããšã§ããïŒ\r\n- $n\\lt m$ ã〠$n,m$ ãäºé²æ°è¡šèšãããšãäžãã $1$ æ¡ç®ã®ã¿ãç°ãªããªãã° $K_n\\leq K_m$ïŒ\r\n\r\nããŸã $T_0$ ãæ°ããæžã蟌ãŸããæäœã«ãããŠïŒæäœã®å¯Ÿè±¡ãšãªã $2$ ã€ã®æ°åã¯\r\n$$(K_0,K_4,\\dots,K_{508}),\\quad (K_2,K_6,\\dots,K_{510})$$\r\nã§ããïŒæäœã§ã®å¶çŽãã $K_{4k}\\leq K_{4k+2}\\ (0\\leq k\\leq 127)$ ãæãç«ã€ïŒ$T_1$ ã«ã€ããŠãåæ§ã«èããã°æ¬¡ãåŸãïŒ\r\n- $K_n,K_m$ ãé·ã $128$ ã®åãåã«å«ãŸããããã®å¿
èŠååæ¡ä»¶ã¯ïŒ$n,m$ ãäºé²æ°è¡šèšãããšãäž $2$ æ¡ãäžèŽããããšã§ããïŒ\r\n- $n\\lt m$ ã〠$n,m$ ãäºé²æ°è¡šèšãããšãäžãã $2$ æ¡ç®ã®ã¿ãç°ãªããªãã° $K_n\\leq K_m$ïŒ\r\n\r\nããã以éãåæ§ã«èããã°ïŒæ¬¡ã®äºå®ãåŸãïŒ\r\n- $B_n$ ã $n$ ã®äºé²æ°è¡šèšã§äžãã $i$ æ¡ç®ã $1$ ãšãªããããªéè² æŽæ° $i$ å
šäœã®éåãšããïŒäŸãã° $B_{10}=\\\\{2,4\\\\}$ïŒïŒãã®ãšã $B_n\\subset B_m$ ãªãã° $K_n\\leq K_m$ïŒ\r\n\r\nå
·äœçã«ã¯ $ B_n \\subset B_m $ ãæºãã $ n, m $ ã«ã€ããŠã$n$ ã®ããäžã€ã®æ¡ã®ã¿ãéžãã§ãã®æ¡ã $0$ ãã $1$ ã«ããããšããæäœãç¹°ãè¿ãããšã§ $n=m$ ã«ããããšãã§ããããšãã $ K_n \\leq K_m $ ãåŸãïŒãŸããã®æ¡ä»¶ãæºãããã㪠$T$ ã§ããã°ïŒåæç¶æ
ããé©åã«æäœãç¹°ãè¿ãããšã§äœæå¯èœã§ããããšãåããïŒ\\\r\nããããèžãŸããŠïŒ$i=0,1,\\dots,255$ ã«å¯Ÿã $ f(i+1) $ ãæ±ããïŒ$B_{n}\\$ ã®èŠçŽ æ°ã $c_{n}$ ã§è¡šãããšã«ãããšïŒ$ B_n \\subsetneq B_{i} $ ãæºãã $n$ 㯠$ 2^{c_{i}} - 1 $ åïŒ$ B_{i} \\subsetneq B_n $ ãæºãã $n$ 㯠$ 2^{8-c_{i}} - 1 $ åããããšãã $ 2\\times(2^{c_{i}}-1) + 1 \\leq K_{i-1}\\leq 2\\times(256-2^{8-{c_{i}}})+1 $ ãå¿
èŠã§ããïŒéã«ïŒãããæºããä»»æã®æ£ã®å¥æ°ã $ K_{i} $ ã«ãªãåŸãïŒåŸã£ãŠ $ f(i+1) = 258-2^{8-c_{i}}-2^{c_{i}} $ ãåŸãããïŒ$ c_{i} = k \\ ( 0 \\leq k \\leq 8 ) $ ãæºãã $i \\ ( 0 \\leq i \\leq 255 )$ 㯠$ \\dbinom{8}{k} $ åããããïŒæ±ããã¹ãå€ã¯ \r\n$$ 2 \\left( \\sum_{k=0}^{8} \\ (258-2^{8-k}-2^{k}) à \\dbinom{8}{k} \\right) = \\mathbf{105852}. $$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc212/editorial/7957"
}
] | ãã¯ããïŒé»æ¿ã« $256$ åã®é·ã $2$ ã®æ°å $(2n-1, 2n) ~ (n=1,2,\dots,256)$ ãæžãããŠããŸãïŒãããã®æ°åã«å¯ŸããŠæ¬¡ã®æäœãèããŸãïŒ
- **æäœ**ïŒé·ããçãã $2$ ã€ã®çžç°ãªãæ°å $(a_1, \ldots, a_m)$ ããã³ $(b_1, \ldots, b_m)$ ã§ãã£ãŠïŒä»»æã® $1 \le k \le m$ ã«ã€ã㊠$a_k \le b_k$ ãã¿ãããã®ãé»æ¿ããéžã³ïŒããããæ¶ãïŒãããŠïŒé»æ¿ã«é·ãã $2$ åã®æ°å $(a_1, b_1, a_2, b_2, \ldots, a_m, b_m)$ ãæ°ãã«æžã足ãïŒ
ãã®æäœãäœåºŠãè¡ã£ãçµæïŒé»æ¿ã«ã¯æ°å $(t_1, \ldots, t_{512})$ ã®ã¿ãæžãããŠããç¶æ
ã«ãªããŸããïŒ$1\le i \le 512$ ããããã«ã€ããŠïŒ$t_i$ ãšããŠããããå€ã®çš®é¡æ°ã $f(i)$ ãšãããšãïŒ
$$f(1) + f(2) + \cdots + f(512) $$
ã®å€ã解çããŠãã ããïŒ |
OMC212 | https://onlinemathcontest.com/contests/omc212 | https://onlinemathcontest.com/contests/omc212/tasks/8078 | F | OMC212(F) | 500 | 18 | 31 | [
{
"content": "ãç¹ $Y$ ãå«ãŸãªãæ¹ã®åŒ§ $AB$ ã®äžç¹ã $P$ïŒç¹ $Y$ ãå«ãæ¹ã®åŒ§ $AB$ ã®äžç¹ã $Q$ ãšããïŒãã®ãšãïŒ$3$ ç¹ $Y, X, P$ åã³ $ZïŒXïŒQ$ ããã®é ã«åäžçŽç·äžã«äžŠã¶ããšããŸã瀺ãïŒ\\\r\nã以äžïŒå $Ω$ ã®äžå¿ã $O$ïŒå $Ω_1$ ã®äžå¿ã $O_1$ïŒå $Ω_2$ ã®äžå¿ã $O_2$ ãšããïŒãã®ãšãïŒ$P$ ã匧 $AB$ ã®äžç¹ã§ããããšãã $PO \\perp AB$ ãåŸãïŒãŸãïŒæããã« $O_1X \\perp AB$ ã§ããããïŒ$PO \\parallel O_1X$ ãåŸãïŒ $Y, O_1, O$ ããã®é ã«äžçŽç·äžã«äžŠã¶ããšãšåãããŠïŒ$â YO_1X = â YOP$ ãå°ãããïŒãããŠïŒ$YO_1 = O_1X, YO = OP$ ãã $â O_1YX = â OYP$ ãåŸãïŒçŽç· $YO$ ã«é¢ã㊠$X$ ãš $P$ ãåãåŽã«ããããšãšåãããŠïŒ$Y, X, P$ ããã®é ã«åäžçŽç·äžã«äžŠã¶ããšã瀺ãããïŒ$3$ ç¹ $Z, X, Q$ ãåäžçŽç·äžã«äžŠã¶ããšã«ã€ããŠãïŒåæ§ã«ããŠç€ºãããïŒ\\\r\nãããããïŒ$AP = BP$ ãã\r\n$$â AYX = â AYP = â BYP = â BYX$$\r\nãšãªãïŒ $AX : BX = AY : BY = 2 : 1$ ãšåããïŒåæ§ã«ããŠïŒ$â AZX = â BZX$ïŒåã³ $AZ : BZ = AX : BX = 2 : 1$ ãåããïŒããã§ïŒå $Ω$ ã®åšäžã«ç¹ $Z^\\prime$ ãïŒ$ZZ^\\prime \\parallel BA$ ãæºããããã«åã£ããšããïŒãã®ãšãïŒ$â ZAB = â AZZ^\\prime$ ããïŒ$AZ^\\prime = BZ$ ãåŸãïŒåè§åœ¢ $AZ^\\prime ZB$ ã¯çèå°åœ¢ãšåããïŒãã£ãŠïŒ$AZ^\\prime : Z^\\prime B = BZ : ZA = 1 : 2$ ãšåããïŒ $YZ^\\prime$ ãš $AB$ ã®äº€ç¹ã $M^\\prime$ ãšãããšïŒ\r\n$$AM^\\prime : M^\\prime B = AY à AZ^\\prime : BY à BZ^\\prime = 1 : 1$$\r\nãšãªãããšãåããïŒãã£ãŠïŒ$M^\\prime$ ãš $M$ ã¯äžèŽãïŒ$3$ ç¹ $Y, M, Z^\\prime$ ãåäžçŽç·äžã«äžŠã¶ããšãåããïŒãã®ãšãïŒ\r\n$$â YMB = â YAM + â AYM = â YAB + â AYZ^\\prime = â YAB + â BAZ = â YAZ$$ \r\nãå°ãããïŒ(æåŸãã $2$ çªç®ã®çå·ã« $AZ^\\prime = BZ$ ãçšããïŒ) åæ§ã«ããŠïŒ$â ZMB = â YAZ$ ãå°ãããïŒãã£ãŠïŒ$â YMZ = 2â YAZ = â YOZ$ ãåããïŒ$4$ ç¹ $Y, M, O, Z$ ã¯å
±åãšåããïŒãŸãïŒ$YZ$ ãš $AB$ ã®äº€ç¹ã $L$ ãšãããšïŒ$â YML = â ZML$ ããïŒ$YL : ZL = YM : ZM = 3 : 5$ ã§ããïŒãŸãïŒ$â AYB + â AZB = 180^\\circ$ ãã $\\sin \\angle AYB =\\sin\\angle AZB $ ã§ããã®ã§\r\n$$YA à YB : ZA à ZB = \\triangle AYB : \\triangle AZB = AB\\times YL : AB\\times ZL=3 : 5$$\r\n ãåŸãïŒãããšïŒ$ZA : ZB = 2 : 1$ ãåããããšïŒ$ZA = \\cfrac{8\\sqrt{15}}{3}, \\ ZB = \\cfrac{4\\sqrt{15}}{3}$ ãåŸãããïŒãŸãïŒ$â AYB + â AZB = 180^\\circ$ïŒã€ãŸãïŒ$\\textrm{cos}â AYB + \\textrm{cos}â AZB = 0$ ãçšããŠïŒäžè§åœ¢ $AYB$ ãšäžè§åœ¢ $AZB$ ã«äœåŒŠå®çãé©çšãããšïŒ$AB = 10$ïŒåã³ïŒ$\\textrm{cos}â AYB = -\\cfrac{5}{16}$ ãåŸãããïŒãã£ãŠ,ã$\\textrm{sin}â AYB = \\cfrac{\\sqrt{231}}{16}$ ãåããïŒæ£åŒŠå®çããïŒå $Ω$ ã®ååŸã $\\cfrac{80}{\\sqrt{231}}$ ãšåããïŒ\\\r\nããããŠïŒ$3$ ç¹ $N, M,O$ ããã®é ã«äžçŽç·äžã«äžŠã¶ããšïŒåã³ $4$ ç¹ $Y,M,O,Z$ ãå
±åã§ããããšããïŒäžè§åœ¢ $NYM$ ãšäžè§åœ¢ $NOZ$ ãçžäŒŒã§ãããšåããïŒãã£ãŠïŒ$NM : NZ = YM : OZ$ïŒåã³ïŒ$â NMY = â NZO$\r\nãåããïŒäžè§åœ¢ $AYB$ ã«äžç·å®çãé©çšããããšã§ïŒ$YM = \\sqrt{15}$ ãåããïŒã〠$OZ = \\cfrac{80}{\\sqrt{231}}$ ã§ããããšããïŒ$NM : NZ = 3\\sqrt{385} : 80$ ãšåããïŒãŸãïŒ\r\n$$â OMZ = 90^\\circ - â ZMB = 90^\\circ - â YMB = â NMY = â OZN$$\r\nããïŒäžè§åœ¢ $OMZ$ ãšäžè§åœ¢ $OZN$ ãçžäŒŒãšãåããïŒãã£ãŠïŒ$OM à ON = OZ^2 = \\cfrac{6400}{231}$ ãåŸãïŒ$OM = \\sqrt{OB^2 - BM^2} = \\cfrac{25}{\\sqrt{231}}$ ããïŒ$ \\ ON = \\cfrac{256}{\\sqrt{231}}$ ãåããïŒ$NM = ON - OM = \\sqrt{231}$ ãåããïŒãã£ãŠïŒ$NM : NZ = 3\\sqrt{385} : 80$ ããïŒ$NZ = \\cfrac{80}{\\sqrt{15}}$ ãåããïŒ$NZ^2 = \\cfrac{1280}{3}$ ãåããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\mathbf{1283}$ ãšãªã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc212/editorial/8078"
},
{
"content": "ïŒãã¡ããšèªãã®ãé¢åãªæ¹åãã«ïŒæ¬å¥è§£ã®ãã€ã©ã€ã\\\r\nãç¹ $M$ ã®åšãã®æ¹ã¹ãã®å®çãçšããŠïŒ$MA \\cdot MB = MY \\cdot MZ$ ã§ããïŒããããªããã°å
¬åŒè§£èª¬ã®ç¹ $Z^{\\prime}$ ãåèã«ããïŒïŒ\r\n\r\n---\r\n\r\nã以äžïŒåç¹ã®å称ã¯ïŒå
¬åŒè§£èª¬ãšåããã®ãçšããŠããïŒå®çŸ©ãæ¹ããŠèšãïŒïŒ\\\r\nãç¹ $Z$ ãå«ãæ¹ã®åŒ§ $AB$ ã®äžç¹ã $P$ïŒç¹ $Y$ ãå«ãæ¹ã®åŒ§ $AB$ ã®äžç¹ã $Q$ ãšããïŒãã®ãšãïŒ$3$ ç¹ $Y, X, P$ åã³ $Z, X, Q$ ã¯ãã®é ã«åäžçŽç·äžã«ããïŒçç±ã¯å
¬åŒè§£èª¬ãåç
§ïŒïŒ\\\r\nããªãïŒãã®ããšãã $\\angle AYX = \\angle BYX$ ãæãç«ã¡ïŒ$AX:BX=2:1$ïŒåæ§ã«ã㊠$AZ:BZ=2:1$ ã瀺ããïŒ \r\n\r\nããŸãïŒ$\\angle YMB=\\angle ZMB$ ã§ããïŒããã«ã€ããŠã¯å
¬åŒè§£èª¬ãšå¥ã®èšŒæãäžããïŒ\\\r\nã$4$ ç¹ $M, X, Y, Q$ ã¯å
±åã§ããïŒ$\\because \\angle QMX=90^{\\circ}, \\angle QYX=\\angle QYP=90^{\\circ}$ïŒïŒããããïŒ$\\angle YQX= \\angle YMX$ ãåŸãïŒ\\\r\nãåæ§ã«ïŒ$4$ ç¹ $M, X, Z, P$ ã«ã€ããŠèããŠïŒ$\\angle ZPX= \\angle ZMX$\\\r\nãååšè§ã®å®çããïŒ$\\angle YQX= \\angle YQZ = \\angle YPZ = \\angle ZPX$ ã§ããïŒãããã $\\angle YMB=\\angle ZMB$ ãåŸãïŒ\\\r\nãããã§ïŒç¹ $Y$ïŒ$Z$ ãã çŽç· $AB$ ã«åç·ãäžããïŒãã®è¶³ããããã $H$ïŒ$I$ ãšããïŒ\\\r\nã$\\angle YMB=\\angle ZMB$ ãã $MH:MI=MY:MZ=3:5$ ã§ããïŒãã®ããšããïŒ$NZ= \\dfrac{5}{2}YZ$ ãåŸãïŒåŸã£ãŠïŒä»¥äžã¯ $YZ$ ãæ±ããããšãç®æšãšãªãïŒ\r\n\r\n---\r\n\r\nã以äžã§æºåãæŽã£ãïŒããšã¯ïŒé©åœãªå³åœ¢ã«è«žå®çã掻çšããŠãããïŒ\\\r\nã$AM=m$ ãšããïŒäžç·å®çãã $YM=\\sqrt{40-m^2}$ ãåŸïŒãããã $ZM=\\dfrac{5}{3} \\sqrt{40-m^2}$ ã§ããïŒ\\\r\nãç¹ $M$ ã®åšãã®æ¹ã¹ãã®å®çãçšããŠïŒ$MA \\cdot MB = MY \\cdot MZ$ ã§ããïŒããããªããã°å
¬åŒè§£èª¬ã®ç¹ $Z^{\\prime}$ ãåèã«ããïŒïŒãããçšã㊠$m=5$ ãåŸãïŒ\\\r\nã$\\triangle ABZ$ ã«å床äžç·å®çãå©çšããŠïŒ$AZ=\\dfrac{8}{3}\\sqrt{10}$ïŒ$BZ=\\dfrac{4}{3}\\sqrt{10}$ïŒ\\\r\nãæåŸã«åè§åœ¢ $AYBZ$ ã«ãã¬ããŒã®å®çãå©çšã㊠$YZ=\\dfrac{32}{15}\\sqrt{15}$ ãåŸãïŒ\\\r\nããªãïŒæçµçã«æ±ããããã®ã¯ïŒ$NZ=\\dfrac{5}{2}YZ$ ã§ãã£ãããšã«æ³šæããïŒ",
"text": "æ¹ã¹ãã®å®çã»ãã¬ããŒã®å®ççãå©çšããå¥è§£",
"url": "https://onlinemathcontest.com/contests/omc212/editorial/8078/437"
},
{
"content": "次ã®äºå®ãçšããïŒèšŒæã¯å
¬åŒè§£èª¬ãåç
§ïŒïŒ\r\n- $(1)$ æ¹ã¹ãã®å®çã«ãã$MA\\times MB=MY\\times MZ$\r\n- $(2)$ $\\angle YMB=\\angle ZMB$\r\n- $(3)$ $NZ=\\dfrac{5}{2}YZ$\r\n----\r\n\r\nãäºå® $(1)$ ãã\r\n$$MA:MB:MY:MZ=\\sqrt{15}:\\sqrt{15}:3:5$$\r\nã§ããïŒãããšäžè§åœ¢ $ABY$ ã«å¯Ÿããäžç·å®çã«ããåŸãããåŒ\r\n$$8^2+4^2=2(MY^2+MB^2)$$\r\nããïŒ$MY=\\sqrt{15}, ~ MB=5, ~ MZ=\\dfrac{5\\sqrt{15}}{3}$ ãåŸãã®ã§ïŒäœåŒŠå®çã«ãã $\\cos\\angle YMB =\\dfrac{4}{25}\\sqrt{15}$ ããããïŒ\\\r\nãããšäºå® $(2)$ ããïŒ$\\cos \\angle YMZ=2\\cos^2\\angle YMB-1=-\\dfrac{29}{125}$ ã§ããïŒããäžåºŠäœåŒŠå®çãçšããŠïŒ\r\n$$YZ^2=MY^2+MZ^2-2MY\\cdot MZ\\cos \\angle YMZ=\\frac{1024}{15}$$\r\nã§ããïŒãããã£ãŠäºå® $(3)$ ãçšã㊠$NZ^2=\\dfrac{25}{4}YZ=\\dfrac{1280}{3}$ ãåŸãïŒ",
"text": "äžè§æ¯ã«ããèšç®",
"url": "https://onlinemathcontest.com/contests/omc212/editorial/8078/439"
}
] | ãå $Ω$ ã®åšäžã«ç°ãªã $2$ ç¹ $A,B$ ãããïŒç·å $AB$ äžã«ç¹ $X$ ããããŸãïŒãŸã, å $Ω$ ã®åšäžã« $2$ ç¹ $Y,Z$ ãããïŒãããã¯çŽç· $AB$ ã«é¢ããŠå察åŽã«ããïŒã〠$AY = 8, BY = 4$ ãæºãããŸãïŒãã®ãšãïŒå $Ω_1$ ã¯ç¹ $X$ ã§ç·å $AB$ ã«æ¥ãïŒç¹ $Y$ ã§å $Ω$ ã«å
æ¥ããŸããïŒãŸãïŒå $Ω_2$ ã¯ç¹ $X$ ã§ç·å $AB$ ã«æ¥ãïŒç¹ $Z$ ã§å $Ω$ ã«å
æ¥ããŸããïŒãããŠïŒç·å $AB$ ã®äžç¹ã $M$ ãšãããšãïŒ$YM : ZM = 3:5$ ãæç«ããŸããïŒç·å $AB$ ã®åçŽäºçåç·ãšçŽç· $YZ$ ã®äº€ç¹ã $N$ ãšãããšãïŒç·å $NZ$ ã®é·ãã®äºä¹ãæ±ããŠäžããïŒãã ãïŒçãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããããïŒ$a+b$ ã®å€ã解çããŠäžãã. |
OMC211 (for beginners) | https://onlinemathcontest.com/contests/omc211 | https://onlinemathcontest.com/contests/omc211/tasks/5120 | A | OMC211(A) | 100 | 355 | 365 | [
{
"content": "ãæ¡ä»¶ã¯ $ab-(a+b)+1=(a-1)(b-1)$ ã $10$ ã§å²ã£ãŠ $1$ äœãããšãšåå€ã§ããïŒ$10$ ã§å²ã£ãŠ $1$ äœãæ£æŽæ°ã§ãã£ãŠïŒ$8$ 以äžã®æ£æŽæ° $2$ ã€ã®ç©ã«è¡šãããã®ã¯ $1=1\\times 1$ ãš $21=3\\times 7$ ã®ã¿ã§ããããïŒæ±ããçµã¯ $(2,2),(4,8),(8,4)$ ã§ããïŒç¹ã«æ±ããç·å㯠$\\textbf{28}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc211/editorial/5120"
},
{
"content": "ã $a+b$ ãš $ab$ ã®äžã®äœãçãããšãïŒå°ãªããšã $a+b$ ãš $ab$ ã®å¶å¥ã¯äžèŽããããšãå¿
èŠã§ãïŒ\\\r\nã $a$ ãš $b$ ã®å¶å¥ã§å ŽååããããšïŒ\r\n\r\n- $a$ ãå¥æ°ïŒ $b$ ãå¥æ°ã®ãšãïŒ $a+b$ ã¯å¶æ°ïŒ $ab$ ã¯å¥æ°ãšãªãå¶å¥ã¯äžèŽããªãïŒ\r\n- $a$ ãå¥æ°ïŒ $b$ ãå¶æ°ã®ãšãïŒ $a+b$ ã¯å¥æ°ïŒ $ab$ ã¯å¶æ°ãšãªãå¶å¥ã¯äžèŽããªãïŒ\r\n- $a$ ãå¶æ°ïŒ $b$ ãå¥æ°ã®ãšãïŒ $a+b$ ã¯å¥æ°ïŒ $ab$ ã¯å¶æ°ãšãªãå¶å¥ã¯äžèŽããªãïŒ\r\n- $a$ ãå¶æ°ïŒ $b$ ãå¶æ°ã®ãšãïŒ $a+b$ ã¯å¶æ°ïŒ $ab$ ã¯å¶æ°ãšãªãå¶å¥ã¯äžèŽããïŒ\r\n\r\nããããã£ãŠ $a+b$ ãš $ab$ ã®å¶å¥ãäžèŽããããšã®å¿
èŠååæ¡ä»¶ã¯ $a$ ãš $b$ ãäž¡æ¹å¶æ°ã§ããããšã§ãïŒ \\\r\nããªã®ã§ãã®åé¡ã«ãããŠïŒ $a,b$ ãäž¡æ¹ $1$ ä»¥äž $9$ 以äžã®å¶æ°ã§ããå ŽåïŒ $16$ éãïŒããã¹ãŠè©ŠããšçããåŸãŸãïŒ",
"text": "å¶å¥æ§ã«çç®ãã解æ³",
"url": "https://onlinemathcontest.com/contests/omc211/editorial/5120/433"
}
] | ã$1$ ä»¥äž $9$ 以äžã®æŽæ°ã®çµ $(a,b)$ ã§ãã£ãŠïŒ$a+b$ ãš $ab$ ããããã®äžã®äœãçãããã®ãã¹ãŠã«ã€ããŠïŒ$a+b$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC211 (for beginners) | https://onlinemathcontest.com/contests/omc211 | https://onlinemathcontest.com/contests/omc211/tasks/3160 | B | OMC211(B) | 200 | 306 | 354 | [
{
"content": "$$f(n)=\\dfrac{1}{n}+\\dfrac{20}{n^2}=\\frac{n+20}{n^2}$$\r\nãšããïŒ$f(n)=0$ ã®ãšãïŒ$n=-20$ ãåŸãïŒãã以å€ã®ãšãïŒ$\\lvert f(n) \\rvert\\geq 1$ ããªãã¡\r\n$$\\lvert n+20 \\rvert \\geq n^2$$\r\nãå¿
èŠã§ããïŒãã㯠$-4\\leq n\\leq 5$ ãšåå€ã§ããïŒãã®ç¯å²ã§èª¿ã¹ãã° $n=-4, -1, 1, 5$ ãé©ããïŒ\\\r\nã以äžããïŒè§£ç㯠$20+4+1+1+5=\\bf{31}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc211/editorial/3160"
},
{
"content": "ã$$\\frac{1}{n}+\\frac{20}{n\\^2}=\\frac{n+20}{n\\^{2}}$$ ãã, $n+20$ 㯠$n$ ã®åæ°ãšãªãå¿
èŠããã, ç¹ã« $n$ 㯠$20$ ã®çŽæ°ã§ã. \r\n$nm=20$ ãªãæŽæ° $m$ ãåããš, äžåŒã¯\r\n\r\n$$\\begin{aligned}\r\n\\frac{n+20}{n\\^{2}}&=\\frac{n+nm}{n\\times \\frac{20}{m}}\\\\\\\\\r\n&=\\frac{m(m+1)}{20}\\\\\\\\\r\n\\end{aligned}$$\r\n\r\nãšå€åœ¢ã§ããŸã. ãã£ãŠ, æåŸã®åŒãæŽæ°ãšãªããã㪠$20$ ã®çŽæ° $m$ ãæ¢ãã°ãã, $m=-20,-5,-1,4,20$ ãèŠã€ãããŸã. \r\n\r\nãªã, ãã® $m$ ã®çºèŠã¯ $20$ ã®çŽæ° $12$ åå
šãŠãæçŽã«èšç®ããŠè©Šãæ¹æ³ã®ã»ã, \r\n- $m,m+1$ ã®ãã¡å¶æ°ã¯äžæ¹ã®ã¿ã®ãã, ãã®äžæ¹ã $4$ ã®åæ°ãšãªãå¿
èŠããã. ãã£ãŠ, $m=\\pm 2,\\pm 10$ ã¯ããããªã. \r\n- $\\mod 5$ ãèããããšã§, $m\\equiv 0,4\\pmod 5$ ã®ã¿ãæ¡ä»¶ãæºãããã. \r\n\r\nãªã©ã«ãã£ãŠåè£ãçµãããšãå¯èœã§ã.",
"text": "å¥è§£",
"url": "https://onlinemathcontest.com/contests/omc211/editorial/3160/426"
}
] | $$\dfrac{1}{n}+\dfrac{20}{n^2}$$
ãæŽæ°ãšãªããã㪠$0$ ã§ãªãæŽæ° $n$ ã«ã€ããŠïŒãã®**絶察å€ã®ç·å**ã解çããŠãã ããïŒ\
ãäŸãã°ïŒæ±ãããã®ã $n=-3,3,4$ ã§ããã°ïŒ
$$\lvert-3\rvert+\lvert3\rvert+\lvert4\rvert=10$$
ã解çããŠãã ããïŒ |
OMC211 (for beginners) | https://onlinemathcontest.com/contests/omc211 | https://onlinemathcontest.com/contests/omc211/tasks/4079 | C | OMC211(C) | 200 | 227 | 279 | [
{
"content": "ã $AB=7x,AC=16y$ ãšãããšïŒæ¹ã¹ãã®å®çãã\r\n$$AD_1^2=AD_2 \\times AD_3,\\quad BD_1^2=BD_4^2,\\quad CD_3 \\times CD_2=CD_4^2$$\r\nãšãªãïŒãã£ãŠïŒ\r\n$$x^2 : y^2 = 63 : 8, \\quad BD_1^2 = 9x^2, \\quad CD_4^2 = 14y^2$$\r\nã§ããããïŒ\r\n$$BD_4^2:CD_4^2=81:16$$\r\nãã $BD_4:CD_4=9:4$ ãåŸãïŒç¹ã«è§£çãã¹ã㯠$\\bf13$ ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc211/editorial/4079"
},
{
"content": "ã$AD_2=9k$ïŒ$D_2D_3=5k$ïŒ$D_3C=2k$ ãšãããšïŒæ¹ã¹ãã®å®çãã $AD_1=3\\sqrt{14}\\ k$ïŒ$CD_4=\\sqrt{14}\\ k$ ãåŸãïŒ\\\r\nãããã« $AD_1:D_1B=4:3$ïŒ$BD_1=BD_4$ ãçšããã°ïŒ$BD_4=\\dfrac{9}{4}\\sqrt{14} \\ k$ ã§ããïŒ\r\n\r\nâ»ãªãæ¬åã§ã¯ïŒããã«é©åœãªçžäŒŒå€æãè¡ãããšã§ïŒç¹ã« $k=1$ ãšããŠãåé¡ãªãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc211/editorial/4079/424"
}
] | ãäžè§åœ¢ $ABC$ ã®èŸº $AB, BC$ ã«ããããç¹ $D_1, D_4$ ã§æ¥ããå $\omega$ ãããïŒ$\omega$ ã¯çžç°ãªãç¹ $D_2,D_3$ ã§èŸº $AC$ ãšäº€ãã£ãŠããŸãïŒãã ãïŒ$4$ ç¹ $A,D_2,D_3,C$ ã¯ãã®é ã«äžŠãã§ããŸãïŒ
$$AD_1:D_1B=4:3,\quad AD_2:D_2D_3:D_3C=9:5:2$$
ã§ãããšãïŒäºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$BD_4:D_4C=a:b$ ãšè¡šãããŸãïŒ$a+b$ ãæ±ããŠãã ããïŒ |
OMC211 (for beginners) | https://onlinemathcontest.com/contests/omc211 | https://onlinemathcontest.com/contests/omc211/tasks/3164 | D | OMC211(D) | 300 | 82 | 132 | [
{
"content": "ãçŽç· $I_CA$ ãš $\\triangle ABC$ ã®å€æ¥åã®äº€ç¹ã®ãã¡ $A$ ã§ãªãæ¹ã $M$ ãšããïŒäžè¬ã«\r\n$$\\angle{CAB}+2\\angle{I_CAB}=180\\degree$$\r\nã§ããããšãã次ãæãç«ã€ïŒ\r\n$$\\angle MAC=\\angle I_CAB=\\angle CAB=60\\degree$$\r\nãããã $MBC$ ã¯æ£äžè§åœ¢ãšãªãïŒããã«ïŒç°¡åãªè§åºŠèšç®ãã $\\angle MI_CB=\\angle MBI_C$ ãåããã®ã§\r\n$$MI_C=MB=MC=BC$$\r\nã§ããïŒãããã®ããšãã\r\n$$AM+AB=AC=BC+1=MI_C+1$$\r\nãããã£ãŠ $AB=AI_C+1$ ã§ããïŒ$AB=x$ ãšããã°äžè§åœ¢ $ABI_C$ ã«ãããŠäœåŒŠå®çãã\r\n$$x^2+(x-1)^2-x(x-1)=6^2$$\r\nããã解ããš $x=\\dfrac{1+\\sqrt{141}}{2}$ ã§ããïŒè§£ç㯠$1+141+2=\\bf{144}$ ïŒ\r\n\r\n----\r\n**å¥è§£.**\r\n\r\nãçŽç· $CI_C$ ã«é¢ã㊠$B$ ãšå¯Ÿç§°ãªç¹ã $X$ ãšãããšïŒããã¯èŸº $AC$ äžã«ããïŒç°¡åãªè§åºŠèšç®ã«ããïŒ $4$ ç¹ $A,X,B,I_C$ ã¯åäžååšäžã«ããïŒç¹ã«äžè§åœ¢ $BI_CX$ ã¯æ£äžè§åœ¢ã§ããïŒãã£ãŠ $BX=BI_C=6$ ãåŸãã®ã§äžè§åœ¢ $ABX$ ã«ã€ããŠäœåŒŠå®çãçšããããšã§ $AB^2+1-AB=36$ ãåŸãïŒãããã£ãŠ $AB=\\dfrac{1+\\sqrt{141}}{2}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc211/editorial/3164"
},
{
"content": "ãç·å $AB$ ãšåæ¥å ã®äº€ç¹ã $P$ïŒçŽç· $BC$ ãšåæ¥å ã®äº€ç¹ã $Q$ïŒçŽç· $CA$ ãšåæ¥å ã®äº€ç¹ã $R$ ãšããïŒ\\\r\nã$CR=CQ$ ãçšããŠïŒ$AR=k$ïŒ$BQ=k+1$ ãšãããïŒãããã $AP=AR=k$ïŒ$BP=BQ=k+1$ ã§ããïŒ\\\r\nãããã« $\\triangle{API_C}$ ã¯äžã€ã®è§ã®å€§ããã $90^{\\circ}$ïŒ$60^{\\circ}$ïŒ$30^{\\circ}$ ã§ããïŒãããçšããã° $PI_C=\\sqrt{3}\\ k$ ã§ããïŒ\\\r\nãæåŸã«ïŒ$\\triangle{BPI_C}$ ã«äžå¹³æ¹ã®å®çãçšããããšã§ïŒ$(\\sqrt{3}\\ k)^2+(k+1)^2=6^2$ ãã $k$ ã®å€ãæ±ãŸãïŒãªãïŒæ±ãããå€ã¯ $AB=2k+1$ ã§ããããšã«æ³šæããïŒ",
"text": "åæ¥åã®æ§è³ªãçšããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc211/editorial/3164/425"
}
] | ã$AC-BC=1$ ãæºãã $\triangle ABC$ ã«ã€ããŠïŒãã® $\angle C$ å
ã®åå¿ã $I_C$ ãšãããšä»¥äžãæç«ããŸããïŒ
$$\angle I_CAB=\angle CAB,\quad BI_C=6$$
ããã®ãšãïŒèŸº $AB$ ã®é·ã㯠äºãã«çŽ ãªæ£æŽæ° $a,c$ ãšïŒå¹³æ¹å åãæããªãæ£æŽæ° $b$ ã«ãã£ãŠ $\dfrac{a+\sqrt{b}}{c}$ ãšè¡šããã®ã§ïŒ$a+b+c$ ã解çããŠãã ããïŒ |
OMC211 (for beginners) | https://onlinemathcontest.com/contests/omc211 | https://onlinemathcontest.com/contests/omc211/tasks/7007 | E | OMC211(E) | 400 | 53 | 86 | [
{
"content": "ã$3Ã20$ ã®ãã¹ç®ãèãïŒäžãã $a_i$ è¡ç®ïŒå·Šãã $b_i$ è¡ç®ã®ãã¹ã $X_i$ ãšããïŒãã®ãšãïŒ$X_1,X_2,\\ldots,X_{60}$ ã¯ãã¹ç®ã®å
šãŠã®ãã¹ãéãïŒå·Šäžã®ãã¹ããå³äžã®ãã¹ãŸã§ïŒèŸºãå
±æãããã¹ã蟿ãéã«ãªã£ãŠããããïŒãã®ãããªéã®åæ°ãæ°ããã°è¯ãïŒä»¥äžã§ã¯ïŒäžãã $c$ è¡ç®ïŒå·Šãã $d$ è¡ç®ã®ãã¹ã $[c,d]$ ã§è¡šãïŒ\\\r\nã$[1,1]$ ãã $0$ å以äžå³ã«é²ã¿ïŒåããŠäžã«é²ãã ãã¹ã $[2,k]$ ãšãããšïŒéã¯ãããã\r\n$$[2,k]â \\cdots â[2,1]â[3,1]â \\cdots â[3,k]â[3,k+1]$$\r\nãšäžæã«å®ãŸãããšãåããïŒç¹ã«ïŒ$3Ãn$ ã®ãã¹ç®ã«ã€ããŠïŒ$[1,1]â[1,n]â[3,1]â[3,n]$ ãšéãéã¯ã¡ããã© $1$ ã€ååšããïŒåŸã£ãŠïŒ$3Ã20$ ã®ãã¹ç®ãããã€ãã® $3Ãn$ ã®ãã¹ç®ã«åããæ¹æ³ãèããã°ïŒãããšéã $1$ 察 $1$ 察å¿ããïŒãã ãïŒãã®ãŸãŸã§ã¯çµç¹ã $[1,20]$ ã§ã¯ãªã $[3,20]$ ãšããªãããããšã«çæããïŒ\\\r\nãäžã®ãã¹ç®ã®åãæ¹ã次ã®ããã«èããïŒ\r\n\r\n- $3Ã20$ ã®ãã¹ç®ãåããŠãã瞊ã®ç· $19$ æ¬ã®ãã¡ïŒ$0$ æ¬ä»¥äžãéžã³ïŒãããå¢çãšããïŒ\r\n\r\nããã®ãšãïŒå¢çã $1$ æ¬åŒããšçµç¹ã®å³äžã»å³äžãå
¥ãæ¿ããããïŒå¢çã¯ã¡ããã©å¥æ°æ¬åŒãã°è¯ãïŒ$19$ æ¬ç®ã®å¢çãæåŸã«éžã¹ã°ïŒãã®æç¡ã§å¶å¥ã調æŽã§ããããïŒç¹ã«æ±ããç㯠$2^{18}=\\mathbf{262144}$ ã§ããïŒ\\\r\nã以äžã« $3Ã7$ ã®ãã¹ç®ã $3$ æ¬ã®å¢çã§åããå Žåã瀺ãïŒ\r\n\r\n![figure 1](\\/images\\/xNRJcAwsvaqfsepIfXOCMZGuq4D4NTFwfIqDFrcC)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc211/editorial/7007"
},
{
"content": "3\\/5äžã«å·ç",
"text": "挞ååŒã«ããæ°ãäžã",
"url": "https://onlinemathcontest.com/contests/omc211/editorial/7007/435"
}
] | ã$1$ ä»¥äž $3$ 以äžã®æŽæ°ã®çµ $(a_1,a_2,\ldots,a_{60})$ ãš $1$ ä»¥äž $20$ 以äžã®æŽæ°ã®çµ
$(b_1,b_2,\ldots,b_{60})$ ã®ãã¢ã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ããã¹ãŠã¿ãããã®ã¯ããã€ãããŸããïŒ
- $a_1=a_{60}=b_1=1, ~ b_{60}=20$ïŒ
- $i=1,2,\ldots,59$ ããããã«ã€ããŠïŒä»¥äžã®äžæ¹ãæãç«ã€ïŒ
- $|a_{i}-a_{i+1}|=1$ ã〠$b_i=b_{i+1}$ïŒ
- $a_i=a_{i+1}$ ã〠$|b_{i}-b_{i+1}|=1$ïŒ
- çµ $(a_1,b_1),(a_2,b_2),\ldots,(a_{60},b_{60})$ ã¯çžç°ãªãïŒ |
OMC211 (for beginners) | https://onlinemathcontest.com/contests/omc211 | https://onlinemathcontest.com/contests/omc211/tasks/4458 | F | OMC211(F) | 400 | 50 | 62 | [
{
"content": "ããŸãïŒä»»æã®è€çŽ æ°ä¿æ°å€é
åŒ $P$ ã«ã€ããŠïŒ$P(x)-x$ ãéæ ¹ãæããªããªãã° $P(P(x)) - x$ 㯠$P(x) - x$ ã§å²ãåããïŒ\r\n<details><summary>çç±<\\/summary>\r\nã$P(x)-x=0$ ã®ä»»æã®è§£ $\\alpha$ ã«ã€ããŠïŒ$P(P(\\alpha))-\\alpha=0$ ãšãªãããïŒ\r\n<\\/details>\r\n\r\nãã£ãŠïŒ$2000=m$ ãšããã°\r\n$$\\begin{aligned}\r\n-p &= f(f(n))-n \\\\\\\\\r\n&= (n^2+3n-m^2)^2+3(n^2+3n-m^2)-m^2-n\\\\\\\\\r\n&=n^4+6n^3+(12-2m^2)n^2+(8-6m^2)n+m^4-4m^2\\\\\\\\\r\n&=(n^2+2n-m^2)(n^2+4n-m^2+4)\\\\\\\\\r\n&=((n+1)^2-2000^2-1)(n+2002)(n-1998)\r\n\\end{aligned}$$\r\nãåããïŒ$n+2002$ ãš $n-1998$ ã®å·®ã $4$ ã§ããããšã«æ³šæãããšããã $2$ æ°ã®çµ¶å¯Ÿå€ã¯å°ãªããšãäžæ¹ã¯ $1$ ã§ãªãïŒãããã£ãŠ $p$ ãçŽ æ°ã§ããããã« $(n+1)^2-2000^2-1$ ã®çµ¶å¯Ÿå€ã $1$ ã§ããããšãå¿
èŠã§ããã®ã§ $n=1999,-2001$ ãšãªãïŒãã®ãã¡ $p$ ãçŽ æ°ã§ããã®ã¯ $n=1999$ ã®ãšãã§ããïŒä»¥äžããäžåŒãæºããã®ã¯ $(n, p) = (1999, 4001)$ ã®ã¿ãšåããïŒç¹ã«è§£çãã¹ã㯠$\\bf{7997999}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc211/editorial/4458"
},
{
"content": "ã$f(f(x))-x$ ãå æ°å解ããããŒãã®æ³å®è§£ãšã¯ç°ãªãæ¹æ³ã§ã. \r\näžè¬ã«, $h(x)=x^2+ax+b$ ã«å¯Ÿã, $h(x)-h(y)=(x-y)(x+y+a)$ ãšãªãäºãå©çšããŸã. \r\n\r\n$h(x)=f(x)+x$ ãšããŸã. ãã®æ, $h(x)$ ã® $x$ ã®ä¿æ°ã¯ $4$ ã§ããã®ã§, \r\n\r\n$$\\begin{aligned}\r\nf(f(x))-x&=f(f(x))+f(x)-f(x)-x\\\\\\\\\r\n&=h(f(x))-h(x)\\\\\\\\\r\n&=(f(x)-x)(f(x)+x+4)\r\n\\end{aligned}$$\r\n\r\nãšå æ°å解ã§ããŸã.",
"text": "å æ°å解ã®å¥ã®æ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc211/editorial/4458/427"
},
{
"content": "ãå æ°å解ã«ããã£ãŠéªé㪠$4000000$ ãæ¶å»ãããšããèãæ¹ã§å€åœ¢ããŠãèªç¶ã«åŠçã§ããïŒ\r\n$$f(f(n))-n=f(n)^2+3f(n)-4000000-n=f(n)^2+3f(n)+f(n)-n^2-3n-n$$\r\n$$=f(n)^2+4f(n)-n^2-4n=(f(n)-n)(f(n)+n+4)$$",
"text": "å æ°å解ã®ã¢ã€ãã¢",
"url": "https://onlinemathcontest.com/contests/omc211/editorial/4458/436"
}
] | ã$f(x)=x^2+3x-4000000$ ãšå®ããŸã. 以äžã®çåŒãæºããæŽæ° $n$ ãš çŽ æ° $p$ ã®çµ $(n,p)$ å
šãŠã«ã€ããŠïŒ$np$ ã®ç·åãæ±ããŠãã ãã.
$$n=f(f(n))+p$$ |
OMC210 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc210 | https://onlinemathcontest.com/contests/omc210/tasks/8203 | A | OMC210(A) | 300 | 175 | 243 | [
{
"content": "ããŸãïŒäžã€ç®ã®æ¡ä»¶ãã $f$ ã¯çŽ æ°ã§ã®å€ã決ããã°äžæã«å®ãŸãããšã«æ³šæãïŒ$n=m=1$ ãã $f(1)=1$ ã§ããïŒïŒããã« $f, \\sigma, d$ ã¯ããããä¹æ³çé¢æ°ã§ããããšããïŒäºã€ç®ã®æ¡ä»¶ã¯ $n$ ãçŽ ã¹ãã®ãšãã§ã®æç«ãå¿
èŠååã§ããïŒ\\\r\nã$p$ ãçŽ æ°ïŒ$m$ ãæ£æŽæ°ãšãããšïŒäºã€ç®ã®æ¡ä»¶ã¯\r\n$$1\\le\\frac{d(p^m)\\sigma(p^m)}{f(p^m)}=\\frac{(m+1)(p^m+p^{m-1}+\\cdots+1)}{f(p)^m}=\\frac{(m+1)(p^{m+1}-1)}{(p-1)f(p)^m}$$\r\nãšãªãïŒç¹ã« $m\\to\\infty$ ãšããããšã§ $f(p)\\le p$ ãåŸãïŒéã«ãã®ãšãä»»æã® $m$ ã«å¯ŸããŠäžçåŒã®æç«ã確èªã§ããïŒãŸãïŒ$p=2, 3, 5, 7$ ã«ã€ã㊠$f(p)$ ã®å€ã $1, 2, \\cdots, p$ ããä»»æã«å®ãããšãïŒ$11$ 以äžã®çŽ æ° $p$ ã«å¯Ÿã㊠$f(p)=1$ ãšããããšã§å®éã«æ¡ä»¶ãæºããé¢æ°ãæ§æã§ããïŒ\\\r\nãåŸã£ãŠïŒ$f(2\\times3^{10}\\times5^{100}\\times7^{1000})=f(2)\\times f(3)^{10}\\times f(5)^{100}\\times f(7)^{1000}$ ãšããŠåãåŸãå€ã¯\r\n$$2\\times3\\times5\\times7=\\mathbf{210}$$\r\néãã§ããïŒãã ãïŒåå åã®ææ°ã®å·®ãåå倧ããããšããïŒ $f(2\\times3^{10}\\times5^{100}\\times7^{1000})$ ãšããŠåãåŸãå€ãšçµ $(f(2), f(3), f(5), f(7))$ ãäžå¯Ÿäžã«å¯Ÿå¿ããããšã«æ³šæããïŒ\r\n\r\n\r\n<details><summary> ä¹æ³çé¢æ°ã«ã€ã㊠<\\/summary>\r\n\r\nã$\\mathbb N$ äžã§å®çŸ©ãããé¢æ° $g$ ã**ä¹æ³çé¢æ°**ã§ãããšã¯ïŒä»»æã®äºãã«çŽ ãªæ£æŽæ° $m, n$ ã«ã€ããŠ\r\n$$ g(mn) = g(m) g(n) $$\r\nãæãç«ã€ããšãããïŒä¹æ³çé¢æ° $g, h$ ã«é¢ããŠæ¬¡ã®ç¹åŸŽãç¥ãããŠããïŒ\r\n- çŽ ã¹ãã $g$ ã«ãã£ãŠç§»ãå
ããã¹ãŠå®ããã°ïŒæ£æŽæ°ã $g$ ã§ç§»ãå
ããã¹ãŠå®ãŸãïŒ\r\n- $g(n)h(n)$ ã $\\sum_{d \\mid n} g(n)$ ãè¿ãé¢æ°ãä¹æ³çãšãªãïŒ\r\n\r\n<\\/details>",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc210/editorial/8203"
}
] | ãæ£ã®æŽæ°ã«å¯ŸããŠå®çŸ©ããïŒæ£ã®æŽæ°å€ããšãé¢æ° $f$ ãïŒä»¥äžã®æ¡ä»¶ããšãã«ã¿ãããŸãïŒ
- ä»»æã®æ£ã®æŽæ° $n, m$ ã«å¯Ÿã㊠$f(nm)=f(n)f(m)$ïŒ
- ä»»æã®æ£ã®æŽæ° $n$ ã«å¯Ÿã㊠$f(n)\le \sigma(n)d(n)$ïŒ
ããã®ãšãïŒ$f(2\times3^{10}\times5^{100}\times7^{1000})$ ãšããŠããããå€ã¯ããã€ãããŸããïŒããã§ïŒ$\sigma(n)$ 㯠$n$ ã®æ£ã®çŽæ°ã®ç·åãè¡šãïŒ$d(n)$ 㯠$n$ ã®æ£ã®çŽæ°ã®åæ°ãè¡šããŸãïŒ |
OMC210 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc210 | https://onlinemathcontest.com/contests/omc210/tasks/5093 | B | OMC210(B) | 500 | 129 | 193 | [
{
"content": "ãæ£ã®æŽæ°ãããªã空ã§ãªãæééå $S$ ã®å
ãå°ããã»ããã $a_1, a_2, \\ldots, a_m$ ãšããïŒãŸãïŒéšåéåã®å
ã®ç·åãšããŠè¡šããããšã**è¡šçŸå¯èœ**ãšåŒã¶ïŒãã®ãšãïŒ$S$ ããã¬ãã·ãã«ã§ããããšã¯ä»¥äžãšåå€ã§ããïŒ\r\n\r\n- ãã¹ãŠã® $k=1, 2, \\ldots, m$ ã«å¯Ÿã㊠$\\displaystyle a_k\\le1+\\sum_{i=1}^{k-1}a_i$ ãæºããïŒãã ã $\\displaystyle\\sum_{i=1}^{0}a_i=0$ ãšããïŒ$\\quad\\cdots(\\star)$\r\n\r\n<details><summary>蚌æ.<\\/summary>\r\n\r\nãå¿
èŠæ§ã¯æããã§ããïŒååæ§ã $a_m$ ã«ã€ããŠã®åž°çŽæ³ã§ç€ºãïŒ$a_m=1$ ã®ãšãã¯ããïŒ$a_m\\le l$ ã®ãšãæç«ãä»®å®ããïŒ$a_m=l+1$ ã ãšãããšïŒä»®å®ãã $1$ ä»¥äž $\\sum_{i=1}^{m-1}a_i$ ã®ãã¹ãŠã®æŽæ°ã¯è¡šçŸå¯èœã§ããïŒãããã« $a_m$ ãå«ããããšã§ $a_m$ ä»¥äž $\\sum_{i=1}^{m}a_i$ ã®ãã¹ãŠã®æŽæ°ã¯è¡šçŸå¯èœã§ããïŒ$a_m\\le1+\\sum_{i=1}^{m-1}a_i$ ã§ããããšããïŒ$S$ ã¯ãã¬ãã·ãã«ã§ããïŒ\r\n\r\n<\\/details>\r\n\r\nãä»¥äž $(\\star)$ ãæºãã $\\\\{1, 2, \\ldots , 16\\\\}$ ã®ç©ºã§ãªãéšåéåã®åæ°ãèããïŒ\r\n- èŠçŽ æ°ã $3$ 以äžã®ãã®ã¯ $\\\\{1\\\\}, \\\\{1, 2\\\\}, \\\\{1, 2, 3\\\\}, \\\\{1, 2, 4\\\\}$ ã®ã¿ã§ããïŒ\r\n- èŠçŽ æ°ã $4$ 以äžã®ãã®ã«ã€ã㊠$(a_1, a_2, a_3)=(1, 2, 3), (1, 2, 4)$ ã®ããããã§ããïŒ\r\n\r\nããã«ïŒ\r\n- $(a_1, a_2, a_3)=(1, 2, 3)$ ã®å ŽåïŒ$a_4$ ãšããŠãããããã®ã¯ $4, 5, 6, 7$\r\n- $(a_1, a_2, a_3)=(1, 2, 4)$ ã®å Žå, $a_4$ ãšããŠãããããã®ã¯ $5, 6, 7, 8$\r\n\r\nã§ããïŒããŸïŒ$a_5$ ãååšããå ŽåïŒ$16=1+2+\\cdots+5+1$ ããïŒ$S$ ããã¬ãã·ãã«ã§ããããšã¯ \r\n- $a_1$ ãã $a_4$ ãŸã§ãäžã®ãã¿ãŒã³ã〠$a_5\\le a_1+a_2+a_3+a_4+1$\r\n\r\nã«åå€ã§ããïŒ\r\n$8$ ãã¿ãŒã³ããããã«ã€ã㊠$a_5\\gt a_1+a_2+a_3+a_4+1$ ãªããã¿ãŒã³ãé€ãããã®ãåèšããããšã§\r\n$$\\begin{aligned}\r\n&(2^{12}-2^5+1)+(2^{11}-2^4+1)+(2^{10}-2^3+1)+(2^{9}-2^2+1) \\\\\\\\\r\n+\\ &(2^{11}-2^3+1)+(2^{10}-2^2+1)+(2^{9}-2^1+1)+2^8=11453\r\n\\end{aligned}$$\r\nèŠçŽ æ°ã $3$ 以äžã®ãã®ãåèšããã°æ±ããã¹ãåæ°ã¯ $\\mathbf{11457}$ åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc210/editorial/5093"
}
] | ãæ£ã®æŽæ°ãããªã空ã§ãªãæééå $S$ ã**ãã¬ãã·ãã«**ã§ãããšã¯ïŒä»¥äžã®æ¡ä»¶ãæºããããšããããŸãïŒ
- $S$ ã®å
ã®ç·åã $N$ ãšããïŒãã®ãšãïŒ$1$ ä»¥äž $N$ 以äžã®ä»»æã®æŽæ° $n$ ã«ã€ããŠïŒãã $S$ ã®ç©ºã§ãªãéšåéå $T$ ãååšããŠïŒ$T$ ã®å
ã®ç·åã $n$ ã«ãªãïŒ
éå $\\{1, 2, \ldots , 16\\}$ ã®ç©ºã§ãªãéšåéåã§ãã£ãŠïŒãã¬ãã·ãã«ã§ãããã®ã¯ããã€ååšããŸããïŒ |
OMC210 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc210 | https://onlinemathcontest.com/contests/omc210/tasks/5869 | C | OMC210(C) | 600 | 28 | 71 | [
{
"content": "ãæ±ããæåŸ
å€ã $E$ ãšããïŒããŒã«ã $n$ åä»¥äž $m$ å以äžåãåºã確çã $p(n, m)$ ãšããã°ïŒæåŸ
å€ã«ã€ããŠ\r\n$$E=\\sum_{n=2}^{257}(n-1)^{3}p(n, n)=\\sum_{n=2}^{257}((n-1)^{3}-(n-2)^{3})p(n, 257)$$\r\nãæç«ããïŒããã§, $p(n, 257)$ ã¯æåãã $n-1$ åã®æ°ãç矩å調å¢å ã«ãªã確çãªã®ã§ïŒ$\\dfrac{{}\\_{256}\\text{C} {}\\_{n-1}}{256^{n-1}}$ ã«çããïŒãã£ãŠïŒ\r\n$$\\begin{aligned}\r\n\\sum_{n=2}^{257}((n-1)^{3}-(n-2)^{\r\n3})p(n, 257)&=\\sum_{n=1}^{256}\\dfrac{(n^{3}-(n-1)^{3}){}\\_{256}\\text{C} {}\\_n}{256^n}\\\\\\\\\r\n&=\\sum_{n=1}^{256}\\dfrac{(3n^2-3n+1){}\\_{256}\\text{C} {}\\_n}{256^n}\\\\\\\\\r\n&=\\sum_{n=1}^{256}\\dfrac{(3n(n-1)+1){}\\_{256}\\text{C} {}\\_n}{256^n}\\\\\\\\\r\n&=\\sum_{n=2}^{256}\\dfrac{3\\times255 \\times{}\\_{254}\\text{C} {}\\_{n-2}}{256\\times256^{n-2}}+\\sum_{n=1}^{256}\\dfrac{{}\\_{256}\\text{C} {}\\_n}{256^n}\\\\\\\\\r\n&=\\frac{765}{256}\\bigg(1+\\frac1{256}\\bigg)^{254}+\\bigg(1+\\frac1{256}\\bigg)^{256}-1\\\\\\\\\r\n&=\\frac{765\\times256\\times257^{254}+257^{256}}{256^{256}}-1\\\\\\\\\r\n&=\\frac{261889\\times257^{254}}{256^{256}}-1\r\n\\end{aligned}$$\r\nãæ±ããå€ã¯ $E+1$ ãïŒåæ¯ãæ£ã®ïŒæ¢çŽåæ°ã§è¡šãããšãã®åå $261889\\times257^{254}$ ã $256\\times257\\times258$ ã§å²ã£ãäœãã§ããïŒ\r\nãã㧠$257^3\\equiv 257\\pmod{256\\times257\\times258}$ ã§ããã®ã§ïŒè§£çãã¹ãå€ã¯ $261889\\times257^{254}\\equiv261889\\times257^2\\equiv \\mathbf{658177}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc210/editorial/5869"
}
] | ã$1$ ãã $256$ ãŸã§ã®æŽæ°ã®ãã¡ã¡ããã©äžã€ãæžãããããŒã«ããããã $1$ åãã€ïŒèš $256$ åããïŒãã¹ãŠã $1$ ã€ã®è¢ã«å
¥ã£ãŠããŸãïŒãããã $1$ åãã€åãåºããŠæ»ãããšãç¹°ãè¿ãïŒçŽåã«åãåºããããŒã«ä»¥äžã®æ°ãåºããšããã§åãåºãããšããããŸãïŒãã¹ãŠã®ããŒã«ãç確çã§çŸãããšãïŒæçµçã«ããŒã«ãåãåºããåæ° $n$ ã«ã€ããŠïŒ$(n-1)^{3}$ ã®æåŸ
å€ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã $256\times 257\times 258$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ |
OMC210 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc210 | https://onlinemathcontest.com/contests/omc210/tasks/3837 | D | OMC210(D) | 700 | 36 | 61 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã®å€å¿ïŒåå¿ããããã $O, H$ ãšããïŒçŽç· $AH$ ãšèŸº $BC$ ã®äº€ç¹ã $F$, $A$ ããçŽç· $DE$ ã«äžãããåç·ã®è¶³ã $G$, çŽç· $AH$ ãšäžè§åœ¢ $ABC$ ã®å€æ¥åã®äº€ç¹ã $K$, $O$ ã«é¢ã㊠$A$ ãšå¯Ÿç§°ãªç¹ã $L$ ãšããïŒç°¡åãªè§åºŠèšç®ãã $KL\\parallel BC (= FP)$ ã§ããããšïŒ$G$ ãš $P$ ããšãã«çŽç· $AO$ äžã«ããããšãåããïŒåŸã£ãŠ\r\n$$\\frac{AO}{AG} = \\frac{AL}{AP} = \\frac{AK}{AF}$$\r\nã§ããïŒãŸãïŒäžè§åœ¢ $ABC$ ãšäžè§åœ¢ $ADE$ ã¯çžäŒŒã§ããããšïŒ$DE\\perp AO, BC\\perp AK$ ã§ããããšãšããããŠïŒåè§åœ¢ $ABKC$ ãšåè§åœ¢ $ADOE$ ã¯çžäŒŒã§ããïŒåŸã£ãŠ $O$ ã¯äžè§åœ¢ $ADE$ ã®å€æ¥åäžã«ããïŒãã㯠$\\angle AOH = 90^\\circ$ ãæå³ããïŒ\\\r\nã蟺 $BC$ ã®äžç¹ã $M$ïŒç·å $AH$ ã®äžç¹ã $N$ ãšããïŒããã«ïŒç·å $AO, AH, HO$ ã®é·ãããããã $2x, 2y, 2z$ ãšããã°äžå¹³æ¹ã®å®çãã $x^2+z^2=y^2$ ãæç«ããïŒ$OM=\\dfrac12AH=y$ ã§ããïŒ$\\angle AOH=90^\\circ$ ãã $\\triangle AOH\\sim\\triangle OMP$ ãæç«ããããšãã\r\n$$\\frac{y^2}{x^2}(y^2-x^2)=\\bigg(\\frac{yz}{x}\\bigg)^2=PM^2=1$$\r\nãŸãïŒ$AO=BO$ ãšäžå¹³æ¹ã®å®çãã\r\n$$4x^2-y^2=BM^2=9$$\r\nãåŸãïŒ$t=x^2, s=y^2$ ãšããã°ãããã¯\r\n$$t=\\frac{16+\\sqrt{13}}{6},\\ s=\\frac{5+2\\sqrt{13}}{3}$$\r\nã解ã«æã€ïŒããã§ïŒ$AN\\parallel OM$, $AN = OM$ ãã $AO\\parallel NM$ ã§ããããåè§åœ¢ $ANMO$ ã¯å¹³è¡å蟺圢ãšãªãïŒ$\\triangle AOH\\sim\\triangle NFM$ ãæç«ããïŒãã£ãŠïŒ$NM=AO=2x$ ã§ããããšã«æ°ãã€ããã°\r\n$$AF^2=(NF+y)^2=\\bigg(\\frac{2x^2}{y}+y\\bigg)^2=\\frac{(2t+s)^2}{s}$$\r\nãšãªãïŒä»¥äžããïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã® $2$ ä¹ã¯ä»¥äžã®ããã«æ±ãŸãã®ã§ïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{37962}$ ã§ããïŒ\r\n$$6^2\\times\\frac{(2t+s)^2}{s}\\times\\frac1{2^2}=54+54\\sqrt{13}=54+\\sqrt{37908}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc210/editorial/3837"
},
{
"content": "ã$BC$ ãš $DE$ ã®äº€ç¹ã $F$ ãšãããšïŒ$FP=FA$ ãæãç«ã¡ïŒäœãšãªãè¯ãããã«èŠãããããããæ°åã®èšç®ã§æ±ããããšãå¯èœã§ããã以äžã§ã¯ïŒ$4$ ç¹ $B,C,D,E$ ãå
±åã§ããããšãäœåºŠãçšããŠããã\r\n\r\n---\r\n\r\nã$CF=x$ ãšãããšïŒ$FA=x+4$ ã§ããïŒ$\\angle F$ ã«é¢ããè§äºçåç·ã®æ§è³ªããïŒ$AD=k(x+4)$ïŒ$DC=kx$ïŒ$AE=l(x+4)$ïŒ$EB=l(x+6)$ ãšãããããªãïŒç¹ $A$ ã®åšãã§æ¹ã¹ãã®å®çãçšããŠïŒ$k:l=\\sqrt{x+5}:\\sqrt{x+2}$ ã§ããããšããããã\\\r\nã$\\triangle ADE$ ãš $\\triangle ABC$ ã®çžäŒŒãçšãããšïŒ$DE=\\dfrac{3(x+4)}{\\sqrt{(x+2)(x+5)}}$ ã§ããããŸãïŒ$\\triangle FDC$ ãš $\\triangle FBE$ ã®çžäŒŒãçšãããšïŒ$FD=x \\sqrt{\\dfrac{x+5}{x+2}}$ ã§ããã$\\triangle FAC$ ã«ã€ããŠã¹ãã¥ã¯ãŒãã®å®çã®ç³»ãçšãããšïŒ$k$ïŒ$l$ ã $x$ ã§è¡šããïŒå€ãã®èŸºã®é·ãã $x$ ã®ã¿ã§è¡šããããæåŸã«ïŒ$CE^2=CA^2-AE^2=CB^2-BE^2$ ãçšããã°ïŒ$x=\\sqrt{13}-1$ ãåŸãã\r\n\r\n---\r\n\r\nãããŸæ±ãããã®ã¯ïŒ$\\triangle ABC$ ã®é¢ç©ã§ãã£ããããã§ïŒ$AB$ïŒ$AC$ ã®é·ããæ±ãããšïŒ$AB=\\sqrt{21+8 \\sqrt{13}}$ $AC=\\sqrt{34-4 \\sqrt{13}}$ ã§ãããããããã¯ïŒããã³ã®å
¬åŒãçšããŠé¢ç©ãæ±ããŠè¯ããïŒ$\\triangle{AFC}$ ã«äœåŒŠå®çãçšã㊠$\\cos F$ ãæ±ãïŒ$\\triangle ABC=\\triangle ABFÃ\\dfrac{6}{\\sqrt{13}+5}$ ãçšããŠãè¯ãã",
"text": "èšç®ã«ãã£ãŠè§£ãæ¹æ³ïŒéæšå¥šïŒ",
"url": "https://onlinemathcontest.com/contests/omc210/editorial/3837/429"
},
{
"content": "$O$ ãå $ADE$ äžã«ããããšã®èšŒæã§ãïŒ\r\n\r\n--- \r\näžè§åœ¢ $ABC$ ã®åå¿ïŒå€å¿ããããã $H, O$ ãšããïŒå $ADE$ ãšå $ABC$ ã®äº€ç¹ã $Q$ ãšããïŒ$\\angle BDC=\\angle BEC=90^{\\circ}$ ãã $B, D, E, C$ ã¯å
±åã§ããããïŒå $BDEC$ïŒå $ADE$ïŒå $ABC$ ã®æ ¹å¿ãèã $AQ, DE, BC$ ã¯å
±ç¹ïŒãã®ç¹ã $X$ ãšããïŒãšããã§ïŒ$A$ ãš $P$ 㯠$DE$ ã«ã€ããŠå¯Ÿç§°ã§ããããïŒ$\\angle AXD=\\angle PXD$ ã§ããïŒãŸãïŒ$\\angle DQX=\\angle AED=\\angle ACB$ ããïŒ$D, Q, X, C$ ã¯å
±åïŒãã£ãŠïŒ\r\n$$\\angle QDA=\\angle QXC=2\\angle QXD=2\\angle QCD=\\angle QOA$$ ããïŒ$O$ ã¯å $ADE$ äžã«ããïŒ\r\n\r\n---\r\nãªãïŒãã®è§£èª¬ã«ãããç¹ $Q$ ã¯ç¹ã«æ¬éžä»¥éãªã©ã®èšŒæåé¡ã§ããç»å ŽãïŒé¢çœãæ§è³ªãããããããã®ã§ïŒå¹ŸäœãåŸæã«ãããæ¹ã¯ç¥ã£ãŠããããšãããããããŸãïŒãã£ãããªã®ã§ããã«ãã®æ§è³ªã«ã€ããŠå°ãæžããŠã¿ãããšæããŸãïŒ\r\n\r\n<details> <summary> **æ§è³ª1** : $BC$ ã®äžç¹ã $M$ ãšããïŒ$Q, H, M$ ã¯å
±ç·ã§ããïŒ <\\/summary> $QH$ ãšå $ABC$ ã®äº€ç¹ã $X$ ãšããïŒ$\\angle AQX=90^{\\circ}$ ãã $AX$ ã¯å $ABC$ ã®çŽåŸã ããïŒ$X$ ãš $H$ 㯠$M$ ã«ã€ããŠå¯Ÿç§°ã§ããïŒãã£ãŠïŒ$H, M, X$ ã¯å
±ç·ã§ããããïŒ$Q, H, M$ ã¯å
±ç·ïŒ<\\/details>\r\n<details> <summary> **æ§è³ª2** : $AH$ ãšå $ABC$ ã®äº€ç¹ã $T(\\neq A)$ïŒ$B, C$ ã«ãããå $ABC$ ã®æ¥ç·ã®äº€ç¹ã $S$ ãšããïŒ$Q, T, S$ ã¯å
±ç·ã§ãã (ãŸãïŒ$QT$ ã¯äžè§åœ¢ $QBC$ ã® $\\angle Q$ å
ã® $symmedian$ ã§ããïŒ) <\\/summary> $$\\angle QBE=\\angle QCD,ã\\angle QEA=\\angle QDA$$ ããäžè§åœ¢ $QEB$ ãš $QDC$ ã¯çžäŒŒïŒãŸãïŒäžè§åœ¢ $HBE$ ãš $HCD$ ãçžäŒŒã§ããããïŒ$$QB:QC=BE:CD=BH:CH=BT:CT$$ ããåè§åœ¢ $QBCT$ ã¯èª¿ååè§åœ¢ã§ããïŒãã£ãŠç€ºãããïŒ\\\r\nãŸãïŒ$(Q, E, H, D, M)$ ãš $(Q, B, T, C, S)$ ã® $5$ ç¹çžäŒŒãã瀺ãããšãã§ããïŒ<\\/details>",
"text": "ååéšåã®å¥è§£",
"url": "https://onlinemathcontest.com/contests/omc210/editorial/3837/430"
},
{
"content": "ã$P(0,0)$ïŒ$B(-2,0)$ïŒ$C(4,0)$ ãšãªããããªçŽäº€åº§æšããšãïŒ$A(a,b)$ ãšããïŒããã§ïŒäžè§åœ¢ $ABC$ ã¯éè§äžè§åœ¢ã ãã $-2 \\lt a \\lt 4$ ã§ããïŒ\\\r\nããŸãïŒ$\\overrightarrow{AD}$ 㯠$\\overrightarrow{AB}$ ãçŽç· $AC$ ã«æ£å°åœ±ãããã¯ãã«ã ãã $\\overrightarrow{AD} = \\dfrac{\\overrightarrow{AB} \\cdot \\overrightarrow{AC}}{|\\overrightarrow{AC}|^2} \\overrightarrow{AC}$ïŒåæ§ã« $\\overrightarrow{AE} = \\dfrac{\\overrightarrow{AB} \\cdot \\overrightarrow{AC}}{|\\overrightarrow{AB}|^2} \\overrightarrow{AB}$ ãåŸãïŒ\\\r\nãããã§ïŒ$2$ çŽç· $AP$ïŒ$DE$ ã®äº€ç¹ã $X$ ãšãããšïŒ $P$ 㯠çŽç· $DE$ ã«å¯Ÿã㊠$A$ ãšå¯Ÿç§°ãªç¹ã ãã\r\n$$ \\overrightarrow{AX} = \\frac{1}{2} \\overrightarrow{AP} = \\frac{1}{2} \\left( \\frac{2}{3} \\overrightarrow{AB} + \\frac{1}{3} \\overrightarrow{AC} \\right) = \\frac{1}{3} \\overrightarrow{AB} + \\frac{1}{6} \\overrightarrow{AC} = \\frac{|\\overrightarrow{AC}|^2}{3 \\overrightarrow{AB} \\cdot \\overrightarrow{AC}} \\overrightarrow{AD} + \\frac{|\\overrightarrow{AB}|^2}{6 \\overrightarrow{AB} \\cdot \\overrightarrow{AC}} \\overrightarrow{AE}$$\r\nãæç«ããïŒç¹ $X$ ã¯çŽç· $DE$ äžã«ããã®ã§\r\n$$ \\frac{|\\overrightarrow{AC}|^2}{3 \\overrightarrow{AB} \\cdot \\overrightarrow{AC}} + \\frac{|\\overrightarrow{AB}|^2}{6 \\overrightarrow{AB} \\cdot \\overrightarrow{AC}} = 1 \\tag{1}$$\r\nãšãªãïŒ\\\r\nããŸãïŒ$ \\overrightarrow{AP} \\perp \\overrightarrow{DE}$ ãã\r\n$$ \\overrightarrow{AP} \\cdot \\overrightarrow{DE} = 0$$\r\n$$ \\left( \\frac{2}{3} \\overrightarrow{AB} + \\frac{1}{3} \\overrightarrow{AC} \\right) \\cdot \\left( \\frac{\\overrightarrow{AB} \\cdot \\overrightarrow{AC}}{|\\overrightarrow{AB}|^2} \\overrightarrow{AB} - \\frac{\\overrightarrow{AB} \\cdot \\overrightarrow{AC}}{|\\overrightarrow{AC}|^2} \\overrightarrow{AC} \\right) = 0$$\r\n$$ \\frac{1}{3} \\overrightarrow{AB} \\cdot \\overrightarrow{AC} + \\frac{1}{3} \\frac{(\\overrightarrow{AB} \\cdot \\overrightarrow{AC})^2}{|\\overrightarrow{AB}|^2} - \\frac{2}{3} \\frac{(\\overrightarrow{AB} \\cdot \\overrightarrow{AC})^2}{|\\overrightarrow{AC}|^2} = 0 \\tag{2}$$\r\nãšãªãïŒ\\\r\nãäžè§åœ¢ $ABC$ ã¯éè§äžè§åœ¢ãã $ \\overrightarrow{AB} \\cdot \\overrightarrow{AC} \\neq 0$ ã§ããããšã«æ³šæãããšïŒåŒ $(1)$ïŒåŒ $(2)$ ã« $\\overrightarrow{AB} = (-2-a,b)$ïŒ$\\overrightarrow{AC} = (4-a,b)$ ã代å
¥ããŠèšç®ããããšã§ $a = -1 + \\sqrt{13}$ïŒ$b^2 = 6+6\\sqrt{13}$ ãåŸãïŒãã£ãŠïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã® $2$ ä¹ã¯\r\n$$ \\left( \\frac{1}{2} \\cdot 6 \\cdot |b| \\right)^2 = 9b^2 = 54 + 54\\sqrt{13} = 54 + \\sqrt{37908}$$\r\nãšæ±ãŸãïŒç¹ã«è§£çãã¹ãå€ã¯ $54+37908 = \\mathbf{37962}$ ã§ããïŒ",
"text": "ãã¯ãã«ã§æ±ããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc210/editorial/3837/431"
}
] | ãéè§äžè§åœ¢ $ABC$ ã«ãããŠïŒ$B,C$ ãã察蟺ã«äžãããåç·ã®è¶³ããããã $D, E$ ãšããïŒçŽç· $DE$ ã«é¢ã㊠$A$ ãšå¯Ÿç§°ãªç¹ã $P$ ãšããããšããïŒ$P$ ã¯èŸº $BC$ äžã«ãããŸããïŒããã«
$$BP=2, \quad PC=4$$
ãæç«ãããšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã® $2$ ä¹ãæ±ããŠãã ããïŒãã ãïŒçãã¯æ£ã®æŽæ° $a, b$ ãçšã㊠$a+\sqrt{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC210 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc210 | https://onlinemathcontest.com/contests/omc210/tasks/9197 | E | OMC210(E) | 700 | 14 | 24 | [
{
"content": "ãå¶å¥ãèããã° $2$ åå
¥ãããã¯ãå¶æ°ããã¯è³Œå
¥ããããšãš $2$ å以äžå
¥ãããã¯ãå¥æ°ããã¯è³Œå
¥ããããšã¯åå€ã§ããïŒ$2$ å以äžå
¥ãããã¯ãš $4$ å以äžå
¥ãããã¯ããããã (å¶æ°, å¶æ°)ïŒ(å¶æ°, å¥æ°)ïŒ(å¥æ°, å¶æ°)ïŒ(å¥æ°, å¥æ°) åãã€è³Œå
¥ããå Žåã®æ°ããããã $a, b, c, d$ ãšããã°ïŒæ±ããã¹ã㯠$|c-d|$ ã§ããïŒ\\\r\nãäžè¬ã« $11111$ ã $N$ ã«çœ®ãããïŒåœ¢åŒçåªçŽæ°ãçšããŠæ±ããïŒãŸãïŒ$|a-b+c-d|$ïŒããªãã¡ãªã³ãŽã $4$ å以äžå
¥ã£ãŠããããã¯ãå¶æ°ããã¯ã®å Žåã®æ°ãšå¥æ°ããã¯ã®å Žåã®æ°ã®å·®ãèãããïŒ\\\r\nã$2^i$ åå
¥ãã®ããã¯ã $j$ ããã¯è²·ãå Žåã®æ°ã¯ ${}\\_4\\mathrm{H}{}\\_j= {}\\_{j+3}\\mathrm{C}{}\\_3$ ã§ããã®ã§ïŒ\r\n$$P_i(x):={}\\_4\\mathrm{H}{}\\_0-{}\\_4\\mathrm{H}{}\\_1x^{2^i}+{}\\_4\\mathrm{H}{}\\_2x^{2\\cdot2^i}-{}\\_4\\mathrm{H}{}\\_3x^{3\\cdot2^i}+\\cdots=(1-x^{2^i}+x^{2\\cdot2^i}-x^{3\\cdot2^i}\\cdotsâ)^4=(1+x^{2^i})^{-4}â,$$\r\n$$Q_i(x):={}\\_4\\mathrm{H}{}\\_0+{}\\_4\\mathrm{H}{}\\_1x^{2^i}+{}\\_4\\mathrm{H}{}\\_2x^{2\\cdot2^i}+{}\\_4\\mathrm{H}{}\\_3x^{3\\cdot2^i}+\\cdots=(1+x^{2^i}+x^{2\\cdot2^i}+x^{3\\cdot2^i}\\cdotsâ)^4=(1-x^{2^i})^{-4}$$ \r\nãšå®ããã°ïŒæ±ããã¹ãå€ã¯\r\n$$Q_0(x)Q_1(x)P_2(x)P_3(x)\\cdots P_{13}(x)$$ \r\nã® $x^N$ ã®ä¿æ°ïŒã®çµ¶å¯Ÿå€ïŒã§ããïŒããã§ïŒ$1$ ããã¯ã®ãªã³ãŽã®åæ°ã®æå€§å€ $2^{13}$ ã®å¶éãå€ããŠãçãã«åœ±é¿ããªãããšããïŒ\r\n$$R(x):=Q_0(x)Q_1(x)P_2(x)P_3(x)\\cdots$$ \r\n ã«ã€ããŠèããã°ããïŒããã§ïŒ$R(x)$ ã®åä¿æ°ã¯æéã®å€ãšãªãïŒå®çŸ©ã§ããïŒïŒããã¯ïŒä»¥äžã®ããã«èšç®ã§ããïŒ\r\n\r\n$$\\begin{aligned}\r\nR(x)&=(1-x)^{-4}(1-x^2)^{-4}(1+x^4)^{-4}(1+x^8)^{-4}(1+x^{16})^{-4}\\cdots \\\\\\\\\r\n&=((1-x)(1-x^2)(1+x^4)(1+x^8)(1+x^{16})\\cdotsâ)^{-4} \\\\\\\\\r\n&=((1-x)(1+x)(1+x^2)(1+x^4)(1+x^8)(1+x^{16})\\cdotsâ)^{-4}\\times(1+x^2)^4(1-x)^{-4} \\\\\\\\\r\n&=(1+x^2)^4(1-x)^{-4} \\\\\\\\\r\n&=(1+4x^2+6x^4+4x^6+x^8)(1+x+x^2+x^3+\\cdotsâ)^4\r\n\\end{aligned}$$\r\n\r\nããã§ïŒäžã§è¿°ã¹ãéã $(1+x+x^2+x^3+\\cdotsâ)^4$ ã® $x^k$ ã®ä¿æ°ã¯ ${}\\_4\\mathrm{H}{}\\_k$ ã§äžããããããïŒ$N$ ãåå倧ãããšã $R(x)$ ã® $x^N$ ã®ä¿æ°ã¯ïŒ$M:=N-2$ ãšããããšã§\r\n$$\\begin{aligned}\r\n&1\\times {}\\_4\\mathrm{H}{}\\_{N}+4\\times {}\\_4\\mathrm{H}{}\\_{N-2}+6\\times {}\\_4\\mathrm{H}{}\\_{N-4}+4\\times {}\\_4\\mathrm{H}{}\\_{N-6}+1\\times {}\\_4\\mathrm{H}{}\\_{N-8} \\\\\\\\\r\n=&1\\times {}\\_{N+3}\\mathrm{C}{}\\_{3}+4\\times {}\\_{N+1}\\mathrm{C}{}\\_{3}+6\\times {}\\_{N-1}\\mathrm{C}{}\\_{3}+4\\times {}\\_{N-3}\\mathrm{C}{}\\_{3}+1\\times {}\\_{N-5}\\mathrm{C}{}\\_{3} \\\\\\\\\r\n=&\\frac83M(M^2+11)\r\n\\end{aligned}$$â \r\nãšæ±ãŸãïŒãã£ãŠ $|a-b+c-d|=\\dfrac83M(M^2+11)$ ã§ããïŒ\r\n\r\nã次ã«ïŒ$|a-b-c+d|$ïŒããªãã¡å
šéšã§å¶æ°ããã¯ã®å Žåã®æ°ãšå¥æ°ããã¯ã®å Žåã®æ°ã®å·®ãèããïŒä»åºŠã¯\r\n$$S(x):=P_0(x)P_1(x)P_2(x)P_3(x)\\cdots$$\r\nã«ã€ããŠèããã°ãããïŒ\r\n$$\\begin{aligned}\r\nS(x)&=(1+x)^{-4}(1+x^2)^{-4}(1+x^4)^{-4}(1+x^8)^{-4}(1+x^{16})^{-4}\\cdots \\\\\\\\\r\n&=((1+x)(1+x^2)(1+x^4)(1+x^8)(1+x^{16})\\cdotsâ)^{-4} \\\\\\\\\r\n&=(1-x)^4 \r\n\\end{aligned}$$\r\nã§ããã®ã§ïŒ$N$ ãåå倧ãããšã $S(x)$ ã® $x^N$ ã®ä¿æ°ã®çµ¶å¯Ÿå€ã¯ $0$ïŒããªãã¡ $a-b-c+d=0$ ã§ããïŒ\\\r\nã以äžããïŒ\r\n$$|c-d|=\\frac12|(a-b+c-d)-(a-b-c+d)|=\\dfrac43M(M^2+11)$$\r\nã§ããïŒç¹ã« $M=11109$ ãšããã°è§£çãã¹ãå€ã¯ $\\mathbf{1827947320304}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc210/editorial/9197"
},
{
"content": "圢åŒçåªçŽæ°ã䜿ããªã解æ³\\\r\n2åå
¥ãããã¯ãå¥æ°ã«ãªãåçš®ãå
ã«æ±ºãæã¡ããŠïŒãã®åçš®ã®2åå
¥ãããã¯ã1ããã¯å
ã«è²·ãïŒ\r\n2åå
¥ãããã¯ãå
šãŠã®åçš®ã§å¶æ°ããã¯ã®å Žåã®ã¿èããã°è¯ãïŒ\r\n2,4åå
¥ãããã¯åèšã§äœåååçš®ã®ææªãè²·ãããå
ã«æ±ºããïŒ\r\nãã®æååçš®ã®åæ°ã4ã®åæ°ã§ãªããã°äžé©ïŒ\r\nãŸãïŒ8ã®åæ°ã§ãªãåçš®ãäžã€ã§ãååšããå ŽåïŒå¯Ÿç§°æ§ããè¯ãè²·ãæ¹ãšæªãè²·ãæ¹ã®åæ°ãåãã«ãªãïŒ\r\nãã£ãŠïŒå
šãŠã®åçš®ã8ã®åæ°ã®å Žåã ãèããã°è¯ãïŒããã«çžæ®ºãããš2åå
¥ãããã¯ãè²·ããïŒ4åå
¥ãããã¯ãå¶æ°åè²·ãå Žåã®ã¿èããã°è¯ãïŒ\r\n次ã«ïŒ4,8åå
¥ãããã¯åèšã§äœåååçš®ã®ææªãè²·ããã決ããïŒ\r\nãããšïŒåæ§ã®è°è«ã«ããïŒ4åå
¥ãããã¯ãè²·ããïŒ8åå
¥ãããã¯ãå¶æ°åè²·ãå Žåã®ã¿èããã°è¯ãïŒ\r\nãããç¹°ãè¿ããšïŒ2åå
¥ã以äžã®å
šãŠã®ããã¯ãè²·ããªãå Žåã®ã¿èããã°è¯ããªãïŒ\r\nå
ã«è²·ã£ãåãèãããšïŒçµå±2åå
¥ãããã¯ãååçš®1å以äžè²·ãïŒæ®ãã¯å
šãŠ1åå
¥ãããã¯ã®å Žåã®ã¿èããã°è¯ãïŒããã¯å®¹æã«èšç®å¯èœã§ããïŒ",
"text": "圢åŒçåªçŽæ°ãå
šã䜿ããªã解æ³",
"url": "https://onlinemathcontest.com/contests/omc210/editorial/9197/428"
}
] | ãOMCåã¯ãªã³ãŽã賌å
¥ããããïŒå
«çŸå±ã«æ¥ãŸããïŒå
«çŸå±ã«ã¯**ãµã**ïŒ**çŽ
ç**ïŒ**çæ**ïŒ**ã·ããã¹ã€ãŒã**ã® $4$ ã€ã®ãªã³ãŽã®ååçš®ãšå $j=0,1,2,âŠ,13$ ã«ã€ããŠïŒ ã**\[åçš®å\]** $2^j$ åå
¥ãããã¯ããããããååãããããããŸããïŒOMCåã¯ãããã®ããã¯ãçµã¿åãããŠãªã³ãŽãã¡ããã© $11111$ å賌å
¥ãããã§ãïŒè²·ããªãåçš®ããã£ãŠãæ§ããŸããïŒïŒãã®ãšãããã«ïŒ$2$ åå
¥ãããã¯ã¯ïŒãã¹ãŠã®åçš®ã«ã€ããŠåèšããŠïŒå¶æ°ããã¯è³Œå
¥ããããã«ãããã§ãïŒ\
ãããã§ïŒãã®ãããªçµã¿åããã«ã€ããŠïŒïŒãã¹ãŠã®åçš®ã»åæ°ã«ã€ããŠåèšããŠïŒå
šéšã§å¶æ°ããã¯è³Œå
¥ãããšã**è¯ãè²·ãæ¹**ïŒå¥æ°ããã¯è³Œå
¥ãããšã**æªãè²·ãæ¹**ãšãã¶ããšã«ããŸãïŒ\
ãè¯ãè²·ãæ¹ãšæªãè²·ãæ¹ããããã®å Žåã®æ°ã«ã€ããŠïŒãããã®å·®ã®çµ¶å¯Ÿå€ãæ±ããŠãã ããïŒãã ãïŒåãçš®é¡ãã€åãåæ°å
¥ãã®ããã¯ã¯äºãã«åºå¥ããïŒããã¯ãéžã¶é çªãåºå¥ããªããã®ãšããŸãïŒãŸãïŒ$0$ ã¯å¶æ°ã«å«ããã®ãšããŸãïŒ
<details><summary>è²·ãæ¹ã®äŸ<\/summary>
- ãµã $2^{13}$ åå
¥ãã»ãµã $2^{11}$ åå
¥ãã»ãµã $2^9$ åå
¥ã
- çŽ
ç $2^8$ åå
¥ãã»çŽ
ç $2^6$ åå
¥ãã»ãµã $2^3$ åå
¥ã
- ãµã $2^3$ åå
¥ãã»çŽ
ç $2^3$ åå
¥ãã»çæ $2^2$ åå
¥ã
- çæ $2^2$ åå
¥ãã»çæ $2^1$ åå
¥ãã»ãµã $2^1$ åå
¥ã
- çŽ
ç $2^0$ åå
¥ãã»çæ $2^0$ åå
¥ãã»ã·ããã¹ã€ãŒã $2^0$ åå
¥ã
ã® $15$ ããã¯ã賌å
¥ãããšãïŒåèšã§ $11111$ åã〠$2$ åå
¥ãããã¯ã¯ $2$ ããã¯ãªã®ã§æ¡ä»¶ãæºããïŒåèšã¯å¥æ°ããã¯ãªã®ã§æªãè²·ãæ¹ãšãªããŸãïŒ
<\/details> |
OMC210 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc210 | https://onlinemathcontest.com/contests/omc210/tasks/7532 | F | OMC210(F) | 900 | 0 | 13 | [
{
"content": "ããã®åé¡ã¯æ¬¡ã®3ã¹ãããã«åããŠè§£èª¬ããïŒ\r\n- - -\r\n**ã¹ããã1ïŒOMCåã®åé¡ã解ã**\\\r\nãäžè§åœ¢ $ABC$ ã®å€æ¥åã®ååŸã $R$ ãšããããšãïŒ\r\n$$R^2=\\frac{p^2 q^2}{-p^2+2q^2+a^2}$$\r\nãæç«ããããšã瀺ãïŒ\r\n<details><summary>蚌æïŒ<\\/summary>\r\nããŸãïŒ$\\Gamma$ ã«ããå転㧠$P$ ã¯çŽç· $MC$ ãšçŽç· $AB$ ã®äº€ç¹ã«ç§»ãã®ã§ïŒãã®ç¹ã $Q$ ãšããïŒããã«ïŒ$\\angle A, B, C$ ããããã«ã€ããŠå¯Ÿå¿ããäžè§åœ¢ $ABC$ ã®åå¿ã $I_A, I_B, I_C$ ãšããïŒãã®ãšãïŒäžè§åœ¢ $ABC$ 㯠äžè§åœ¢ $I_A I_B I_C$ ã®å足äžè§åœ¢ã§ããïŒ$\\Gamma$ ã¯äžè§åœ¢ $I_A I_B I_C$ ã®ä¹ç¹åã§ããïŒãŸãïŒäžè§åœ¢ $I_A I_B I_C$ ã®å€æ¥åïŒå€å¿ããããã $\\Omega,O^\\prime$ ãšããïŒ\r\n\r\n- - -\r\n**è£é¡1ïŒ** $M$ ã¯ç·å $I_A I_B$ ã®äžç¹ã§ããïŒ\\\r\n**蚌æïŒ** $M$ ã¯äžè§åœ¢ $I_AI_BI_C$ ã®ä¹ç¹åãšèŸº $I_AI_B$ ã®äº€ç¹ã®ãã¡ïŒ$C$ ã§ãªãæ¹ãªã®ã§ïŒããã¯èŸº $I_AI_B$ ã®äžç¹ã§ããïŒ\\\r\n\\\r\n**è£é¡2ïŒ** $\\Gamma$ ãš $\\Omega$ ã® $Q$ ã«ãããæ¹ã¹ãã¯çãã \\\r\n**蚌æïŒ** $3$ çŽç· $AI_A, BI_B, CI_C$ ã¯äžè§åœ¢ $I_A I_B I_C$ ã®åå¿ $I$ ã§äº€ããã®ã§ïŒ$Q, C, I_A, I_B$ ã¯èª¿åç¹åã§ããïŒè£é¡1ãã $M$ ã¯ç·å $I_A I_B$ ã®äžç¹ãªã®ã§ç€ºãããïŒ\r\n- - -\r\nã$\\Gamma,\\Omega$ ã®ååŸã¯ãããã $R, 2R$ ãªã®ã§ïŒ$O$ ã $\\Gamma$ ã®äžå¿ã§ããããšã«çæããã°è£é¡2ãã以äžãæç«ããïŒ\r\n$$0=(QO^2-R^2)-(QO^{\\prime2}-4R^2)=QO^2-QO^{\\prime2}+3R^2\\quad\\cdots\\bigstar$$\r\näžæ¹ã§ïŒ$O$ ã¯ç·å $IO^\\prime$ ã®äžç¹ã§ããããšã«æ³šæããã°ïŒäœåŒŠå®çãã\r\n$$\\cos\\angle POO^\\prime=-\\cos\\angle POI=-\\frac{p^2+q^2-a^2}{2pq}$$ \r\nã§ããïŒå転ã®ååŸã $R$ ã§ããããšãã $QO=\\dfrac{R^2}{q}$ ã§ããã®ã§ïŒåã³äœåŒŠå®çãã\r\n$$QO^{\\prime2}=p^2+\\frac{R^4}{q^2}+\\frac{R^2(p^2+q^2-a^2)}{q^2}$$\r\nãæç«ããïŒåŸã£ãŠïŒ$\\bigstar$ ãã\r\n$$3R^2=p^2+\\frac{R^2(p^2+q^2-a^2)}{q^2}$$\r\nãæç«ãïŒããã $R^2$ ã«ã€ããŠè§£ãããšã§ææã®åŒãåŸãïŒ\r\n<\\/details>\r\n\r\n- - -\r\n**ã¹ããã2ïŒäžè§åœ¢ã®ååšæ¡ä»¶ãèå¯ãã**\\\r\nã$p, q, a$ ãæ£ã®**å®æ°**ã®ç¯å²ã§èšå®ãããšãã«äžè§åœ¢ $ABC$ ãæç«ããå¿
èŠååæ¡ä»¶ã\r\n- $2q^2+a^2 \\gt p^2\\gt q^2+a^2$\r\n- äžè§åœ¢ $IOP$ ã«ãããäžè§äžçåŒã®æç«ïŒéåããå ŽåãèªããïŒ\r\n\r\nã® $2$ æ¡ä»¶ããšãã«æºããããšã§ããããšã瀺ãïŒ\r\n<details><summary>蚌æïŒ<\\/summary>\r\nEulerã®å®çããäžè§åœ¢ $ABC$ ã®å
æ¥åååŸ $r$ ã«ã€ããŠïŒ\r\n$$r=\\frac{R^2-p^2}{2R}=\\frac{p^2(p^2-q^2-a^2)}{2R(-p^2+2q^2+a^2)}\\quad \\cdots\\clubs$$\r\nã§ããããšã«çæããã°ïŒãããã®æ¡ä»¶ã®å¿
èŠæ§ã確èªã§ããïŒãªãïŒ$r$ 㯠$R$ ãš $p$ ã«ã®ã¿äŸåããããšã«æ°ãä»ããïŒ\\\r\nãååæ§ãèããïŒäžã® $2$ æ¡ä»¶ããšãã«æºããããŠãããšãïŒ$p, q, a$ ã«ãã£ãŠç®åºãããïŒæ£ã®ïŒååŸããã€äžè§åœ¢ $ABC$ ã®å
æ¥å $\\omega$ ãšå€æ¥å $\\Gamma$ ãèããïŒããããå
æ¥åãšå€æ¥åã«æã€äžè§åœ¢ã¯ååšãïŒãã€ïŒPonceletã®é圢å®çããïŒ $\\omega$ ãšèŸº $AB$ ã®æ¥ç¹ $D$ ãä»»æã«å®ãããšãïŒäžè§åœ¢ $ABC$ ãäžæã«å®ãŸãïŒ$p$ ãš $R$ ãåºå®ããç¶æ
ã§ã¹ããã1ã®åŒã $q$ ãš $a$ ã«ã€ããŠã®æ¹çšåŒãšããŠã¿ããš $q$ ãš $a$ ã«å¯Ÿå¿ãã $P$ ã®è»è·¡ã¯ãåçŽç· $OI$ äžã«äžå¿ããã $O$ ãéãååŸ $\\dfrac{pR^2}{3R^2-p^2}$ ã®åãã $1$ ç¹ $O$ ãé€ããå³åœ¢ãã§è¡šãããé åãšãªãïŒãã®é åãšåçŽç· $OI$ ã®äº€ç¹ã $X$ ãšããã°ïŒ\r\n$$OX=\\dfrac{2pR^2}{3R^2-p^2},\\quad OX\\lt R\\iff p\\lt R$$\r\nã§ããïŒ$p\\lt R$ 㯠$\\clubs$ ã®çãäžã®åŒãæ£ã§ããããšããæç«ããããïŒç¹ã«ãã®é å㯠$\\Gamma$ ã®å
éšã«ååšããïŒ\\\r\nãåŸã£ãŠïŒ$q$ ãš $a$ ã«ã€ããŠã®æ¹çšåŒã®è¡šãé åã $\\Gamma$ ã§å転ãã $\\Gamma$ ã®å€éšïŒç¹ã« $\\omega$ ã®å€éšïŒã«ååšããçŽç· $t$ ãèãïŒ$t$ äžã® $q,a$ ã«å¯Ÿå¿ããç¹ $Q$ ãã $\\omega$ ãžã®æ¥ç·ã®ãã¡é©åœãª $1$ æ¬ã«ã€ããŠïŒãã®æ¥ç¹ã $D$ ãšããã°ïŒ$p,q,a$ ã«å¯Ÿå¿ããäžè§åœ¢ $ABC$ ãåŸãïŒ\r\n<\\/details>\r\n\r\n- - -\r\n**ã¹ããã3ïŒæ¡ä»¶ãæºããæ£ã®æŽæ°ã«ã€ããŠèå¯ãã**\\\r\nãçµè«ããè¿°ã¹ãã° $a$ ã®åãåŸãæå°å€ã¯ $48$ ã§ããïŒãã®ãšãååŸã®æå°å€ã¯ $(p, q)=(71, 37)$ ã®ãšãã® $\\mathbf{2627}$ ã§ããïŒä»¥äžããã瀺ãïŒ\r\n\r\n<details><summary>**ã¹ããã3-1ïŒ** $-p^2+2q^2+a^2=1$ ã§ããïŒ<\\/summary>\r\nã$\\dfrac{p^2 q^2}{-p^2+2q^2+a^2}$ ãå¹³æ¹æ°ã«ãªãããšãš $p, q$ ãçŽ æ°ã§ããããšããïŒ$-p^2+2q^2+a^2$ ãšããŠåãåŸãå€ã®åè£ã¯ $1, q^2, p^2, p^2q^2$ ã§ããïŒã¹ããã2ã®äžã€ç®ã®æ¡ä»¶ã®å³åŽã®äžçå·ããç¹ã« $p\\gt q$ ã§ããã®ã§ãããã®åè£ã¯ç矩å調å¢å ã«äžŠãã§ããïŒä»ïŒåã³åæ¡ä»¶ãã\r\n$$p^2\\gt q^2+a^2\\iff -p^2+2q^2+a^2\\lt q^2$$\r\nã§ããã®ã§ $-p^2+2q^2+a^2=1$ ã§ããããšããããïŒãã®ãšãïŒ$R=pq$ ã§ããïŒ\r\n<\\/details>\r\n\r\n<details><summary>**ã¹ããã3-2ïŒ** $a$ ã®åãåŸãå€ã¯ $48$ 以äžã§ããïŒ<\\/summary>\r\nããŸãïŒ$p, q\\ge 5$ ã§ããããšã¯ $p^2\\gt q^2+a^2$ ã®é©çšåã³ $p^2-a^2=(æŽæ°)$ ã®æŽæ°è§£ã®è°è«ã«ãã容æã«ç¢ºèªã§ããïŒ$\\bmod 3$ ã®å¹³æ¹å°äœã®èå¯ã«ãã $a$ 㯠$3$ ã®åæ°ã§ããïŒ\\\r\nãããã§ïŒ$p^2-2q^2=(a+1)(a-1)$ ãšå€åœ¢ããïŒå³èŸºã®çŽ å æ° $P$ ã§ãã£ãŠïŒ$\\bigg(\\dfrac{2}{P}\\bigg)=-1$ ãªããã®ãååšããã°ïŒ$p=q=P$ ãšãªãã»ããªãïŒããã¯äžé©ã§ããïŒå¹³æ¹å°äœã®ç¬¬äºè£å
åãã \r\n$$\\bigg(\\dfrac{2}{P}\\bigg)=-1\\iff P\\equiv 3, 5\\pmod 8$$\r\nã§ããïŒããŸïŒ$a$ ã¯å¶æ°ã§ããïŒ$a\\equiv 2, 4, 6\\pmod 8$ ã®å Žå $a+1$ ãŸã㯠$a-1$ ã®ãããã㯠$8$ ã§å²ã£ãäœãã $3, 5$ ã®ããããã«ãªãããïŒ$\\bigg(\\dfrac{2}{P}\\bigg)=-1$ ãªãçŽ å æ° $P$ ãååšããïŒåŸã£ãŠ $a$ 㯠$8$ ã®åæ°ã§ããïŒäžã®çµæãšåãã $24$ ã®åæ°ã§ããïŒ\\\r\nã$a=24$ ã®ãšãïŒ$a+1$ ã¯çŽ å æ° $5$ ãæã¡äžé©ãªã®ã§ $a$ 㯠$48$ 以äžã§ããïŒ\r\n<\\/details>\r\n\r\n<details><summary>**ã¹ããã3-3ïŒ** $a=48$ ã $a$ ã®åãåŸãæå°å€ã§ããïŒ$(p, q)=(71, 37)$ ã $R$ ãæå°ã«ããïŒ<\\/summary>\r\nã$a=48$ ã®å Žåã«ã€ããŠèå¯ããïŒ$p^2-2q^2=7^2\\cdot 47$ ã§ããïŒãŸãïŒãã®è§£ãäžçµæ±ãããïŒ\r\n$$(p+q\\sqrt2)(p-q\\sqrt2)=7^2\\cdot 47$$\r\nãšå€åœ¢ãïŒ\r\n$$7=(3+\\sqrt2)(3-\\sqrt2), \\quad 47=(7+\\sqrt2)(7-\\sqrt2)$$\r\nã§ããããšãã\r\n$$p+q\\sqrt2=(3+\\sqrt2)^2(7-\\sqrt2)=71+37\\sqrt2$$\r\nããªãã¡ $(p, q)=(71, 37)$ ãšããïŒãã®ãšã $p-q\\sqrt2=(3-\\sqrt2)^2(7+\\sqrt2)$ ã§ãããã®ã§ããã¯è§£ã§ããïŒãŸãïŒ$(p, q, a)=(71, 37, 48)$ ã¯ã¹ããã2ã®æ¡ä»¶ã確ãã«å
šãŠæºããïŒãã®ãšã $R=2627$ ã§ããïŒ\\\r\nã$(71, 37)$ ã $R=pq$ ãæå°ã«ããããšã瀺ãã«ã¯ïŒ$p$ ã® $q$ ã«ã€ããŠã®å調æ§ãã $q$ ã®æå°æ§ãèšãã°ããïŒãã㯠$\\bmod5$ ã§èãïŒ $q^2\\equiv 4$ ã瀺ããã®ã¡ïŒ$q=7, 13, 17, 23$ ã«ã€ããŠç¢ºèªããããšã§åŸãããïŒãããã¯ïŒé«æ ¡æ°åŠã®ç¯å²ãéžè±ããã $\\mathbb{Z}[\\sqrt2]$ ãUFDã§ããããšã«æ³šç®ãïŒåºæ¬åæ° $1+\\sqrt2$ ãæãããšãã®æåã芳å¯ããããšã§ãåæ§ã«ç€ºãããïŒ\r\n<\\/details>",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc210/editorial/7532"
},
{
"content": "ãç¹ $I$ ããçŽç· $AB$ ã«äžãããåç·ã®è¶³ãç¹ $D$ ïŒçŽç· $DM$ ãš$OI$ ã®äº€ç¹ãç¹ $E$ ïŒçŽç· $CI$ ãš $AB$ ã®äº€ç¹ãç¹ $F$ ãšããïŒãŸãäžè§åœ¢ $OMC$ ã®å€æ¥åäžã«ç¹ $Q$ ãïŒç·å $OQ$ ãåã®çŽåŸãšãªãããã«ãšãïŒããã«äžè§åœ¢ $ABC$ ã®å€æ¥åã®ååŸã $R$ ïŒå
æ¥åã®ååŸã $r$ ãšããïŒ\\\r\nã$DI$ ãš $MO$ ã¯ãããã $AB$ ã«åçŽãã $OE:EI=R:r$ ã§ããïŒ$MO$ ãš $MQ$ ãåçŽãã $DF\\/\\/MQ$ ïŒ$angle-chase$ 㧠$OQ\\/\\/PF$ ãšãªããããããäžè§åœ¢ $IDF$ ãšäžè§åœ¢ $OMQ$ ã¯çžäŒŒã§ïŒçžäŒŒã®äžå¿ãç¹ $E$ ãšãªãã®ã§ç¹ $F, E, Q$ ã¯åäžçŽç·äžã§ããïŒ\\\r\nãæ ¹è»žãèãããšçŽç· $AB, MC, OP$ ã¯äžç¹ã§äº€ããïŒãã®ç¹ã $G$ ãšããïŒ$OA=OB$ ããçŽç· $OP$ ã¯è§ $APB$ ã®å€è§ã®äºçåç·ãšãªãã®ã§ïŒ$AC:BC=AG:BG=AP:BP$ ã§ããïŒ$AP:BP=AC:BC=AF:BF$ ããçŽç· $PF$ ã¯è§ $APB$ ã®å
è§äºçåç·ãšãªãããšãåããïŒçŽç· $OP$ ãš $PF$ ã¯åçŽã§ããããšãèšããïŒ$OQ$ ãçŽåŸã§ããããšããçŽç· $OP$ ãš $PQ$ ãåçŽãªã®ã§ïŒç¹ $F, P, Q$ ã¯åäžçŽç·äžã§ããïŒç¹ã« $\\angle OPE=90\\degree$ ãèšããïŒ\\\r\nãç¹ $I$ ããçŽç· $OP$ ã«äžãããåç·ã®è¶³ãç¹ $H$ ãšãïŒ$\\angle IPH=\\theta$ ãšããã°ïŒ$R:r=OE:EI=OP:PH=q:a \\cos \\theta$ ãšãªãïŒæåäºå®ãã $p^2=R^2-2Rr$ ãªã®ã§ $\\dfrac{R^2-p^2}{R^2}=\\dfrac {2r}R=\\dfrac {2a\\cos\\theta}q=\\dfrac{p^2-q^2-a^2}{q^2}$\\\r\nããããæŽçããããšã§ $R^2$ ã $p^2, q^2, a^2$ ã§è¡šãããšãã§ããïŒ",
"text": "OMCåã®åé¡ãå転ã䜿ããã«è§£ãæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc210/editorial/7532/432"
}
] | ãOMCåã¯OMCã«æåºããããã«ä»¥äžã®åé¡ãäœæããŸãããïŒæ°å€èšå®ã«æ©ãã§ããŸãïŒ
- - -
**åé¡**ïŒ$CA\gt CB$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠïŒå
å¿ïŒå€å¿ããããã $I, O$ ãšãïŒå€æ¥åã $\Gamma$ ãšããŸãïŒ$\Gamma$ ã®åŒ§ $ACB$ ã®äžç¹ã $M$ ãšãïŒããã«äžè§åœ¢ $OMC$ ã®å€æ¥åãšäžè§åœ¢ $OAB$ ã®å€æ¥åã®äº€ç¹ã®ãã¡ $O$ ãšç°ãªããã®ã $P$ ãšããããšããïŒ
$$IO=p,\quad OP=q,\quad PI=a$$
ãæç«ããŸããïŒãã®ãšãïŒ$\Gamma$ ã®ååŸãæ±ããŠãã ããïŒ
- - -
ãOMCåã«ã¯åŒ·ããã ãããããïŒä»¥äžã®æ¡ä»¶ããã¹ãŠæºããããã«åé¡äžã® $p, q, a$ ãèšå®ãããã§ãïŒ
- ããããæ£ã®æŽæ°ã§ããïŒããã« $p, q$ ã¯ããããçŽ æ°ã§ããïŒ
- $p, q, a$ ãèšå®ãããšãã«åé¡ã®æ¡ä»¶ãæºããäžè§åœ¢ $ABC$ ãååšããïŒ
- 解çïŒããªãã¡ $\Gamma$ ã®ååŸã¯äžæã«å®ãŸãïŒãã€æ£ã®æŽæ°ã«ãªãïŒ
ãäžã®æ¡ä»¶ãæºããç¯å²ã§ $p, q, a$ ãåããããšãèããŸãïŒ$a$ ãããããæå°ã®å€ãåããšãïŒ$\Gamma$ ã®ååŸãšããŠããããæå°ã®å€ãæ±ããŠãã ããïŒ |
OMC209 (for beginners) | https://onlinemathcontest.com/contests/omc209 | https://onlinemathcontest.com/contests/omc209/tasks/5694 | A | OMC209(A) | 100 | 317 | 339 | [
{
"content": "ã$\\angle AEI = \\angle AFI = 90^\\circ$ ã§ãããã $4$ ç¹ $A, E, F, I$ ã¯åäžååšäžã«ããïŒåŸã£ãŠ,\r\n$$\\angle EIF = 180^\\circ - \\angle EAF = 180^\\circ - \\angle BAC = 123.06^\\circ$$\r\nã§ããïŒãŸãïŒäžè§åœ¢ $DEF$ ã®å€å¿ã¯ $I$ ã§ããããïŒäžå¿è§ã®å®çãã\r\n$$\\angle EDF = \\frac{1}{2}\\angle EIF = 61.53^\\circ$$\r\nã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{6253}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc209/editorial/5694"
}
] | ãéè§äžè§åœ¢ $ABC$ ã®å
å¿ã $I$ ãšãïŒ$I$ ãã ç·å $BC, CA, AB$ ã«äžãããåç·ã®è¶³ããããã $D, E, F$ ãšããŸãïŒ$\angle BAC = 56.94^{\circ}$ ã§ãããšãïŒ$\angle EDF$ ã®å€§ããã床æ°æ³ã§æ±ããŠãã ããïŒãã ãïŒæ±ããçãã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{b}{a}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ãã. |
OMC209 (for beginners) | https://onlinemathcontest.com/contests/omc209 | https://onlinemathcontest.com/contests/omc209/tasks/7129 | B | OMC209(B) | 100 | 353 | 358 | [
{
"content": "$f(12)=f(34)$ ããïŒ$f(x)$ ã®è»žã®æ¹çšåŒã¯ $x=23$ïŒãã£ãŠïŒããå®æ° $a$ ãçšã㊠$f(x)=(x-23)^2+a$ ãšè¡šããïŒããã« $f(56)=78$ ã代å
¥ã㊠$a=-1011$ ãåŸãããããïŒ$f(90)=\\textbf{3478}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc209/editorial/7129"
}
] | ã$x^2$ ã®ä¿æ°ã $1$ ã§ããäºæ¬¡é¢æ° $f(x)$ ã«ã€ããŠïŒä»¥äžãæãç«ã¡ãŸãïŒ
$$f(12)=f(34),\quad f(56)=78$$
ãã®ãšãïŒ$f(90)$ ã®å€ã解çããŠãã ããïŒ |
OMC209 (for beginners) | https://onlinemathcontest.com/contests/omc209 | https://onlinemathcontest.com/contests/omc209/tasks/3583 | C | OMC209(C) | 200 | 264 | 324 | [
{
"content": "ãäŸãã° $A$ ã® $1$ ã®äœãã $B$ ã® $1$ ã®äœãåŒããå€ã¯ $-6,0,6$ ã®ããããã§ããïŒ$10,100,1000$ ã®äœã«ã«ã€ããŠãåæ§ã§ããããïŒãã $x_1,x_2,x_3,x_4\\in \\lbrace -6,0,6 \\rbrace$ ãååšããŠïŒæ¬¡ãæãç«ã€ïŒ\r\n$$A-B=x_1+10x_2+100x_3+1000x_4$$\r\néã« $(x_1,x_2,x_3,x_4)$ ãå®ãããšäžåŒãæºãã $A,B$ ãååšããã®ã§ïŒ$A-B$ ãšããŠããåŸãå€ã¯ $3^4=\\textbf{81}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc209/editorial/3583"
},
{
"content": "ãããæ£ç¢ºã«ã¯ïŒçµ $(x_1, x_2, x_3, x_4) \\in \\\\{-6, 0, 6\\\\}^4$ ãç°ãªãã°\r\n$$x_1 + 10x_2 + 100 x_3 + 1000 x_4$$\r\nã®å€ãç°ãªãããšã瀺ããªããã°ãããŸããïŒããã瀺ãããšãç®æšã«ããŸãïŒ\r\n\r\n<details> <summary> ãã³ã <\\/summary>\r\nã察å¶ãåã£ãŠïŒä»¥äžã瀺ãã°ããã§ããïŒããã§ïŒ$x_i, y_i $ ããã¹ãŠ $\\\\{6, 0, -6\\\\}$ ã®å
ã§ããããšãä»®å®ããŠããŸãïŒ\r\n$$x_1 + 10x_2 + 100 x_3 + 1000 x_4 = y_1 + 10y_2 + 100 y_3 + 1000 y_4ã\\impliesã(x_1, x_2, x_3, x_4) = (y_1, y_2, y_3, y_4)$$\r\nãé çªã«èŠãŠããããšããã®ããã³ãã§ãïŒããå
·äœçã«ã¯ïŒããã®äœããèŠãŠãããšç€ºããŸãïŒ\r\n <\\/details>\r\n\r\n<details> <summary> 解ç <\\/summary>\r\nãããã³ããã¿ãã®åœé¡ãïŒäžè¬ã« $n$ å€æ°ã®å Žåã§èšŒæãããïŒããªãã¡ïŒ$$x_1, x_2, \\cdots, x_n, y_1, y_2, \\cdots , y_n \\in \\\\{-6, 0, 6\\\\}$$ ã«ã€ããŠïŒä»¥äžã®åœé¡ïŒ\r\n$$x_1 + 10x_2 + \\cdots + 10^{n-1} x_{n} =y_1 + 10y_2 + \\cdots + 10^{n-1} y_{n}ã\\impliesã(x_1, x_2, \\cdots, x_n) = (y_1, y_2, \\cdots , y_n) $$\r\nã瀺ããïŒ$n=1$ ã®å Žåã¯ç€ºãã¹ãããšã¯ãªãïŒ\\\r\nã$n=k$ ã®å Žåã«æç«ããŠãããšä»®å®ããïŒ\r\n$$x_1 + 10x_2 + \\cdots + 10^{k} x_{k+1} =y_1 + 10y_2 + \\cdots + 10^{k} y_{k+1}$$\r\nãæç«ãããšãããšïŒ$10$ ã§å²ã£ãäœããèããããšã§ïŒ$x_1 = y_1$ ãåŸãïŒãã£ãŠïŒ\r\n$$10x_2 + \\cdots + 10^{k} x_{k+1} =10y_2 + \\cdots + 10^{k} y_{k+1}$$\r\n$$x_2 + 10x_3 + \\cdots + 10^{k-1} x_{k+1} =y_2 + 10y_3 +\\cdots + 10^{k-1} y_{k+1}$$\r\nãé ã«åŸãïŒä»®å®ãé©çšããã°ïŒ$(x_2, x_3, \\cdots, x_{k+1}) = (y_2, y_3, \\cdots, y_{k+1})$ ãåŸãïŒ$x_1=y_1$ ãšåãããããšã§ïŒ$n=k+1$ ã®å Žåãæç«ããããšãåŸãããïŒåŸã£ãŠïŒåž°çŽæ³ãã瀺ãããïŒ\r\n<\\/details>\r\n\r\n---\r\n\r\nãéè«ïŒã$P\\Rightarrow Q$ ã®åœ¢ã®åœé¡ããããšãïŒ$P$ ãå件ïŒ$Q$ ãåŸä»¶ãšåŒã¶ãããã§ãïŒèããããšãªãã£ãã§ãïŒ\\\r\nãéè«2ïŒã解çããåããããã«ïŒ$\\\\{6,0,-6\\\\}$ ã§ã¯ãªããŠãïŒèŠçŽ ã $10$ ã§å²ã£ãäœãããã¹ãŠç°ãªãã°åæ§ã®ããšãèšããŸããïŒ",
"text": "解説è£è¶³",
"url": "https://onlinemathcontest.com/contests/omc209/editorial/3583/422"
},
{
"content": "â» [解説è£è¶³ by locker_kun](422) ã®å¥èšŒæã§ãïŒ\r\n\r\n----\r\nãå $n$ ã«å¯ŸãïŒ$y\\_n \\coloneqq \\dfrac{x\\_n}6 + 1$ ãšãããš\r\n$$ y\\_1 + 10y\\_2 + 100y\\_3 + 1000y\\_4 = \\frac{x\\_1 + 10x\\_2 + 100x\\_3 + 1000x\\_4}6 + 1111 $$\r\nããïŒäž»åŒµã¯ $\\\\\\{\\\\: 0,\\\\, 1,\\\\, 2 \\\\:\\\\\\}^4 \\ni (y\\_1, y\\_2, y\\_3, y\\_4) \\mapsto y\\_1 + 10y\\_2 + 100y\\_3 + 1000y\\_4 \\in \\mathbb Z$ ã®åå°ãšåå€ã«ãªãåŸãïŒ",
"text": "解説è£è¶³ by locker_kun ã®å¥èšŒæ",
"url": "https://onlinemathcontest.com/contests/omc209/editorial/3583/423"
}
] | ãããã¡åã¯OMCã®ããã³ã³ãã¹ãã«åå ããŠããŸãããïŒæ
ãŠãåãªã®ã§**ã³ã³ãã¹ãããŒãžå
ã®é»å**ã®æ°åããŒã®é
眮ã以äžã®ããã«åéãããŠããŸããïŒããã¡åãå
¥åããããšããã®ã $4$ æ¡ã®æ£æŽæ° $A$ ã§ããïŒå®éã«è¡šç€ºãããæ°ã $B$ ã§ãã£ããšãããšãïŒ$A-B$ ãšããŠããåŸãå€ã¯ããã€ãããŸããïŒ
![figure 1](\/images\/pEwoTGshxPWbLzADLnIRJLVAcEw8UcFNzbd2NTUs) |
OMC209 (for beginners) | https://onlinemathcontest.com/contests/omc209 | https://onlinemathcontest.com/contests/omc209/tasks/6057 | D | OMC209(D) | 200 | 307 | 337 | [
{
"content": "ã$A$ åã®æãåºå®ãããšïŒä»ã® $6$ 人ããããã®æ㯠$A$ åãšåãæãŸã㯠$A$ åã«è² ããæã® $2$ éãããåŸãïŒãã®ãã¡å
šå¡ã $A$ åãšåãæãåºãå Žåã¯æ¡ä»¶ãæºãããªãããšã«æ³šæãããšïŒæ±ãã確ç㯠$\\dfrac{2^6-1}{3^6}=\\dfrac{7}{81}$ ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{88}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc209/editorial/6057"
}
] | ã$A$ åãå«ãã $7$ 人ã§ããããããäžåºŠã ããããšãïŒãããã«ãªããã«ïŒ$A$ åãåã€ç¢ºçïŒ $A$ åã®ã¿ãåã€ç¢ºçã§ãªãããšã«æ³šæããŠãã ããïŒã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ããïŒ
----
ã**è¿œèš (21:22)ïŒ**ãã ãïŒ$7$ 人ã¯ããããã°ãŒã»ãã§ãã»ããŒãç¬ç«ã«ç確çã§åºããã®ãšããŸãïŒ |
OMC209 (for beginners) | https://onlinemathcontest.com/contests/omc209 | https://onlinemathcontest.com/contests/omc209/tasks/4258 | E | OMC209(E) | 200 | 261 | 314 | [
{
"content": "ã$100$ 以äžã®çŽ æ° $p$ ã«ã€ããŠïŒéåã®èŠçŽ ã®ãã¡ $p$ ã®åæ°ã§ãããã®ã¯é«ã
$1$ ã€ã§ããïŒ$100$ 以äžã®çŽ æ°ã¯ $25$ åã§ããããšããïŒæ¡ä»¶ãã¿ãã倧ãã $26$ ã®éåã¯\r\n\r\n$$ \\lbrace 1, 2^{e_2}, 3^{e_3}, 5^{e_5}, \\ldots, 89^{e_{89}}, 97^{e_{97}}\\rbrace\\ (1\\leq e_2\\leq 6, 1\\leq e_3\\leq 4, 1\\leq e_5,e_7\\leq 2, e_{11},\\ldots,e_{97}=1)$$\r\n\r\nãšè¡šãããïŒãã£ãŠïŒæ±ããçã㯠$6\\times4\\times2\\times2=\\mathbf{96}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc209/editorial/4258"
}
] | ã$100$ 以äžã®æ£æŽæ°ãããªãèŠçŽ æ°ã $26$ ã®éåã§ãã£ãŠïŒã©ã®çžç°ãªã $2$ ã€ã®èŠçŽ ãäºãã«çŽ ãšãªããããªãã®ã¯ããã€ãããŸããïŒãã ãïŒ$100$ 以äžã®çŽ æ°ã¯ $25$ åã§ãïŒ |
OMC209 (for beginners) | https://onlinemathcontest.com/contests/omc209 | https://onlinemathcontest.com/contests/omc209/tasks/6126 | F | OMC209(F) | 300 | 173 | 197 | [
{
"content": "$$\\angle ADC = \\angle ABC - \\angle BCD = \\angle ACB - \\angle BCE = \\angle ACE$$\r\nã§ããããïŒäžè§åœ¢ $ACE$ ãšäžè§åœ¢ $ADC$ ã¯çžäŒŒã§ããïŒåŸã£ãŠïŒ$BE = x$ ãšãããšïŒ\r\n$$AC : AE = CD : CE = 61 : x$$\r\nã§ããããïŒ\r\n$AC = \\dfrac{26\\times61}{x}$\r\nãšåããïŒäžæ¹ïŒ$AC = AB = 26 + x$ ãšãè¡šããã®ã§ïŒæ¯èŒããããšã§ $x = -13 + \\sqrt{1755}$ ãåŸãããïŒ$AC = 13 + \\sqrt{1755}$ ã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf{1768}$ ã§ããïŒ\\\r\nãªãïŒ$BC=75$ ã¯äœå°ãªæ¡ä»¶ã ãïŒãããæºããå³ã¯ååšããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc209/editorial/6126"
}
] | ã$AB=AC$ ã§ããäºç蟺äžè§åœ¢ $ABC$ ã®çŽç· $AB$ äžã® $B$ ã«é¢ã㊠$A$ ãšå察åŽã«ç¹ $D$ ããšãïŒãŸãç·å $AB$ äžã« $\angle{BCD}=\angle{BCE}$ ãšãªãããã«ç¹ $E$ ããšã£ããšãïŒ
$$BC=75,\quad BD=61,\quad AE=26$$
ãæç«ããŸããïŒãã®ãšãïŒç·å $AC$ ã®é·ãã¯ïŒæ£ã®æŽæ° $a, b$ ãçšã㊠$a+\sqrt{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC209 (for beginners) | https://onlinemathcontest.com/contests/omc209 | https://onlinemathcontest.com/contests/omc209/tasks/4191 | G | OMC209(G) | 300 | 106 | 168 | [
{
"content": "ãäžããããåŒãæåæ¯ã«åããŠèšç®ãããš, \r\n$$ \\begin{aligned}\r\n\\displaystyle{ \\sum_{a=1}^A \\sum_{b=A+1}^B \\sum_{c=B+1}^C abc} &\r\n= \\displaystyle{ \\sum_{a=1}^A a\\sum_{b=A+1}^B b\\sum_{c=B+1}^C c}\\\\\\\\\r\n&=\\dfrac1{8}A(A+1)(B-A)(A+B+1)(C-B)(B+C+1) \\quad \\cdots(\\*)\r\n\\end{aligned}$$\r\nãšãªã. \\\r\nã以äž, åååŒã®æ³ãå
šãŠ $3$ ãšããŠ,\r\n $(\\*)$ ã $3$ ã®åæ°**ã§ãªã**ãããª\r\n $(A,B,C)$ ã®çµãèãã : \r\n- ãŸã, $A(A+1) \\not\\equiv 0 $ ã§ãããã, \r\n $A \\equiv 1$ ã§ãã. \r\n- 次ã«, $B \\not\\equiv A$ ãã€$B \\not\\equiv -A-1$ ãã, $B \\equiv 0, 2$ ã§ãã. \r\n- æåŸã«, $C \\not\\equiv B$ ã〠$C \\not\\equiv -B-1$ ã§ããã®ã§, $B \\equiv 0,2$ ãããã«ãã, $C \\equiv 1$ ã§ãã. \r\n\r\n以äžãã, \r\n$$ B=3k, 3k-1 \\quad (k=1,2,\\cdots ,333)$$\r\nã®æ, $A$ ã®éžã³æ¹ã¯ $k$ éã, $C$ ã®éžã³æ¹ã¯ $334-k$ éãããã®ã§, $(\\*)$ ã\r\n $3$ ã®åæ°**ã§ãã**ãããªæŽæ°ã®çµ $(A,B,C)$ ã®åæ°ã¯, \r\n\r\n$$ {}\\_{1000}\\mathrm{C}\\_{3} - 2\\displaystyle \\sum_{k=1}^{333} k(334-k) = \\mathbf{153747210} $$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc209/editorial/4191"
}
] | ã$1 \leqq A \lt B \lt C \leqq 1000$ãæºããæŽæ°ã®çµ $(A,B,C)$ ã®ãã¡,
$$ \displaystyle{ \sum_{a=1}^A \sum_{b=A+1}^B \sum_{c=B+1}^C abc}$$
ã $3$ ã®åæ°ãšãªããã®ã¯äœéããããŸãã. |
OMC209 (for beginners) | https://onlinemathcontest.com/contests/omc209 | https://onlinemathcontest.com/contests/omc209/tasks/3453 | H | OMC209(H) | 400 | 70 | 139 | [
{
"content": "$(i)$ $1000$ 以äžã®é
ãã¡ããã© $1$ ã€å«ãå Žå\\\r\nãæããã« $1000$ 以äžã®é
ã®åã $1000$ ãè¶
ããªãã®ã§ïŒäžé©ã§ããïŒ\r\n\r\n----\r\n$(ii)$ $1000$ 以äžã®é
ãã¡ããã© $2$ ã€å«ãå Žå\\\r\nããã® $2$ ã€ã®é
ã $a\\lt b$ ãšããïŒ$a,b$ ã®æ¬¡ã«å€§ããé
ã $2b-a$ ã§ããããšã«æ³šæãããšïŒ$a,b$ ãæºããã¹ãæ¡ä»¶ã¯æ¬¡ã§ããïŒ\r\n$$1\\leq a\\lt b \\leq 1000\\lt 2b-a, \\quad a+b\\gt 1000$$\r\nãããã $1000-b\\lt a\\lt 2b-1000 ~(b=668,669,...,1000)$ ãåŸãããïŒ\\\r\n $b$ ãåºå®ãããš $a$ ã®å€ã¯ $3b-2001$ éãã ãããã®ã§ïŒæ¡ä»¶ãæºãã $(a,b)$ ã®çµã®æ°ïŒããã¯çå·®æ°åã®æ°ã«çããïŒã¯ $3+6+\\cdots +999=166833$ ã§ããïŒ\r\n\r\n----\r\n$(iii)$ $1000$ 以äžã®é
ã $3$ ã€ä»¥äžå«ãå Žå\\\r\nãåé
$a$ ïŒå
¬å·® $d$ ïŒ$1000$ 以äžã®é
æ°ã $n$ ãšãããšæ¬¡ã®è©äŸ¡ã«ããïŒ$1000$ 以äžã®é
ã®åã¯å¿
ã $1000$ ãè¶
ãïŒåé¡æã®æ¡ä»¶ã¯æºããããããšããããïŒ\r\n$$(a+d)+(a+(n-1)d)\\gt a+dn\\gt 1000$$\r\nåé
åã³ç¬¬ $3$ é
㯠$1000$ 以äžã®æ£æŽæ°ã§ããïŒå¶å¥ãäžèŽããã®ã§ïŒãã® $2$ æ°ã®çµã®æ°ïŒããã¯çå·®æ°åã®æ°ã«çããïŒã¯ ${}\\_{500}\\mathrm{C}\\_{2}+{}\\_{500}\\mathrm{C}\\_{2}=249500$ ã§ããïŒ\r\n\r\n----\r\n以äžã®å Žååãã«ããïŒæ±ããçå·®æ°åã®æ°ã¯ $166833+249500=\\bf416333.$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc209/editorial/3453"
},
{
"content": "ãåé
$a$ïŒå
¬å·® $d$ ãšããïŒ$a \\gt 0$ïŒ$d \\gt 0$ ã§ããïŒ\\\r\nã$1000$ 以äžã®é
ã $n$ é
ã ãšãããšïŒãããã®é
ã¯ä»¥äžã®ããã«è¡šãããïŒ\\\r\n$$a, a+d, \\cdots , a+(n-1)d$$\r\nããã®æ°åã®ç¬¬ $(n+1)$ é
㯠$a+nd$ ã§ããïŒæ¡ä»¶ãã $a+nd \\gt 1000$ ã§ããïŒ\\\r\nã$n$ ã $3$ 以äžã®å Žåã¯ïŒç¬¬ $n$ é
ãšç¬¬ $n-1$ é
ã®åãèãããš\\\r\n$$ \\lbrace a+(n-2)d \\rbrace + \\lbrace a+(n-1)d \\rbrace \\gt a+nd \\gt 1000$$ ãåŸãïŒ\\\r\nãåŸã£ãŠïŒ$1000$ 以äžã®é
ã $1$ é
ãŸã㯠$2$ é
ãããªãå Žåã«éã£ãŠïŒæ¡ä»¶ãæºãããªããã®ãååšãåŸãïŒ\r\n\r\n---\r\n\r\nâ»ä»¥äžã®çºæ³ã«ã€ããŠã³ã¡ã³ãããŠãããŸãïŒ\\\r\nãã$a-d$ 座æšå¹³é¢äžã§ïŒæ¡ä»¶ãæºããéšåãèãããããšããåæ©ã§è°è«ãé²ããŠããŸãïŒ\r\n\r\nã$1000$ 以äžã®é
ã $1$ é
ã®å ŽåïŒåžžã«æ¡ä»¶ãæºãããªãïŒãã®ãšãã®æ¡ä»¶ã¯ïŒ$a+d \\gt 1000$ ãšè¡šãããïŒ\\\r\nã$1000$ 以äžã®é
ã $2$ é
ã®å ŽåïŒæ¡ä»¶ãæºãããªãã®ã¯ïŒ$a+(a+d) \\leq 1000$ ã®ãšãã§ããïŒãªãïŒ$a+2d \\gt 1000$ ãæºããããšã«æ³šæãå¿
èŠã§ããïŒ\\\r\nã以äžã®è°è«ããïŒæ±ããã¹ãå Žåã®æ°ã¯ïŒ$a+d \\leq 999$ ã®ç¯å²ã®æ Œåç¹ããïŒ$500-\\dfrac{a}{2} \\lt d \\leq 1000-2a$ ã®ç¯å²ã®æ Œåç¹ãåãé€ããæ°ãšãªãïŒ\\\r\nãããšã¯èšç®ããã°ããïŒèšç®ã®äžäŸãšããŠïŒäžã®åŒãæããŠããïŒ\r\n$$(999+\\cdots+1)-(\\overbrace{499+496+493+\\cdots +1}^{a ãå¥æ°ã®ãšã}) -( \\underbrace{497+494+491+\\cdots +2}_{a ãå¶æ°ã®ãšã})$$",
"text": "åé
ãšå
¬å·®ããèããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc209/editorial/3453/415"
}
] | ãåé
ãšå
¬å·®ããšãã«æ£ã®æŽæ°ã§ããç¡éçå·®æ°åã§ãã£ãŠïŒ$1000$ 以äžã®é
ãã¹ãŠã®åã $1000$ ãã倧ãããã®ã¯å
šéšã§ããã€ãããŸããïŒ |
OMC208 | https://onlinemathcontest.com/contests/omc208 | https://onlinemathcontest.com/contests/omc208/tasks/7137 | A | OMC208(A) | 100 | 334 | 344 | [
{
"content": "ã$2\\sqrt{10}-1=x$ ãšãããšïŒæ±ããçãã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\begin{aligned}\r\nx^4+4x^3+16x^2+24x+35\r\n&=(x+1)^4+10(x+1)^2+24\\\\\\\\\r\n&=40^2+10\\cdot40+24\\\\\\\\\r\n&=\\mathbf{2024}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc208/editorial/7137"
}
] | ã次ã®åŒãèšç®ããŠãã ããïŒ
$$\left\(2\sqrt{10}-1\right\)^4+4\left\(2\sqrt{10}-1\right\)^3+16\left\(2\sqrt{10}-1\right\)^2+24\left\(2\sqrt{10}-1\right\)+35$$ |
OMC208 | https://onlinemathcontest.com/contests/omc208 | https://onlinemathcontest.com/contests/omc208/tasks/5890 | B | OMC208(B) | 200 | 307 | 318 | [
{
"content": "ã$p \\neq q$ ããïŒ$p,q$ ã¯äºãã«çŽ ã§ããããïŒ$(p+1)^2 \\equiv 1\\equiv q^{p-1} \\pmod{p}$ ãæãç«ã€ïŒãã£ãŠ $p\\mid 345$ ã§ããããïŒ$3,5,23$ ã $p$ ã®åè£ã§ããïŒ\r\n\r\n- $p=3$ ã®ãšã $4^2+345=q^2$ ãã $q=19$ ãæ¡ä»¶ãæºããïŒ\r\n- $p=5$ ã®ãšã $6^2+345=q^4$ïŒãããæºãã $q$ ã¯ååšããªãïŒ\r\n- $p=23$ ã®ãšã $24^2+345=q^{22}$ïŒãããæºãã $q$ ã¯ååšããªãïŒ\r\n\r\nããããã£ãŠïŒäžããããçåŒãæºãããã®ã¯ $(p,q)=(3,19)$ ã®ã¿ã§ããïŒè§£çãã¹ãå€ã¯ $\\mathbf{22}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc208/editorial/5890"
},
{
"content": "ã$p=2$ ãšä»®å®ãããšïŒãã®ãããªçŽ æ° $q$ ã¯ååšããªãããšããããïŒåŸã£ãŠ $p$ ã¯å¥çŽ æ°ã§ããïŒç¹ã« $p-1$ ã¯å¶æ°ã§ããïŒ\\\r\nããã®ããšã掻çšããã°ïŒæ¬¡ã®åŒãåŸãïŒ\r\n$$(q^{\\frac{p-1}{2}}+p+1)(q^{\\frac{p-1}{2}}-p-1)=345$$\r\nãããšã¯ïŒå·ŠèŸºã $345Ã1$ïŒ$115Ã3$ïŒ$69Ã5$ïŒ$23Ã15$ ãšãªãå Žåããããã確ãããã°ããïŒ",
"text": "å æ°å解ãçšããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc208/editorial/5890/416"
}
] | ãçžç°ãªãçŽ æ°ã®çµ $(p,q)$ ã§ãã£ãŠïŒ
$$(p+1)^2+345=q^{p-1}$$
ãã¿ãããã®ãã¹ãŠã«ã€ããŠïŒ$p+q$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC208 | https://onlinemathcontest.com/contests/omc208 | https://onlinemathcontest.com/contests/omc208/tasks/6082 | C | OMC208(C) | 300 | 188 | 264 | [
{
"content": "ã$P(x) = 0$ ã®è§£ãéè€ã蟌ã㊠$x_1,x_2,\\ldots,x_{512}$ ãšããïŒãã®ãšãïŒ\r\n$$P(x) = (x-x_1)(x-x_2)\\cdots(x-x_{512})\\equiv(x_1+1)(x_2+1)\\cdots(x_{512}+1) \\pmod{x+1}$$\r\nã§ããããïŒ\r\n$$(x_1+1)(x_2+1)\\cdots(x_{512}+1) = 10^{1536}$$\r\nã§ããïŒããã§ïŒçžå çžä¹å¹³åã®äžçåŒããïŒä»»æã®æ£ã®å®æ° $y$ ã«å¯ŸããŠ\r\n$$y + 1 = 999\\times\\frac{y}{999} + 1 \\ge 1000\\bigg(\\frac{y}{999}\\bigg)^{999\\/1000}$$\r\nãæç«ããïŒãããæŽçãããšïŒ\r\n$$y \\le 999\\bigg(\\frac{y+1}{1000}\\bigg)^{1000\\/999}$$\r\nãšãªãïŒåŸã£ãŠïŒ\r\n$$\\begin{aligned}\r\nP(0) &= x_1x_2\\cdots x_{512}\\\\\\\\\r\n&\\le 999^{512}\\bigg(\\frac{x_1+1}{1000}\\bigg)^{1000\\/999}\\bigg(\\frac{x_2+1}{1000}\\bigg)^{1000\\/999}\\cdots\\bigg(\\frac{x_{512}+1}{1000}\\bigg)^{1000\\/999}\\\\\\\\\r\n&= 999^{512}\r\n\\end{aligned}$$\r\nã§ããïŒçå·ã¯ $P(x) = (x-999)^{512}$ ã®ãšãæç«ããã®ã§ïŒ$M = 999^{512}$ ã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf788481$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc208/editorial/6082"
},
{
"content": "ã[å
¬åŒè§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/omc208\\/editorial\\/6082) åæ§ã«, åé¡ã $\\prod\\_{i=1}\\^{512}(x\\_{i}+1)=10\\^{1536}$ ã®ããšã§ã® $\\prod\\_{i=1}\\^{512}x\\_{i}$ ã®æ倧åã«åž°çããåŸã®è©±ã§ã. \r\n\r\nã以äžã§ã¯æ倧å€ãååšããããšãä¿èšŒãããäžã§ãã®æ倧å€ãæ±ããè°è«ã§ã. \r\næ倧å€ã®ååšãä¿èšŒãããŠããªãå Žåã«ã¯ããäžæ®µéè°è«ãå¿
èŠãªäºã«æ³šæããŠãã ãã. \r\n\r\n$x\\_i\\neq x\\_j$ ãªã $i,j$ ãååšãããšããŸã. \r\n$x\\_{i}\\prime=x\\_{j}\\prime=\\sqrt{(1+x\\_i)(1+x\\_j)}-1$ ãšããŸã. \r\nãã®æ, $(1+x\\_i)(1+x\\_j)=(1+x\\_i\\prime)(1+x\\_j\\prime)$ ã§ãã, \r\n$x\\_{i}\\prime x\\_{j}\\prime-x\\_ix\\_j=(1+x\\_i)+(1+x\\_j)-2\\sqrt{(1+x\\_i)(1+x\\_j)}\\gt 0$ ã§ã. \r\nåŸã£ãŠ, $x\\_i\\neq x\\_j$ ãªã $i,j$ ãååšãããªã, ãã® $2$ ã€ã®å€ãå€æŽããããšã§, ç®æšã®å€ããã倧ããã§ããããšãåãããŸãã. \r\n\r\nãã£ãŠ, æ倧å€ãååšãããªãã° $x\\_1=x\\_2=\\dots=x\\_{512}$ ã®æã§ããããšãåãã, ç¹ã«ä»åã®å Žåãã®å€ã¯ $999$ ãšãªããŸã.",
"text": "æ倧å€ã®ååšãä¿èšŒãããäžã§ã®è§£æ³",
"url": "https://onlinemathcontest.com/contests/omc208/editorial/6082/413"
},
{
"content": "æ£ã®å®æ° $x_1,\\ldots,x_{512}$ ã«å¯ŸããŠïŒ\r\n$$\r\n(x_1+1)(x_2+1)\\cdots(x_{512}+1) = 10^{1536}\r\n$$\r\nãšããå¶çŽã®ããšïŒ$y=x_1x_2\\cdots x_{512}$ ãæ倧åããïŒãšãããšãããŸã§ã¯[å
¬åŒè§£èª¬](onlinemathcontest.com\\/contests\\/omc208\\/editorial\\/6082)ãšåæ§ïŒä»¥äžãçšããïŒ\r\n \r\n**ãã«ããŒã®äžçåŒ** \r\n$n,m$ ãæ£æŽæ°ãšããŠïŒ$a_{i,j} \\geq 0, w_i \\gt 0, \\displaystyle \\sum_{i=1}^n w_i = 1$ ãªãå®æ°å $a_{1\\leq i \\leq n,1\\leq j \\leq m},w_{1\\leq i \\leq n}$ ã«å¯ŸããŠïŒ\r\n$$\r\n\\prod_{i=1}^n(\\sum_{j=1}^m a_{i,j})^{w_i} \\geq \\sum_{j=1}^m(\\prod_{i=1}^n a_{i,j})^{w_i}\r\n$$\r\nãæç«ããïŒçå·æç«ã¯æ¯ $a_{1,j}:a_{2,j}:\\cdots :a_{n,j} (j=1,\\ldots m)$ ããã¹ãŠçãããšãïŒ\r\n\r\näžèšãïŒ$n=512,m=2,w_i=\\frac{1}{512}$ ãšããŠé©çšãããšïŒä»¥äžã®äžçåŒãåŸãïŒ\r\n$$\r\n\\prod_{i=1}^{512}(\\sum_{j=1}^{2} a_{i,j})^{\\frac{1}{512}} \\geq (\\sum_{j=1}^{2}(\\prod_{i=1}^{512} a_{i,j})^{\\frac{1}{512}})\r\n$$\r\n\r\nã$512$ ç³»åã«å¯Ÿããã³ãŒã·ãŒã·ã¥ã¯ã«ãã®äžçåŒããã€ã¡ãŒãžãããšããïŒãã㧠\r\n$a_{i,1}=x_i,a_{i,2}=1$ ãšãããšïŒãã«ããŒã®äžçåŒã®å·ŠèŸºã¯ $\\prod(x_i+1)^{\\frac{1}{512}} = ((x_1+1)(x_2+1)\\cdots(x_{512}+1))^{\\frac{1}{512}} = 10^{3}$ ãšäžèŽãïŒå³èŸºã¯ $\\prod_{i=1}^{512} x_i^{\\frac{1}{512}} + 1 = y^{\\frac{1}{512}} + 1$ ãšãªãããïŒ$999^{512} \\geq y$ ãšãªãïŒçå·ã¯ $x_1 = \\cdots =x_{512}=999$ ã®ææç«ããããïŒ $M =999^{512} = 3^{1536}37^{512}$ ããçŽæ°ã®åæ°ã¯ $\\mathbf{788481}$ ãšãããïŒ",
"text": "ãã«ããŒã®äžçåŒãçšããæ倧å€ç®åº",
"url": "https://onlinemathcontest.com/contests/omc208/editorial/6082/420"
}
] | ã$512$ 次ã®å®æ°ä¿æ°å€é
åŒ $P(x)$ ãããïŒ$512$ 次ã®ä¿æ°ã¯ $1$ ã§ãïŒ$P(x)$ ã $x+1$ ã§å²ã£ãäœã㯠$10^{1536}$ ã§ããïŒæ¹çšåŒ $P(x)=0$ ã®è€çŽ æ°è§£ã¯ãã¹ãŠæ£ã®å®æ°ã§ããïŒ$P(0)$ ãšããŠããããæ倧å€ã $M$ ãšããŸãïŒããã§ïŒ$M$ ã¯ååšãïŒæ£ã®æŽæ°ãšãªãããšãä¿èšŒãããŸãïŒ$M$ ããã€æ£ã®çŽæ°ã®åæ°ãæ±ããŠãã ããïŒ |
OMC208 | https://onlinemathcontest.com/contests/omc208 | https://onlinemathcontest.com/contests/omc208/tasks/7778 | D | OMC208(D) | 400 | 124 | 185 | [
{
"content": "ãçŽç· $AD$ ãšäžè§åœ¢ $ABC$ ã®å€æ¥åã®äº€ç¹ã®ãã¡ $A$ ã§ãªãæ¹ã $P$ ãšããïŒååšè§ã®å®çããïŒ$\\angle{BAP}=\\angle{BCP}$ ã§ããïŒ$\\angle{BAD}=\\angle{CDE}$ ãšäœµã㊠$\\angle{BCP}=\\angle{CDE}$ ãåŸãïŒãã£ãŠïŒé¯è§ãçããããçŽç· $DE$ ãš $PC$ ã¯å¹³è¡ã§ããïŒ\\\r\nããã£ãŠïŒ$\\angle{ADE}=\\angle{APC},\\angle{AED}=\\angle{ACP}$ ããäžè§åœ¢ $ADE$ ãš $APC$ ã¯çžäŒŒã§ããïŒããªãã¡ $AC:AE=PC:DE$ ã§ããïŒä»®å®ãã $AB:DE=AC:AE$ ã§ããã®ã§ïŒ$PC:DE=AB:DE$ ã§ããïŒãã£ãŠïŒ $PC=AB$ ã§ããïŒãããã£ãŠïŒååšè§ã®å®çããïŒ\r\n$$\\angle{CAD}=\\angle{CAP}=\\angle{ACB}=\\angle{ACD}$$\r\nã§ããïŒä»®å®ãã $CD=8$ ã§ãããã $AD=CD=8$ ã§ããïŒãŸãïŒ$BD = 12 - AD = 4$ ã§ããïŒ\\\r\nãããã§ïŒ$\\angle ACB = \\angle EAD$ ã§ããïŒããã«\r\n$$\\angle BAC = \\angle BAD + \\angle DAC = \\angle CDE + \\angle ACB = \\angle DEA$$\r\nã§ããããïŒäžè§åœ¢ $ABC$ ãš $EDA$ ã¯çžäŒŒã§ããïŒãŸãïŒ$BC = 12, AD = 8$ ã§ããããïŒãã®çžäŒŒæ¯ã¯ $3 : 2$ ã§ããïŒãã£ãŠïŒ\r\n$$3 : 2 = AC : EA = AC : (AC - 2)$$\r\nãæç«ããã®ã§ïŒ$AC = 6$ ã§ããïŒåŸã£ãŠïŒäœåŒŠå®çãã\r\n$$\\cos \\angle ADC = \\frac{AD^2 + DC^2 - AC^2}{2\\times AD\\times DC} = \\frac{23}{32}$$\r\nã§ããã®ã§ïŒåã³äœåŒŠå®çãã\r\n$$AB^2 = AD^2 + BD^2 + 2 AD\\times BD\\cos \\angle ADC = \\bf{126}$$\r\nãåŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc208/editorial/7778"
},
{
"content": "ãç·å $AB$ äžã« $DE=AF$ ãšãªãããã«ç¹ $F$ ããšãïŒ\\\r\nããã®ãšãïŒæ¡ä»¶ $AB:DE=AC:AE$ ããïŒ$AB:AF=AC:AE$ ã§ããïŒ$FE$ ãš $BC$ ã¯å¹³è¡ã§ããïŒåŸã£ãŠ $\\angle BAD= \\angle CDE= \\angle DEF$ ã§ããïŒååšè§ã®å®çã®éããïŒ $4$ ç¹ $A, E, D, F$ ã¯åäžååšäžã«ååšããïŒ\\\r\nããã®ãšãïŒ$DE=AF$ ã§ãã£ãã®ã§ïŒåè§åœ¢ $AEDF$ ã¯çèå°åœ¢ïŒãã®ããšããïŒä»¥äžã®ããã«ïŒæ§ã
ãªèŸºã®é·ãããããïŒ\\\r\nãâ ã$AC$ ãš $FD$ ã¯å¹³è¡ã§ããïŒåè§åœ¢ $CDFE$ ã¯å¹³è¡å蟺圢ïŒç¹ã«ïŒ$DF=2$ïŒ$EF=8$ïŒ\\\r\nãâ¡ãçèå°åœ¢ã®å¯Ÿè§ç·ã¯çããã®ã§ïŒ$AD=EF=8$ïŒããã«æ¡ä»¶ $AD+BD=12$ ããïŒ$BD=4$ïŒ\\\r\nãâ¢ã$AC \\parallel DF$ ããäžè§åœ¢ã®çžäŒŒã掻çšããŠïŒ$AC=6$ïŒ$AE=4$ïŒ\\\r\nãããšã¯ïŒäŸãã°ã¹ãã¥ã¯ãŒãã®å®ç ãçšããã°ïŒ$AB^2=126$ ãåŸãïŒ",
"text": "åADEãçšããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc208/editorial/7778/417"
},
{
"content": "$AD$ ãš $EF$ ãå¹³è¡ãšãªãããã«ç·å $CD$ äžã«ç¹ $F$ ãåããšãäžè§åœ¢ $ABD$ ãšäžè§åœ¢ $DEF$ ãäžè§åœ¢ $CEF$ ãšäžè§åœ¢ $CAD$ ã®çžäŒŒããããããããã®ã§ã\r\n$$AD:DF=AB:DE=AC:AE=DC:DF$$\r\nãšãªã $AD=DC=8$ ãåŸãã(ããããã¯æ¬è§£èª¬ãšåæ§)",
"text": "çžäŒŒã®ã¿ãçšãã解æ³",
"url": "https://onlinemathcontest.com/contests/omc208/editorial/7778/419"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $BC$ äžã«ç¹ $D$ ããšãïŒèŸº $AC$ äžã«ç¹ $E$ ããšããšïŒ
$$AB:DE=AC:AE,\quad \angle{BAD}=\angle{CDE}$$
ããã³ïŒ
$$AD+BD=12,\quad CD=8,\quad CE=2$$
ãæºãããŸããïŒãã®ãšãïŒ$AB$ ã®é·ãã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMC208 | https://onlinemathcontest.com/contests/omc208 | https://onlinemathcontest.com/contests/omc208/tasks/7679 | E | OMC208(E) | 400 | 87 | 160 | [
{
"content": "ãäžè¬ã« $2\\times n\\~(n\\geq 3)$ ã®ãã¹ç®ã§èããïŒ$1$ åããã«è¡ãå転ãããš $1$ è¡ç®ãš $2$ è¡ç®ã¯ç¬ç«ã«èããããšãã§ããããã«ãªãïŒæ¬¡ã®åé¡ã®çãã $A_n$ ãšãããšãå
ã®åé¡ã®çã㯠$A_n^2$ ã§ããïŒ\r\n\r\n- $1\\times n$ ã®ãã¹ç®ãããïŒåãã¹ãèµ€ãŸãã¯éã§å¡ãïŒã©ã®ãã¹ã«ã€ããŠãïŒæ¬¡ã®æ¡ä»¶ãæºãããŠãããããªå¡ãæ¹ã¯äœéããããïŒ\r\n - èªèº«ããã³èªèº«ãšèŸºãå
±æãããã¹ãå
šãŠåãè²ã§å¡ãããŠããããšã¯ãªãïŒ\r\n\r\nãããã§äž¡ç«¯ã® $2$ ãã¹ãæ¡ä»¶ãæºããã«ã¯ããããé£æ¥ãããã¹ãšç°ãªãè²ãå¡ããããªãããšã«æ³šæãããšïŒ$A_n$ ã¯æ¬¡ã®åé¡ã®çããšäžèŽããïŒ\r\n\r\n- $1\\times(n-2)$ ã®ãã¹ç®ãããïŒç«¯ããé ã«åãã¹ãèµ€ãŸãã¯éã§å¡ã£ãŠããïŒãã ãïŒåãè²ã§é£ç¶ãã $3$ ãã¹ãå¡ã£ãŠã¯ãããªãïŒãã®ãããªå¡ãæ¹ã¯äœéããïŒ\r\n\r\nãããã $A_n$ 㯠$A_3=2,A_4=4,A_{n+2}=A_{n+1}+A_n\\~(n\\geq 3)$ ãã¿ããããšããããïŒèšç®ãããš $A_{17}=1974$ ãåŸãããããïŒå
ã®åé¡ã®çã㯠$1974^2=\\bm{3896676}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc208/editorial/7679"
},
{
"content": "ã$1\\times n$ ã®ãã¹ç®ãèµ€ãšéã§å¡ãåããæ¹æ³ã®ãã¡ïŒ$3$ ã€ã®é£ç¶ãããã¹ã«åãè²ãå¡ãããïŒæãå·Šã® $2$ ãã¹ã«ãåãè²ãå¡ãããïŒæãå³ã® $2$ ãã¹ã«ãåãè²ãå¡ãããªããããªå¡ãæ¹ã®ç·æ° $A_n$ ã®æ±ãæ¹ã«ã€ããŠã®èª¬æã§ãïŒ \r\n\r\nãé£ãåã $2$ ãã¹ã®å¢çãšãªã£ãŠãã $n-1$ æ¬ã®èŸº $m_1,m_2,\\ldots,m_{n-1}$ ã«å¯ŸãïŒé£ãåã $2$ ãã¹ãåè²ã§å¡ãããŠãããšãã¯å¢çãšãªã£ãŠãã蟺ãçœã§å¡ãïŒ é£ãåã $2$ ãã¹ãç°è²ã§å¡ãããŠãããšãã¯å¢çãšãªã£ãŠãã蟺ãé»ã§å¡ãããšã«ãããšïŒ$n-1$ æ¬ã®èŸºã«ã€ããŠïŒäž¡ç«¯ã® $2$ æ¬ãé»ã§å¡ãããŠããïŒçœã§å¡ããã蟺ãé£ç¶ããŠçŸããªããããªèŸºã®å¡ãæ¹ã®ç·æ°ã $a_n$ ãšããã°ïŒæãå·Šã®ãã¹ç®ã®è²ãš $n-1$ æ¬ã®èŸºã®è²ãããã¹ç®ã«å¡ãããè²ãäžæã«å®ãŸãããšã«æ³šæããŠïŒ$A_n=2a_n$ ã§æ±ãŸãïŒ \r\n$\\\\{a_n\\\\}$ ã®æŒžååŒãç«ãŠããïŒæ¡ä»¶ãæºãã $n-1$ æ¬ã®èŸºã®å¡ãæ¹ãèãããšïŒ$m_2$ ãé»ã®ãã®ã¯ $a_{n-1}$ éãããïŒ$m_2$ ãçœã®ãã®ã¯ $m_3$ ãé»ãšãªããã $a_{n-2}$ éãããïŒãã£ãŠïŒ$a_{n}=a_{n-1}+a_{n-2}$ ãšãªãïŒãããçšã㊠$A_{17}=2a_{17}$ ãæ±ãŸãïŒ",
"text": "A_n ã®æ±ãæ¹ã®è£è¶³",
"url": "https://onlinemathcontest.com/contests/omc208/editorial/7679/418"
},
{
"content": "解説ã®ãããªåžæŸæš¡æ§ã§èŠããšãã®ç°ãªãäœçœ®ã¯ç¬ç«ã«èããããããšããçºæ³ãç¡ããŠãã以äžã®ããã«æŒžååŒãç«ãŠãããšãå¯èœã§ãã\r\n\r\n$2\\times n$ ã®ãã¹ç®ã§ïŒå·Šãã $2 \\times (n-1)$ ãã¹ã¯æ¡ä»¶ãæºããïŒå³ç«¯ã®åã® $2$ ãã¹ãæ¡ä»¶ãæºãããŠãããã©ããã§åé¡ããïŒ \r\nå³ç«¯ã®åã® $2$ ãã¹å
šãŠãæ¡ä»¶ãæºãããã®ã®æ°ã $a_n$ \r\nå³ç«¯ã®åã® $2$ ãã¹ã®ãã¡ $1$ ãã¹ãæ¡ä»¶ãæºãããã®ã®æ°ã $b_n$ \r\nå³ç«¯ã®åã® $2$ ãã¹å
šãŠãæ¡ä»¶ãæºãããªããã®ã®æ°ã $c_n$ \r\nãšããïŒ \r\nå³ç«¯ã®åã®è²ã $1$ è¡ç®ããã¹ $1$ ãšããŠïŒããã«å¡ãããŠããè²ã $X$ïŒ$2$ è¡ç®ããã¹ $2$ ãšããŠïŒããã«å¡ãããŠããè²ã $Y$ ãšããïŒããã§æ°ããå³ã« $n+1$ åç®ãå¢ãããŠèµ€ãéã«å¡ãããšãèããïŒ \r\n- ãã¹ $1$ ããã³ãã¹ $2$ ãã©ã¡ããæ¡ä»¶ãæºãããšã \r\nãã¹ $1$ ã®å³ã $X$ ãšåãè²ã§å¡ãã $X$ ã§ãªãè²ã§å¡ããïŒãã¹ $2$ ã®å³ã $Y$ ãšåãè²ã§å¡ãã $Y$ ã§ãªãè²ã§å¡ããã®åéããããããèŠããšïŒããããäžæã« $a_{n+1},b_{n+1},b_{n+1},c_{n+1}$ ãžãšå¯äžããïŒ \r\n- ãã¹ $1$ ããã³ãã¹ $2$ ã®ã©ã¡ãããæ¡ä»¶ãæºãããšã \r\nãã¹ $1$ ã®ã¿ãæ¡ä»¶ãæºããã±ãŒã¹ãšãã¹ $2$ ã®ã¿ãæ¡ä»¶ãæºããã±ãŒã¹ã©ã¡ããåæ§ã§ïŒæ¡ä»¶ãæºãããã¹ã $1$ ãšããŠããïŒãã¹ $1$ ã®å³é£ã®ãã¹ã«ã€ããŠã¯ $Y$ ãšç°ãªãè²ã§å¡ãå¿
èŠããããïŒãã¹ $2$ ã®å³é£ã $X$ ãšç°ãªãè²ã§å¡ãã $X$ ã§å¡ããã§ïŒãããã $a_{n+1},b_{n+1}$ ãžãšå¯äžããïŒ \r\n- ãã¹ $1$ ããã³ãã¹ $2$ ãã©ã¡ããæ¡ä»¶ãæºãããªããšã \r\nãã¹ $1$ ããã³ãã¹ $2$ ã®å³ã«è²ãå¡ãããšã§ïŒãã¹ $1$ ããã³ãã¹ $2$ ãæ¡ä»¶ãæºããããã«ããå¿
èŠãããïŒãã®ãããªå¡ãæ¹ã¯äžæïŒããã«ïŒãã®äžæãªå¡ãæ¹ãéžæãããšãïŒãã¹ $1$ ãšãã¹ $2$ ã®å³ã¯ç°ãªãè²ã§ïŒãã¹ $2$ ãšãã¹ $1$ ã®å³ã¯ç°ãªãè²ãšãªãããïŒãã¹ãŠ $a_{n+1}$ ãžãšå¯äžããïŒ\r\n\r\nãããã£ãŠïŒä»¥äžã®æŒžååŒãæç«ããïŒ\r\n$$\r\n\\begin{aligned}\r\na_{n+1} &= a_n + b_n + c_n \\\\\\\\\r\nb_{n+1} &= 2a_n + b_n \\\\\\\\\r\nc_{n+1} &= a_n \\\\\\\\\r\n\\end{aligned}\r\n$$\r\n$a_1=0,b_1=4,c_1=0$ ãçšããŠïŒããã $17$ é
åèšç®ããŠããããïŒ$a$ ã®ã¿ã§æŒžååŒããŸãšãããšä»¥äžã®éãïŒ\r\n$$\r\n\\begin{aligned}\r\na_{n+2}-a_{n+1} &= (a_{n+1} + b_{n+1} + c_{n+1}) - (a_{n} + b_{n} + c_{n}) \\\\\\\\\r\n&= a_{n+1}-a_n +2a_n + a_n - a_{n-1}\\\\\\\\\r\n&=a_{n+1} + 2a_n - a_{n-1}\r\n\\end{aligned}\r\n$$\r\nãšãã $4$ é
é挞ååŒãåŸãïŒããã $17$ é
åèšç®ããïŒ\r\n\r\näžè¿°ã®æŒžååŒã®ç¹æ§æ¹çšåŒ $x^3-2x^2-2x+1=0$ ã®è§£ã¯ $x^2-x-1=0$ ã®è§£ã $\\alpha,\\beta$ ãšãããšïŒ$\\alpha^2,\\beta^2,\\alpha\\beta$ ãšè¡šããŠïŒä¿æ°ãæ±ããããšã§ãã£ããããæ°åã® $2$ ä¹ã® $4$ åã§ããããšãå°ããïŒïŒæŒžååŒè¡šç€ºãããã®äºå®ã倩åç¡ãçŽæ¥å°ãåºãæ¹æ³ããåãã®æ¹ãããã£ããã£ãã誰ãæããŠãã ããïŒïŒ",
"text": "çŽæ¥æŒžååŒãç«ãŠã",
"url": "https://onlinemathcontest.com/contests/omc208/editorial/7679/421"
}
] | ã$2\times17$ ã®ãã¹ç®ãããïŒåãã¹ãèµ€ãŸãã¯éã§å¡ããŸãïŒã©ã®ãã¹ã«ã€ããŠã次ã®æ¡ä»¶ãæºãããããªïŒãã¹ç®ã®å¡ãæ¹ã¯äœéããããæ±ããŠãã ããïŒ
- 蟺ãå
±æããŠããèªèº«ä»¥å€ã®ãã¹ã®ãã¡ïŒèµ€ã§å¡ããããã¹ãšéã§å¡ããããã¹ããããã $1$ ãã¹ä»¥äžååšãã
ããã ãïŒå転ãå転ã«ãã£ãŠäžèŽããå¡ãæ¹ãç°ãªããã®ãšããŠæ°ããŸãïŒ |
OMC208 | https://onlinemathcontest.com/contests/omc208 | https://onlinemathcontest.com/contests/omc208/tasks/7777 | F | OMC208(F) | 400 | 103 | 186 | [
{
"content": "ãäž $2$ æ¡ã¯ãã®æ°ã $100$ ã§å²ã£ãäœãã§ããïŒãŸãïŒä»¥äžã®åååŒã¯æå®ããªãéããã¹ãŠ $100$ ãæ³ãšããïŒ\\\r\nã$2023=7\\times17^2$ ãšçŽ å æ°å解ã§ããïŒãŸãïŒ$2023^{2023}$ ã®çŽæ°ã¯ $0\\le m\\leq2023,0\\le n\\leq4046$ ãæºããæŽæ° $m,n$ ãçšã㊠$7^m\\times17^n$ ãšè¡šããïŒ\r\n\r\n---\r\n**äºå®1ïŒ**$7^m\\times17^n$ ã®äžã®äœã¯ïŒ\r\n- $m+n\\equiv1\\ (\\mathrm{mod}\\ 4)$ ã®ãšã $7$ ã§ããïŒ\r\n- $m+n\\equiv2\\ (\\mathrm{mod}\\ 4)$ ã®ãšã $9$ ã§ããïŒ\r\n- $m+n\\equiv3\\ (\\mathrm{mod}\\ 4)$ ã®ãšã $3$ ã§ããïŒ\r\n- $m+n\\equiv0\\ (\\mathrm{mod}\\ 4)$ ã®ãšã $1$ ã§ããïŒ\r\n\r\n<details><summary>蚌æ<\\/summary>\r\nã$7^4\\equiv1 \\pmod{10}$ ã«æ°ãã€ããã°ïŒ\r\n\r\n- $m+n\\equiv1\\ (\\mathrm{mod}\\ 4)$ ã®ãšãïŒ$7^{m+n}\\equiv(7^4)^{(m+n-1)\\/4}\\times7\\equiv7 \\pmod{10}.$\r\n- $m+n\\equiv2\\ (\\mathrm{mod}\\ 4)$ ã®ãšãïŒ$7^{m+n}\\equiv(7^4)^{(m+n-2)\\/4}\\times7^2\\equiv9 \\pmod{10}.$\r\n- $m+n\\equiv3\\ (\\mathrm{mod}\\ 4)$ ã®ãšãïŒ$7^{m+n}\\equiv(7^4)^{(m+n-3)\\/4}\\times7^3\\equiv3 \\pmod{10}.$\r\n- $m+n\\equiv0\\ (\\mathrm{mod}\\ 4)$ ã®ãšãïŒ$7^{m+n}\\equiv(7^4)^{(m+n)\\/4}\\equiv1 \\pmod{10}.$\r\n<\\/details>\r\n---\r\n**äºå®2ïŒ**$100$ ãæ³ãšãã $7$ ã®äœæ°ã¯ $4$ ã§ããïŒ\r\n\r\n---\r\n**äºå®3ïŒ**$100$ ãæ³ãšãã $17$ ã®äœæ°ã¯ $20$ ã§ããïŒ\r\n\r\n---\r\n**è£é¡1**ïŒæ¬¡ã®åœé¡ãæãç«ã€ïŒ\r\n- $n$ ãå¥æ°ãªãã° $17^n$ ã®åã®äœã¯å¥æ°ã§ããïŒ\r\n- $n$ ãå¶æ°ãªãã° $17^n$ ã®åã®äœã¯å¶æ°ã§ããïŒ\r\n\r\n<details><summary>蚌æ<\\/summary>\r\nããŸãïŒ$n = 1,2$ ã®å Žåã¯æ£ããããšã確èªããããšãã§ããïŒ\\\r\nã次ã«ïŒãã $n = k$ ã§æç«ããŠãããšä»®å®ãïŒ$n = k + 2$ ã®å ŽåãèããïŒ$1$ ä»¥äž $10$ æªæºã®æ£ã®æŽæ° $a_1,a_2$ ãçšã㊠$17^k \\equiv 10a_1 + a_2$ ãšè¡šããšïŒ\r\n$$17^{k + 2} \\equiv 189(10a_1 + a_2) = 90a_1 + 89a_2$$\r\nãæãç«ã€ïŒããŸïŒ$a_2$ ãå¥æ°ã§ããããšã«æ°ãã€ãããš $89a_2$ ã®åã®äœã¯å¿
ãå¶æ°ã§ããããšã確èªã§ããïŒãŸãïŒ$90a_1$ ã®åã®äœã®å¶å¥ã¯ $a_1$ ã®å¶å¥ãšäžèŽããã®ã§ïŒ$n = k+2$ ã®å Žåã«ãæç«ããããšããããïŒ\\\r\nã以äžããïŒæ°åŠçåž°çŽæ³ã«ãã瀺ãããïŒ\r\n<\\/details>\r\n\r\n---\r\n**è£é¡2**ïŒæ¬¡ã®åœé¡ãæãç«ã€ïŒ\r\n- $n$ ãå¥æ°ãªãã° $7^{m}\\times17^{n}$ ã®åã®äœã¯å¥æ°ã§ããïŒ\r\n- $n$ ãå¶æ°ãªãã° $7^{m}\\times17^{n}$ ã®åã®äœã¯å¶æ°ã§ããïŒ\r\n\r\n<details><summary>蚌æ<\\/summary>\r\nã$1$ ä»¥äž $10$ æªæºã®æŽæ° $a_1,a_2,b_1,b_2$ ãçšã㊠$7^{m}\\equiv10a_1+a_2, 17^n\\equiv 10b_1 + b_2$ ãšè¡šãïŒãã®ãšãïŒ\r\n$$7^m\\times17^n\\equiv 10(a_1b_2 + a_2b_1) + a_2b_2$$\r\nã§ããïŒããã§ïŒäºå®2ãã $m$ ã $0$ ä»¥äž $3$ 以äžã®å Žåã®ã¿èããã°ããïŒãã®ãšãïŒ$a_1$ ã¯å¶æ°ïŒ$a_2$ ã¯å¥æ°ã§ããïŒãã£ãŠïŒ$a_1b_2 + a_2b_1$ ã®å¶å¥ã¯ $b_1$ ã®å¶å¥ãšäžèŽããïŒãŸãïŒ$b_2$ ã $5$ ã§ãªãå¥æ°ã§ããããšã«ãæ°ãã€ããã° $a_2b_2$ ã® åã®äœã¯å¶æ°ã§ããïŒãããã£ãŠïŒè£é¡1ãã瀺ãããïŒ\r\n<\\/details>\r\n\r\n---\r\nãä»ïŒ$7^m\\times17^n$ ã®çŽæ°ã®åæ° $(m+1)(n+1)$ ã $4$ ã®åæ°ã§ãªãããã«ã¯ïŒ$(m,n)$ 㯠$4$ ãæ³ãšããŠæ¬¡ã®ãããããšçããããšãå¿
èŠååã§ããïŒ\r\n$$(0,0),(0,1),(0,2),(1,0),(1,2),(2,0),(2,1),(2,2)$$\r\nã§ããïŒããã§ïŒäºå®1ãšè£é¡2ããïŒ$(m,n)$ ã $4$ ãæ³ãšããŠåºå®ãããšïŒ$7^m\\times17^n$ ã $100$ ã§å²ã£ãããŸã㯠$5$ éããã€èãããããïŒäºå®2,3ããããã $5$ éãã®å€ã¯ãã¹ãŠåãåŸãïŒä»¥äžããïŒçŽæ°ã®åæ°ã $4$ ã®åæ°ã§ãªããã㪠$2023^{2023}$ ã®çŽæ°ã®äž $2$ æ¡ãšããŠåãåŸãå€ã¯ïŒ\r\n\r\n- äžã®äœã $3$ ãŸã㯠$7$ ã®ãã®\r\n- äžã®äœã $1$ ãŸã㯠$9$ ã§åã®äœãå¶æ°ã®ãã®\r\n\r\nããã¹ãŠã§ããïŒãã£ãŠïŒæ±ããç·åã¯\r\n$$(7+17+\\cdots+97)+(9+29+\\cdots+89)+(3+13+\\cdots+93)+(1+21+\\cdots+81)=\\mathbf{1450}$$\r\nã§ããïŒ\\\r\nããªãïŒäºå®2ããïŒ$10$ 以äžã® $2023^{2023}$ ã®çŽæ°ã§ãã£ãŠ $1,7$ ãšçãããã®ã¯ååšããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc208/editorial/7777"
},
{
"content": "ã$2023\\^{2023}$ ã®æ£ã®çŽæ° $d$ 㯠$0\\le m\\le 2023$, $0\\le n\\le 4046$ ãªãæŽæ° $n,m$ ãçšã㊠$d=7\\^{m}\\times17\\^{n}$ ãšè¡šã, ãã®ææ£ã®çŽæ°ã®åæ°ã¯ $(m+1)(n+1)$ åã§ãã. \r\nãã£ãŠ, $d$ ã®æ£ã®çŽæ°ã®åæ°ã $4$ ã®åæ°ã§ãªããã®ã¯ä»¥äžã® $3$ ãã¿ãŒã³ã«åé¡ã§ãã. \r\n\r\n- $m\\equiv n\\equiv 0\\pmod 2$\r\n- $m\\equiv 0\\pmod 2, n\\equiv 1\\pmod 4$\r\n- $m\\equiv 1\\pmod 4, n\\equiv 0\\pmod 2$\r\n\r\n以äž, $(\\mathbb{Z}\\/100\\mathbb{Z})\\^{\\*}$ äžã§è°è«ãã. \r\nãŸã, 以äžã®è°è«ã§ã¯ $17\\^{2b}=89\\^b=(-11)\\^b=(-1)\\^{b}\\times(10b+1)$ ã床ã
çšããããšã«çæãã. \r\n\r\näžèšã® $3$ ã€ã®å Žååãããããã«ã€ããŠ, $d$ ã¯\r\n\r\n- $d=49\\^a\\times89\\^b$ $(0\\le a\\le 1011$, $0\\le b\\le 2023)$\r\n- $d=17\\times49\\^a\\times89\\^{2b}$ $(0\\le a\\le 1011$, $0\\le b\\le 1011)$\r\n- $d=7\\times 49\\^{2a}\\times89\\^b$ $(0\\le a\\le 505$, $0\\le b\\le 2023)$\r\n\r\nãšè¡šããã. \r\n\r\n\r\n\r\n$(\\mathbb{Z}\\/\\mathbb{100Z})\\^{*}$ ã«ããã $49,89$ ã®äœæ°ã¯ $2,10$ ã§ãã. \r\nåŸã£ãŠ, $49=-51=89\\^{5}$ ãšäœµããŠ, 足ãåãããã¹ãå€ã®éåã¯, \r\n$\\lbrace A\\times 89\\^b\\mid A\\in\\lbrace1,7,17\\rbrace, 0\\le b\\le 9\\rbrace$ ã§ãã. \r\n\r\n\r\n- $17\\times 7\\^{-1}=31$ ãã, $7\\times 89\\^{b\\_1}=17\\times 89\\^{b\\_{2}}$ ãšã¯ãªãåŸãªããã, $\\lbrace A\\times 89\\^b\\mid A\\in\\lbrace7,17\\rbrace, 0\\le b\\le 9\\rbrace$ ã®å
ã®åæ°ã¯äžåºŠ $20$ å. \r\n- $7\\times 89\\^{b},17\\times 89\\^{b}$ ã®äžã®äœã¯ $3$ ãŸã㯠$7$ ã§ãã, ãã®ãããªå€ã¯äžåºŠ $20$ å. \r\n\r\nã«çæããã°, [å
¬åŒè§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/omc208\\/editorial\\/7777) ã«ãããããªå€ã足ãåãããã°ããããšãåãã.",
"text": "å¥è§£",
"url": "https://onlinemathcontest.com/contests/omc208/editorial/7777/414"
}
] | ãæ£ã®çŽæ°ã®åæ°ã $4$ ã®åæ°ã§ãªããã㪠$2023^{2023}$ ã® $10$ 以äžã®æ£ã®çŽæ°ã«ã€ããŠïŒãã®ïŒåé²æ³è¡šèšã§ã®ïŒäž $2$ æ¡ãšããŠããããå€ã®ç·åãæ±ããŠãã ããïŒ |
OMC207 (for beginners) | https://onlinemathcontest.com/contests/omc207 | https://onlinemathcontest.com/contests/omc207/tasks/4317 | A | OMC207(A) | 100 | 311 | 349 | [
{
"content": "ã$2$ ã€ã®æ£æŽæ° $m, n$ ãçšã㊠$p+1011=m^{2}$ïŒ$p-1010=n^{2}$ ãšè¡šãã°ïŒ$2$ åŒããïŒ\r\n$$m^{2}-n^{2}=(m+n)\\times(m-n)=2021$$\r\nãåŸãïŒ$2021=43\\times47$ ã«æ°ãã€ããããšã§ $(m, n)=(1011, 1010), (45, 2)$ ãåããïŒããããã®å Žåã«ã€ã㊠$p$ ã®å€ãèšç®ããã° $p=1021110$ ãš $p=1014$ ãåŸãããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{1022124}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc207/editorial/4317"
}
] | ã$p+1011$ ãš $p-1010$ ããšãã«å¹³æ¹æ°ãšãªããããªæ£æŽæ° $p$ ã®ç·åãããšããŠãã ããïŒ |
OMC207 (for beginners) | https://onlinemathcontest.com/contests/omc207 | https://onlinemathcontest.com/contests/omc207/tasks/6756 | B | OMC207(B) | 100 | 282 | 312 | [
{
"content": "$$x^3-ax^2-bx+ab=(x-a)(x+\\sqrt{b})(x-\\sqrt{b})$$\r\nãšå æ°å解ã§ããããšããïŒãã®æ¹çšåŒã®è§£ã¯ $a,\\sqrt{b},-\\sqrt{b}$ ã§ããïŒãããããã¹ãŠå®æ°ã§ããããšããïŒ$\\sqrt{b} \\geq 0$ ã§ããïŒãã£ãŠ $(a,\\sqrt{b})=(-20,23),(23,20)$ ãåããããïŒ$(a,b)=(-20,529),(23,400)$ ã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $509+423=\\mathbf{932}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc207/editorial/6756"
}
] | ã$a,b$ ãå®æ°ãšããŸãïŒ$x$ ã«ã€ããŠã®æ¹çšåŒ
$$x^3-ax^2-bx+ab=0$$
㯠$3$ ã€ã®çžç°ãªã解ãæã¡ïŒãã®ãã¡ $2$ ã€ã¯ $-20$ ãš $23$ ã§ããïŒãã®ãšãïŒ$(a,b)$ ã®çµãšããŠãããããã®å
šãŠã«ã€ã㊠$a+b$ ã®ç·åã解çããŠãã ãã. |
OMC207 (for beginners) | https://onlinemathcontest.com/contests/omc207 | https://onlinemathcontest.com/contests/omc207/tasks/5065 | C | OMC207(C) | 100 | 279 | 310 | [
{
"content": "ãäžè¬ã«ïŒäžè§åœ¢ $T$ ã®é¢ç©ã $S$ïŒåšé·ã $p$ ã§ãããšãïŒ$T$ ã®å
æ¥åååŸã¯ $\\dfrac{2S}{p}$ ã§ããããšã«æ³šæããïŒ\\\r\näžè§åœ¢ $ABC$ ã®é¢ç©ã $s$ ãšãããšïŒäžè§åœ¢ $ABM, ACM$ ã®é¢ç©ã¯ãããã $\\dfrac{s}{2}$ ã§ããïŒãŸãïŒ$\\angle A = 90^\\circ$ ã§ãããã \r\n$$AM = BM = CM = \\frac{5}{2}$$\r\nã§ããããšã«æ³šæãããšïŒäžè§åœ¢ $ABC, ABM, ACM$ ã®åšé·ã¯ãããã $12, 8, 9$ ã§ããïŒä»¥äžããïŒæ±ããæ¯ã¯\r\n$$\\frac{2s}{12} : \\frac{s}{8} : \\frac{s}{9} = 12 : 9 : 8$$\r\nã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf{29}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc207/editorial/5065"
}
] | ã $AB=3,BC=5,CA=4$ ãªãäžè§åœ¢ $ABC$ ã«ã€ããŠïŒèŸº $BC$ ã®äžç¹ã $M$ ãšããŸãïŒäžè§åœ¢ $ABC$ïŒäžè§åœ¢ $ABM$ïŒäžè§åœ¢ $ACM$ ã®å
æ¥åã®ååŸã®æ¯ã¯æ倧å
¬çŽæ°ã $1$ ã§ããæ£æŽæ° $a,b,c$ ãçšã㊠$a:b:c$ ãšè¡šããã®ã§ïŒ$a+b+c$ ã解çããŠãã ããïŒ |
OMC207 (for beginners) | https://onlinemathcontest.com/contests/omc207 | https://onlinemathcontest.com/contests/omc207/tasks/4155 | D | OMC207(D) | 200 | 263 | 280 | [
{
"content": "ãæŽæ° $0\\leq a,b,c\\leq 9$ ã«ãã£ãŠ $A_n = 100a+10b+c$ ãšè¡šããããšã $B_n = 100c+10b+a$ ã§ãããã\r\n$$n = A_n - B_n = 99(a - c)$$\r\nãšãªãïŒ$n$ 㯠$99$ ã®åæ°ã§ããïŒ$3$ æ¡ã® $99$ ã®åæ°ããããã«ã€ããŠèããã°æ¡ä»¶ãæºãããã®ã¯ $n = 495$ ã®ã¿ã§ããããïŒè§£çãã¹ãå€ã¯ ${\\bf 495}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc207/editorial/4155"
}
] | ãæ£ã®æŽæ° $N$ ã«ã€ããŠïŒ$N$ ã®å
é ã«äœå㪠$0$ ãä»ããåé²è¡šèšãããã®ã®åæ¡ã®æ°åã䞊ã³æ¿ããŠã§ããæŽæ°ã®ãã¡ïŒæ倧ã®ãã®ã $A_N$ ïŒæå°ã®ãã®ã $B_N$ ãšããŸãïŒãã ãïŒäžŠã³æ¿ãã«ãããŠã¯å
é ã« $0$ ãæ¥ãŠããããã®ãšããŸãïŒäŸãã° $A_{304}=430,B_{304}=34$ ã§ãïŒ\
ã$3$ æ¡ã®æ£ã®æŽæ° $n$ ã§ãã£ãŠ $n=A_n-B_n$ ãæºãããã®ã®ç·åã解çããŠãã ããïŒ |
OMC207 (for beginners) | https://onlinemathcontest.com/contests/omc207 | https://onlinemathcontest.com/contests/omc207/tasks/5591 | E | OMC207(E) | 300 | 116 | 189 | [
{
"content": "ãæäœã $n$ å以å
ã«çµãã確çã $p_n$ ãšããã°ïŒæ±ãã確ç㯠$p_5-p_4$ ã§ããïŒ\\\r\nãããã³ã€ã³ãïŒ$n $ åã®æäœåŸã«æå
ã«ãã確ç㯠$\\dfrac{1}{2^n}$ã ããïŒ$ p_n=\\bigg(1-\\dfrac{1}{2^n}\\bigg)^4 $ ã§ããïŒåŸã£ãŠïŒ$ p_5-p_4=\\dfrac{113521}{2^{20}}$ ãšèšç®ã§ããããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{1162097}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc207/editorial/5591"
}
] | ãè¡šè£ãç確çã§åºãã³ã€ã³ã $4$ æãããŸãïŒä»¥äžã®æäœãææã¡ã®ã³ã€ã³ãç¡ããªããŸã§ç¹°ãè¿ããšãïŒã¡ããã© $5$ åã§æäœãçµãã確çã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$ \dfrac{a}{b} $ ãšè¡šããŸãïŒ$a+b$ ã解çããŠãã ããïŒ
- ææã¡ã®ã³ã€ã³ãå
šãŠæãïŒè¡šãåºãã³ã€ã³ãæšãŠïŒè£ãåºãã³ã€ã³ã¯æŸã£ãŠåã³ææã¡ãšããïŒ |
OMC207 (for beginners) | https://onlinemathcontest.com/contests/omc207 | https://onlinemathcontest.com/contests/omc207/tasks/2145 | F | OMC207(F) | 300 | 200 | 248 | [
{
"content": "ãé£ç¶ããå¶æ°åã®æ£æŽæ°ã $a-k+1,\\cdots,a,a+1,\\cdots,a+k$ ãšè¡šçŸããã°ïŒèããã¹ãæ¡ä»¶ã¯\r\n$$a\\geq k,\\quad k(2a+1)=2^{10}5^{100}$$\r\nç¹ã« $100$ 以äžã®æ£æŽæ° $p$ ã«ãã£ãŠ $2a+1=5^p$ ãšè¡šããïŒãã®ãšãæ¡ä»¶ã¯æ¬¡ã®åŒã§è¡šãããïŒ\r\n$$5^p\\geq 2^{11}\\times 5^{100-p}+1$$\r\nãããã $5^{p-50}\\geq 46$ ãå°ããïŒãã㯠$p\\geq 53$ ãšåå€ã§ããããïŒæ±ããå Žåã®æ°ã¯ $\\textbf{48}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc207/editorial/2145"
}
] | ãé£ç¶ããå¶æ°åã®æ£æŽæ°ãããªãéåã§ãã£ãŠïŒãããã®ç·åã $2^{10}\times 5^{100}$ ã§ãããã®ã¯ããã€ãããŸããïŒ |
OMC207 (for beginners) | https://onlinemathcontest.com/contests/omc207 | https://onlinemathcontest.com/contests/omc207/tasks/7037 | G | OMC207(G) | 300 | 103 | 151 | [
{
"content": "ã$x_1,x_2,\\ldots,x_6 \\neq 0$ ããæ¡ä»¶åŒã¯æ¬¡ã®åŒ $A$ ãšåå€ã§ããïŒ\r\n$$\\frac{x_1}{x_2}=\\Big( \\dfrac{x_2}{x_3} \\Big)^2, ~~\\frac{x_2}{x_3}=\\Big( \\dfrac{x_3}{x_4} \\Big)^2, ~~\\frac{x_3}{x_4}=\\Big( \\dfrac{x_4}{x_5} \\Big)^2, ~~\\frac{x_4}{x_5}=\\Big( \\dfrac{x_5}{x_6} \\Big)^2, ~~\\frac{x_5}{x_6}=\\Big( \\dfrac{x_6}{x_1} \\Big)^2$$\r\nãããã£ãŠæ¬¡ã®åŒãæãç«ã€ïŒ\r\n$$\\dfrac{x_1}{x_2}=\\Big( \\dfrac{x_2}{x_3} \\Big)^2=\\Big( \\dfrac{x_3}{x_4} \\Big)^4=\\Big( \\dfrac{x_4}{x_5} \\Big)^8=\\Big( \\dfrac{x_5}{x_6} \\Big)^{16}=\\Big( \\dfrac{x_6}{x_1} \\Big)^{32}$$\r\nãã®å€ã $\\alpha$ ãšããã°ïŒ\r\n$$ \\alpha^{63} = \\alpha^{32+16+8+4+2+1} = \\Big( \\dfrac{x_1}{x_2} \\Big)^{32}\\Big( \\dfrac{x_2}{x_3} \\Big)^{32}\\Big( \\dfrac{x_3}{x_4} \\Big)^{32}\\Big( \\dfrac{x_4}{x_5} \\Big)^{32}\\Big( \\dfrac{x_5}{x_6} \\Big)^{32}\\Big( \\dfrac{x_6}{x_1} \\Big)^{32}=1 $$\r\nãšãªãããïŒ$\\alpha$ 㯠$1$ ã® $63$ ä¹æ ¹ã§ããïŒãŸãïŒåŒ $A$ ãã$(x_1,x_2,\\ldots,x_6)$ ãšããŠãããããã®ã¯\r\n$$(1,\\alpha^{62},\\alpha^{30},\\alpha^{14},\\alpha^6,\\alpha^2)$$\r\nã®ã¿ã§ããããšãåããïŒéã«ãã®åœ¢ã®ãã®ã¯äžåŒãæºããïŒ$\\alpha$ ãšããŠããããå€ã¯ $63$ åããããïŒæ±ããçã㯠$\\mathbf{63}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc207/editorial/7037"
},
{
"content": "ã$x_6(=k)$ ã決ãããšïŒ$x_5=k^3,x_4=k^7,x_3=k^{15},x_2=k^{31},x_1=k^{63}$ ãšé 次å®ãŸãã®ã§ïŒ$k^{63}=1$ ãšãªãïŒããã®è§£ã¯ $63$ åã§ããããïŒçã㯠$\\mathbf{63}$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc207/editorial/7037/412"
}
] | ã$x_1=1$ ãã€ïŒãããã $0$ ã§ãªãè€çŽ æ°ã®çµ $(x_1,x_2,\ldots,x_6)$ ã§ãã£ãŠïŒ
$$x_1x_3^2=x_2^3,ãx_2x_4^2=x_3^3,ãx_3x_5^2=x_4^3,ãx_4x_6^2=x_5^3,ãx_5x_1^2=x_6^3$$
ããã¹ãŠã¿ãããã®ã¯ããã€ãããŸããïŒ |
OMC207 (for beginners) | https://onlinemathcontest.com/contests/omc207 | https://onlinemathcontest.com/contests/omc207/tasks/3099 | H | OMC207(H) | 300 | 62 | 78 | [
{
"content": "ãç¹ $C$ ããçŽç· $AB$ ã«äžãããåç·ã®è¶³ã $R$, 蟺 $CA$ ã«é¢ã㊠$H$ ãšå¯Ÿç§°ãªç¹ã $S$, 蟺 $CB$ ã«é¢ã㊠$H$ ãšå¯Ÿç§°ãªç¹ã $T$ ãšãã. $\\angle HRB = \\angle HPB = 90^\\circ$ ãã $4$ ç¹ $B, H, P, R$ ãåäžååšäžã«ãããã\r\n$$\\angle ASC = \\angle AHC = 180^\\circ - \\angle CHP = 180^\\circ - \\angle RBC = 180^\\circ - \\angle ABC$$\r\nãã $S$ 㯠$\\Gamma$ äžã«ãã. åæ§ã«ã㊠$T$ ã $\\Gamma$ äžã«ãã. $S, T$ ã®å®çŸ©ãã $CH = CS = CT$ ã§ãããã, çµå± $\\lbrace S, T\\rbrace = \\lbrace X, Y\\rbrace$ ãåãã. ãŸã, ç·å $HS$ ã®äžç¹ã $Q$, ç·å $HT$ ã®äžç¹ã $P$ ã§ãããã\r\n$$XY = ST = 2PQ$$\r\nãåãã. ä»¥äž $PQ$ ãæ±ãã. \\\r\nã$\\angle CPH = \\angle CQH = 90^\\circ$ ãã $4$ ç¹ $C, H, P, Q$ ã¯åäžååšäžã«ãããã $\\angle CHP = \\angle CQP = 30^\\circ$. ãã£ãŠ\r\n$$CH = \\dfrac{CP}{\\sin30^\\circ} = 4\\sqrt6, \\quad CQ = \\sqrt{CH^2 - HQ^2} = 6+2\\sqrt3$$\r\nãæç«ãã. ç¹ $C$ ããçŽç· $PQ$ ã«äžãããåç·ã®è¶³ã $K$ ãšãããš\r\n$$CK = CQ\\sin30^\\circ = 3+\\sqrt3, \\quad PK = \\sqrt{CP^2 - CK^2} = 3 - \\sqrt3, \\quad QK = \\sqrt{CQ^2 - CK^2} = 3 + 3\\sqrt3$$\r\nãã, $PQ = PK + QK = 6+2\\sqrt3$ ãåŸã. ãã£ãŠ $XY = 2PQ = 12 + 4\\sqrt3$ ã§ãã. ç¹ã«è§£çãã¹ã㯠$\\bf{60}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc207/editorial/3099"
}
] | ãå€æ¥åã $\Gamma$ ãšããéè§äžè§åœ¢ $ABC$ ã®åå¿ã $H$ ãšãïŒç¹ $A$ ããçŽç· $BC$ ã«äžãããåç·ã®è¶³ïŒç¹ $B$ ããçŽç· $AC$ ã«äžãããåç·ã®è¶³ããããã $P,Q$ ãšããŸãïŒãŸãïŒäžå¿ãç¹ $C$ ïŒååŸã $CH$ ãšããå $O$ ãš $\Gamma$ ã®äº€ç¹ã $X,Y$ ãšããŸãïŒä»¥äžãæãç«ã€ãšãïŒ$XY$ ãæ±ããŠãã ããïŒ
$$
PC=2\sqrt{6},\quad HQ=6-2\sqrt{3},\quad \angle{PQC}=30^{\circ}
$$
ãã ãïŒçãã¯æŽæ° $a,b$ ã«ãã£ãŠ $a+\sqrt{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC206 | https://onlinemathcontest.com/contests/omc206 | https://onlinemathcontest.com/contests/omc206/tasks/4501 | A | OMC206(A) | 100 | 357 | 361 | [
{
"content": "ã$R_{n}$ ã $9$ ã®åæ°ã〠$11$ ã®åæ°ãšãªãæå°ã® $n$ ãæ±ããã°ããïŒ\\\r\nã$R_{n}$ ã $9$ ã®åæ°ãšãªãã®ã¯ïŒ$R_n$ ã®åæ¡ã®åã $9$ ã®åæ°ã«ãªããšãïŒããªãã¡ $n$ ã $9$ ã®åæ°ã®ãšãã§ããïŒ\\\r\nããŸãïŒ$R_n$ ã $11$ ã®åæ°ã«ãªãã®ã¯ïŒ$R_n$ ã®å¶æ°æ¡ç®ã®ç·åãšå¥æ°æ¡ç®ã®ç·åã®å·®ã $11$ ã®åæ°ã«ãªããšãïŒããªãã¡ $n$ ãå¶æ°ã®ãšãã§ããïŒ\\\r\nã以äžããïŒæ±ããçã㯠$\\bf18$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc206/editorial/4501"
},
{
"content": "ãäœè«:æ¬åã® $R_n$ ã¯ã¬ãã¥ãããæ°ãšåŒã°ãããã®ã§ããïŒ\r\n***\r\nã**åé¡:** çŽ æ° $p$ ã«å¯ŸããŠïŒããã¬ãã¥ãããæ° $R_n$ ãååšã $p$ ã®åæ°ã«ãªãããã® $p$ ã®æ¡ä»¶ã¯ïŒ\r\n<details> \r\n<summary>\r\n解ç\r\n<\\/summary> \r\n$R_{p-1}=\\dfrac{10^{p-1}-1}{9}$ ãèãããšïŒ$p\\neq2,3,5$ ã®ãšãïŒFermatã®å°å®çãããã㯠$p$ ã®åæ°ãšãªãïŒãŸãïŒ$p=2,5$ ã¯æããã«äžé©ã§ããïŒ$R_3=111\\equiv0\\pmod3$ ãªã®ã§ïŒæ±ããæ¡ä»¶ã¯ $p$ ã $2,5$ 以å€ã®çŽ æ°ã§ããããšïŒ\r\n<\\/details>",
"text": "æååé¡ã®çŽ¹ä»",
"url": "https://onlinemathcontest.com/contests/omc206/editorial/4501/410"
}
] | ã$1$ ã $n$ å䞊ã¹ãŠã§ããæ£ã®æŽæ° $R_{n}$ ã $99$ ã®åæ°ãšãªããããªæå°ã®æ£ã®æŽæ° $n$ ãæ±ããŠãã ããïŒ |
OMC206 | https://onlinemathcontest.com/contests/omc206 | https://onlinemathcontest.com/contests/omc206/tasks/3668 | B | OMC206(B) | 200 | 260 | 296 | [
{
"content": "ã$A_1A_2=A_2A_3$ ã§ãããã $\\angle{A_2A_1A_3}=\\angle{A_2A_3A_1}$ ãæç«ããïŒãã£ãŠïŒæ¡ä»¶ãã\r\n$$\r\n\\begin{aligned}\r\n\\angle{PA_2A_1}&=\\angle{PA_1A_2}\\\\\\\\\r\n&=\\angle{A_2A_1A_3}-\\angle{PA_1A_3}\\\\\\\\\r\n&=\\angle{A_2A_3A_1}-\\angle{QA_3A_1}\\\\\\\\\r\n&=\\angle{QA_3A_2}\\\\\\\\\r\n&=\\angle{QA_2A_3}\r\n\\end{aligned}\r\n$$\r\nãæãç«ã€ïŒãããã£ãŠïŒ$\\angle{PA_2A_1}=x^\\circ, \\angle{PA_1A_3}=y^\\circ$ ãšãããšïŒäžè§åœ¢ $A_1A_2A_3$ ã®å
è§ã®åãèããŠ\r\n$$\r\n4x+10y= 180\r\n$$\r\nã§ããïŒãŸãïŒ\r\n$$\r\n2x+8y = \\angle{A_1A_2A_3}=\\frac{180(n-2)}{n}\r\n$$\r\nãšãªãããïŒãããã解ããšä»¥äžãåŸãïŒ\r\n$$\r\nx=\\frac{30 (10-n)}{n} ,ãy=\\frac{30 (n-4)}{n} \r\n$$\r\nãããŸïŒ$P,Q$ ã¯äžè§åœ¢ $A_1A_2A_3$ ã®å
éšã«ããããïŒ$x\\gt 0$ ã〠$y \\gt 0$ ã§ããïŒãã£ãŠïŒ$5\\leq n \\leq 9$ ãå¿
èŠã§ããïŒéã«ãã®ãšãæ¡ä»¶ãæºããããã« $P,Q$ ãåããããïŒæ±ããçã㯠$\\textbf{35}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc206/editorial/3668"
}
] | ãæ£ $n$ è§åœ¢ $A_1A_2\cdots A_n$ ããããŸãïŒäžè§åœ¢ $A_1A_2A_3$ ã®å
éšïŒåšäžã¯å«ãŸãªãïŒã®çžç°ãªãç¹ $P, Q$ ã§ãã£ãŠä»¥äžã®æ¡ä»¶ãã¿ãããã®ãååšãããã㪠$3$ 以äžã®æŽæ° $n$ ã®ç·åãæ±ããŠãã ãã.
- $A_1P=A_2P,A_2Q=A_3Q$
- $8\angle{PA_1A_3}=\angle{PA_2Q}=8\angle{QA_3A_1}$
- ç·å $A_1P$ ãšç·å $A_3Q$ ã¯äº€ãããªãïŒ |
OMC206 | https://onlinemathcontest.com/contests/omc206 | https://onlinemathcontest.com/contests/omc206/tasks/6042 | C | OMC206(C) | 300 | 212 | 260 | [
{
"content": "以äžã®æäœã«ãã£ãŠïŒæ¡ä»¶ãæºããããšãã§ããïŒ\r\n- æåã«äžäžåæãäºã€åã« $1$ æãã€æž¡ãïŒ\r\n- 次ã«äžäžåæãšä»ã®è²šå¹£ããã¢ã«ããŠäºã€åã®èª°ãã«æž¡ãïŒ\r\n- æåŸã«äžäžåæã $1$ æäœãã®ã§äºã€åã®èª°ãã«æž¡ãïŒ\r\n\r\néã«ïŒæ¡ä»¶ãæºããæž¡ãæ¹ã¯äžã®æäœã«ãã£ãŠäœãããšãã§ããã®ã§ïŒæ±ããå Žåã®æ°ã¯\r\n$${}\\_{5}\\mathrm{H}\\_{5} \\times {}\\_{5}\\mathrm{H}\\_{4} \\times {}\\_{5}\\mathrm{H}\\_{3} \\times {}\\_{5}\\mathrm{H}\\_{2} \\times {}\\_{5}\\mathrm{H}\\_{1}= 126 \\times 70 \\times 35 \\times 15 \\times 5 = \\mathbf{23152500}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc206/editorial/6042"
},
{
"content": "ãå
¬åŒè§£èª¬ã§çšããããŠããèšå· $\\mathrm{H}$ ã¯ïŒ**éè€çµã¿åãã**ãšåŒã°ããŠãããã®ã§ããïŒ$n$ çš®ã®ãã®ããéè€ãèš±ã $r$ åã®ãã®ãéžã¶å Žåã®æ°ã ${}\\_{n}\\mathrm{H}\\_{r}$ ãšè¡šãïŒãŸãïŒãã®å Žåã®æ°ã¯ïŒ$r$ åã®ãã®ãš $n-1$ åã®ä»åãã䞊ã¹ãå Žåã®æ°ãšãçããã®ã§ïŒ\r\n$${}\\_{n}\\mathrm{H}\\_{r}={}\\_{n+r-1}\\mathrm{C}\\_{r}$$\r\nãæãç«ã€ïŒ",
"text": "èšå·ã«ã€ããŠã®èª¬æ",
"url": "https://onlinemathcontest.com/contests/omc206/editorial/6042/409"
}
] | ãé¶åããã«ã¯äžéåïŒäºéåïŒäžéåïŒåéåïŒäºéåã®äºã€åã®åã©ããããŸãïŒä»ïŒåã©ããã¡ã«ã幎çããããããšã«ããŸããïŒ\
ãé¶åããã¯äžäžåæã $20$ æïŒäºçŸåçã $5$ æïŒçŸåçã $4$ æïŒååçã $3$ æïŒäžåçã $2$ ææºåãïŒæºåãããéãäœããªãããã«ååã©ããã¡ã«ã幎çãæž¡ããŸããïŒé¶åããã¯çµéšäžïŒæ¬¡ã®ããšãåãã£ãŠããŸãïŒ
- ååã©ãã¯ïŒèªåã®è²°ã£ãã幎çã®å
èš³ã«ã€ããŠïŒäžäžåæã®ææ°ãä»ã®è²šå¹£ã®ææ°ã®ç·å以äžã®ãšãïŒãŸããã®ãšãã«éãäžæºãèšãïŒ
äºã€åã誰äžäººãšããŠäžæºãèšããªããããªã幎çã®æž¡ãæ¹ã®çµã¿åããã¯äœéãã§ããïŒ |
OMC206 | https://onlinemathcontest.com/contests/omc206 | https://onlinemathcontest.com/contests/omc206/tasks/7296 | D | OMC206(D) | 500 | 111 | 196 | [
{
"content": "ã$7!=2^4\\cdot3^2\\cdot5\\cdot7$ ã§ããããïŒ$7!$ ã®çŽæ°ã¯ $2^a\\cdot3^b\\cdot5^c\\cdot7^d$ ã®åœ¢ã§è¡šãããïŒ\\\r\nã$2$ ã€ã®èŠçŽ ã®ç©ãå¹³æ¹æ°ãšãªãã®ã¯ïŒåçŽ å æ° $2, 3, 5, 7$ ã®ææ°ã®å¶å¥ãäžèŽããå Žåã§ããïŒãããã£ãŠïŒ$7!$ ã®çŽæ°ãïŒçŽ å æ° $2,3,5,7$ ã®åªã®å¶å¥ã®çµã¿åããã«ãã£ãŠ $16\\ (=2^4)$ åã®éå $A_1, A_2, \\ldots, A_{16}$ ã«åãããšãïŒããã€ãã®ç°ãªãéåãã $1$ ã€ãã€èŠçŽ ãéžã¶ããšã§è¯ãéåãæ§æããããšãã§ãïŒç¹ã« $N=16$ ãšãªãïŒ\\\r\nã$16$ åã®èŠçŽ ããã€è¯ãéåã®èŠçŽ ã®ç©ã®ç·åã¯ïŒ(åŒãå±éããæ§åãèããã°) $A_1, A_2, \\ldots, A_{16}$ ããããã®èŠçŽ ã®åã®ç©ã«çããïŒãŸãïŒ$A_1, A_2, \\ldots, A_{16}$ ããããã®èŠçŽ ã®åã¯ïŒæ¬¡ã® $4$ ã€ã®éåã®ãããããã $1$ ã€ãã€èŠçŽ ãéžã³æãåããããã®ã§ããïŒ\r\n$$\\\\{2^0+2^2+2^4,2^1+2^3\\\\},\\quad\r\n\\\\{3^0+3^2,3^1\\\\},\\quad\r\n\\\\{5^0,5^1\\\\},\\quad\r\n\\\\{7^0,7^1\\\\}$$\r\nïŒäŸãã°ïŒãã¹ãŠã®çŽ å æ°ã®åªãå¶æ°ã®èŠçŽ ãããªãéåã®èŠçŽ ã®åã¯ïŒ\r\n$$(2^0+2^2+2^4)\\cdot(3^0+3^2)\\cdot5^0\\cdot7^0$$\r\nãšè¡šãããïŒïŒ$A_1, A_2, \\ldots, A_{16}$ ããããã®èŠçŽ ã®åã®ç©ã«ãããŠïŒäžã® $4$ ã€ã®éåã®åèŠçŽ ã¯ãããã $8$ åãã€ãããããïŒäŸãã°ïŒéåã®èŠçŽ ã®åãç©ã®åœ¢ã§è¡šããšãïŒ$2^0+2^2+2^4$ ãå«ããã®ã¯ $2$ ã®åªãå¶æ°ã®èŠçŽ ãããªã $8\\ (=2^{4-1})$ åã®éåã§ããïŒããïŒ\r\n$$\\begin{aligned}\r\nS&=\\bigl((2^0+2^2+2^4)\r\n\\cdot(2^1+2^3)\r\n\\cdot(3^0+3^2)\r\n\\cdot3\r\n\\cdot5\r\n\\cdot7\r\n\\bigr)^{8}\\\\\\\\\r\n&=2^{16}\\cdot3^{16}\\cdot5^{24}\\cdot7^{16}\r\n\\end{aligned}$$\r\nã§ããïŒãã£ãŠïŒ$S$ ã®æ£ã®çŽæ°ã®åæ°ã¯ $(16+1)^3\\cdot(24+1)=\\bm{122825}$ åã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc206/editorial/7296"
}
] | ã$7!$ ã®ããã€ãã®æ£ã®çŽæ°ãããªãéåã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ããã¹ãŠã¿ãããã®ã**è¯ãéå**ãšåŒã³ãŸãïŒ
- èŠçŽ ã®åæ°ã¯ $2$ ã€ä»¥äžã§ããïŒ
- ã©ã®çžç°ãªã $2$ ã€ã®èŠçŽ ã®ç©ãå¹³æ¹æ°ã«ãªããªãïŒ
ãè¯ãéåã®èŠçŽ ã®åæ°ãšããŠããåŸãæ倧å€ã $N$ ãšãããŸãïŒ$N$ åã®èŠçŽ ããã€è¯ãéå $\\{d_1, d_2, \ldots, d_N\\}$ ãã¹ãŠã«å¯ŸããŠïŒèŠçŽ ã®ç© $d_1d_2\cdots d_N$ ã®ç·åã $S$ ãšãããšãïŒ$S$ ã®æ£ã®çŽæ°ã®åæ°ãæ±ããŠãã ããïŒ |
OMC206 | https://onlinemathcontest.com/contests/omc206 | https://onlinemathcontest.com/contests/omc206/tasks/8554 | E | OMC206(E) | 500 | 32 | 117 | [
{
"content": "ãäžè¬ã«æ£ $n$ è§æ± $P_1P_2 \\cdots P_n-Q_1Q_2 \\cdots Q_n$ ã«å¯ŸããŠèããïŒ \\\r\nãå $(P_i,Q_i)$ ã®è²ã®çµã¿åãããšããŠãããã以äžã® $6$ ã€ãïŒãããã $A,B,C,D,E,F$ ãšããŒãïŒ\r\n\r\n- ïŒèµ€ïŒéïŒïŒç·ïŒèµ€ïŒïŒéïŒç·ïŒïŒéïŒèµ€ïŒïŒèµ€ïŒç·ïŒïŒç·ïŒéïŒ\r\n\r\näŸãã° $(P_1,Q_1)$ ã $A$ ã§ãããšãïŒ $(P_2,Q_2)$ ãšããŠãããããã®ã¯ $B,C,D$ ã§ããïŒåæ§ã«èãããšïŒè²ã®çµã¿åãããé ç¹ã«çŽã¥ããäžè§æ± $ABC-DEF$ ã«ã€ããŠïŒ$(P_i,Q_i)$ ãš $(P_{i+1},Q_{i+1})$ ã®è²ã®çµã¿åããã¯èŸºã§ã€ãªãããç°ãªãäºé ç¹ã«å¯Ÿå¿ããããšããããïŒããªãã¡ïŒä»¥äžã®åé¡ã«åž°çãããïŒ\r\n\r\n- äžè§æ± $ABC-DEF$ ã«ãããŠïŒããé ç¹ãåºçºãïŒé£ãåãé ç¹ã«ç§»åããåäœã $n$ åè¡ãïŒåºçºããé ç¹ã«æ»ãéé ã®æ°ãæ±ããïŒ\r\n\r\nãããŸïŒ$f(x,y)=(x+x^{-1}+y)^{n}$ ãšããïŒæ¬¡ã®ãããªå¯Ÿå¿ãèããïŒ\r\n\r\n- $x$ïŒã$A \\longrightarrow B, ~ B \\longrightarrow C, ~ C \\longrightarrow A, ~ D \\longrightarrow E, ~ E \\longrightarrow F, ~ F \\longrightarrow D$\r\n- $x^{-1}$ïŒã$A \\longleftarrow B, ~ B \\longleftarrow C, ~ C \\longleftarrow A, ~ D \\longleftarrow E, ~ E \\longleftarrow F, ~ F \\longleftarrow D$\r\n- $y$ïŒã$A \\longleftrightarrow D, ~ B \\longleftrightarrow E, ~ C \\longleftrightarrow F$\r\n\r\nãã®ãšãïŒæ±ããå Žåã®æ°ã¯ $f(x,y)$ ã®åé
ã®ãã¡ïŒ$x$ ã®æ¬¡æ°ã $3$ ã®åæ°ã〠$y$ ã®æ¬¡æ°ãå¶æ°ã§ãããã®ã«ã€ããŠïŒãã®ä¿æ°ã®ç·åã® $6$ åïŒå§ç¹ãšããŠãããããã®ã $6$ ã€ããããšããïŒã§ããïŒ$3$ ä¹ã㊠$1$ ã«ãªã $1$ ã§ãªãè€çŽ æ° $\\omega$ ãçšããŠä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$\r\n\\begin{aligned}\r\nX&=\\dfrac{1}{6}\\left(f(1,1)+f(1,-1)+f(\\omega,1)+f(\\omega,-1)+f(\\omega^2,1)+f(\\omega^2,-1)\\right)\\times 6 \\\\\\\\\r\n&=3^{n}+1^n+0^n+(-2)^{n}+0^n+(-2)^{n} \\\\\\\\\r\n&=3^{n}-(-2)^{n+1}+1\r\n\\end{aligned}\r\n$$\r\n\r\n$n=1234$ ã®ãšãããã $1237$ ã§å²ã£ãäœãã¯ïŒFermatã®å°å®çã«ãã $\\textbf{895}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc206/editorial/8554"
},
{
"content": "ãäžè¬ã«æ£ $n$ è§æ± $P_1P_2âŠP_nQ_1Q_2âŠQ_n$ ã®å¡ãåããèããïŒãŸã $P_{n+1}, Q_{n+1}$ ããããã $P_1, Q_1$ ã«å¡ã£ãè²ãšåããšãïŒäžè²ã®äžŠã³ã«ã€ããŠèµ€ $\\rarr$ é $\\rarr$ ç· $\\rarr$ èµ€ã®é ããæ£ã®é ãïŒèµ€ $\\rarr$ ç· $\\rarr$ é $\\rarr$ èµ€ããè² ã®é ããšå®çŸ©ããïŒæ¡ä»¶ãæºããå¡ãæ¹ã«ã€ããŠïŒ$(P_k, Q_k)$ ã®è²ãš $(P_{k+1},Q_{k+1})$ ã®è²ã¯ãæ£è² ãåãé ã§è²ã®çµã¿ãç°ãªããã®ããããã¯ãæ£è² ãéãé ã§è²ã®çµã¿ãåããã®ãã®ã©ã¡ãããšãªãïŒ$($ äŸãã° $(P_1,Q_1)=($ èµ€ïŒé $)$ ã®ãšã $(P_2,Q_2)$ 㯠$($ éïŒç· $)$ $($ ç·ïŒèµ€ $)$ $($ éïŒèµ€ $)$ ã®ããããã§ãã $)$\\\r\nããããã£ãŠæ£ $n$ è§åœ¢ $A_1A_2âŠA_n$ ã®åé ç¹ã«èµ€ïŒéïŒç·ãå²ãæ¯ã£ãŠïŒããã«æ£è² ãäžã€å®ããããšã§ã $(P_1,Q_1)$ ãå®ããæ£è² ã®é ã§ïŒ$P_k, Q_k, A_k$ ãå
šãŠç°ãªãè²ã«ããããšããæé 㧠$(P_n,Q_n)$ ãŸã§è²ã決å®ã§ããïŒãã®æé 㧠$A_k$ ãš $A_{k+1}$ ãåè²ã®æïŒ$(P_k,Q_k)$ ãš $(P_{k+1},Q_{k+1})$ ã¯æ£è² ãéãé ãšãªãã®ã§ïŒ$(P_1,Q_1)$ ãš $(P_{n+1},Q_{n+1})$ ãäžèŽããããã«ã¯ïŒæ£ $A_1A_2âŠA_n$ è§åœ¢ã®èŸºã§äž¡ç«¯ç¹ã®è²ãåäžã®ãã®ãå¶æ°æ¬ã§ããå¿
èŠãããïŒéã«å¶æ°æ¬ã§ããã°æ¡ä»¶ãæºãã $P_1P_2âŠP_nQ_1Q_2âŠQ_n$ ã®å¡ãåãã決å®ã§ããïŒä»¥äžããïŒãæ£ $n$ è§åœ¢ $A_1A_2âŠA_n$ ã®åé ç¹ãèµ€ïŒéïŒç·ã§å¡ãåããæ¹æ³ã§ïŒäž¡ç«¯ç¹ãåäžè²ã®èŸºãå¶æ°æ¬ã§ãããã®ã®åæ°ããæ±ããã°è¯ãïŒããã $p_n$ éããšããïŒ\\\r\nããŸãïŒæ£ $n$ è§åœ¢ $A_1A_2âŠA_n$ ã®åé ç¹ã«èµ€ïŒéïŒç·ãåäžè²ãé£ãåããªãããã«å²ãæ¯ãæ¹æ³ã $a_n$ éããšããŠãããæ±ããïŒ$a_2=6, a_3=6, a_4=18$ ã§ããïŒ$a_{n+2}$ 㯠$A_{n+2}$ ãš $A_n$ ãåäžè²ã®ãšã $(=a_n$ éã $)$ ïŒ$A_{n+1}$ ã®è²ã¯ $2$ éãããïŒ$A_{n+2}$ ãš $A_n$ ãç°ãªãè²ã®ãšã $(=a_{n+1}$ éã $)$ ïŒ$A_{n+1}$ ã®è²ã¯ $1$ éããªã®ã§ $a_{n+2}=a_{n+1}+2a_n$ ãšãªãïŒããã解ã $a_n=2^n+2(-1)^n$ ãåŸãããïŒ\\\r\nã$p_{2n}$ éãã®äžã§äž¡ç«¯ç¹ãåäžè²ã®èŸºã $2m$ æ¬ã§ãããã®ã¯ïŒ$a_{2n-2m}$ éãããããã«ã€ã㊠$A_1,A_2âŠA_{2n-2m},A_{2n-2m+1}$ ããéè€ãèš±ã㊠$2m$ åãéžã³ã $A_k$ ãéžã°ãããšã蟺 $A_kA_{k+1}$ äžã« $A_k$ ãšåãè²ã®ç¹ãå¢ããïŒ$A_{2n-2m+1}$ ãéžã°ãããšãã¯èŸº $A_{2n-2m}A_1$ äžã« $A_1$ ãšåãè²ã®ç¹ãå¢ããããšããæäœãšå¯Ÿå¿ãããããã®ã§\r\n$$p_{2n}=\\displaystyle\\sum_{m=0}^na_{2n-2m} \\times {}\\_{2n-2m+1}\\mathrm{H}\\_{2m}= \\displaystyle\\sum_{m=0}^n(2^{2n-2m}+2){}\\_{2n}\\mathrm{C}\\_{2m}=\\dfrac{(2+1)^{2n}+(2-1)^{2n}}2 +((1+1)^{2n}+(1-1)^{2n})=\\dfrac{3^{2n}+1}2 +2^{2n}$$\r\nãšãªãïŒããã« $(P_1,Q_1)$ ã®é ã®æ£è² ãèããããšã§ïŒæ¡ä»¶ãæºããå¡ãåãã®æ¹æ³ã¯ $n$ ãå¶æ°ã®å Žå $3^n+2^{n+1}+1$ ã§è¡šãããããšããããïŒããšã¯æ¬è§£èª¬ãšåæ§ã«æ±ããã°è¯ãïŒ",
"text": "ããæçŽãªæ°ãäžãæ¹ã§ã®è§£æ³",
"url": "https://onlinemathcontest.com/contests/omc206/editorial/8554/406"
}
] | ãæ£ $1234$ è§æ±ã®é ç¹ $2468$ åãããããïŒèµ€è²ïŒéè²ïŒç·è²ã®ãã¡ããäžã€ãã€éžãã§å¡ããŸãïŒäœ¿ããªãè²ããã£ãŠãæ§ããŸããïŒïŒããã§ïŒä»»æã®èŸºã«å¯ŸããŠïŒãã®äž¡ç«¯ã® $2$ é ç¹ã®è²ãç°ãªãããã«ããŸãïŒãã®ãããªå¡ãæ¹ã $X$ éããããšãïŒ$X$ ãçŽ æ° $1237$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ\
ããã ãïŒå転ãããè£è¿ãããããŠäžèŽããå¡ãæ¹ãåºå¥ããŠèããŸãïŒ |
OMC206 | https://onlinemathcontest.com/contests/omc206 | https://onlinemathcontest.com/contests/omc206/tasks/8346 | F | OMC206(F) | 500 | 25 | 70 | [
{
"content": "ãæ¡ä»¶ãã $a_{n+1}^2-a_na_{n+2}=k=a_{n+2}^2-a_{n+1}a_{n+3}$ïŒããªãã¡\r\n$$ \\dfrac{a_n+a_{n+2}}{a_{n+1}} = \\dfrac{a_{n+1}+a_{n+3}}{a_{n+2}} $$\r\nã§ããïŒå³èŸºã巊蟺㮠$n$ ã $n+1$ ã«ããããããã®ã§ããããšã«æ³šæããã°ïŒä»»æã®æ£ã®æŽæ° $n$ ã«å¯Ÿã㊠$\\dfrac{a_n + a_{n+2}}{a_{n+1}}$ ã¯å
±éã®å€ãåãã®ã§ïŒãã®å
±éã®å€ã $\\alpha$ ãšãã (ããã¯æ£ã®æçæ°ã§ãã) ïŒãã®ãšãïŒä»»æã® $n\\geq 1$ ã«å¯Ÿã $a_{n+2}=\\alpha a_{n+1}-a_n$ ãæãç«ã€ïŒç¹ã«ïŒ\r\n$$a_3=64\\alpha-3, \\quad a_4=(64\\alpha-3)\\alpha-64, \\quad k=a_2^2-a_1a_3=4105-192\\alpha$$\r\nã§ããïŒãããããã¹ãŠæ£ã®æŽæ°ã§ããããšã«çæããïŒããã§ïŒ$\\alpha$ ãæŽæ°ã§ã¯ãªããšä»®å®ãïŒæ¢çŽåæ°ã®åœ¢ã§ $\\alpha = \\dfrac{q}{p}$ ãšããïŒ$a_3\\in\\mathbb{Z}$ ã§ãããã $p$ 㯠$64$ ã®çŽæ°ã§ããããïŒç¹ã« $2$ ã¹ãã§ããïŒãŸãïŒ$a_4\\in\\mathbb{Z}$ ãã $64\\alpha - 3$ 㯠$p$ ã®åæ°ã§ãªããã°ãããªãã®ã§ïŒ$64\\alpha$ ã¯å¥æ°ã§ããïŒä»¥äžããïŒ$p = 64$ ã§ããïŒ$64\\alpha - 3$ 㯠$64$ ã®åæ°ã§ããããããéè² æŽæ° $m$ ãçšã㊠$q = 64m +3$ ãšãªãïŒãã®ãšãïŒ\r\n$$a_3=64m, \\quad a_4=64m^2+3m-64$$\r\nã§ããïŒããã« $a_5\\in\\mathbb{Z}$ ã§ãããã $m$ 㯠$64$ ã®åæ°ã§ããïŒãšãããïŒãã®ãšã $m\\gt0$ ãªã $k\\leq0$ ãšãªãïŒ$m=0$ ãªã $a_4\\leq 0$ ãšãªããããããã®å Žåãäžé©ã§ããïŒ\\\r\nããã£ãŠ $\\alpha$ ã¯æŽæ°ãšãªãïŒ$a_4, k$ ããšãã«æ£ã§ããããšããïŒ$2\\leq\\alpha\\leq21$ ãå¿
èŠã§ããïŒéã«ãã®ãšãïŒåž°çŽçã«ä»»æã® $\\\\{a_n\\\\}$ ãå調å¢å ã§ããããšã確èªã§ããïŒä»¥äžããïŒæ±ããçã㯠$2\\leq\\alpha\\leq21$ ã®ç¯å²ã§ã® $k=4105-192\\alpha$ ã®ç·å $\\mathbf{37940}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc206/editorial/8346"
},
{
"content": "ãåã以åäœåããåé¡ãšæŒžååŒãåã圢ã ã£ãã®ã§çŽ¹ä»ããŸãïŒãªãïŒFåé¡ã®æŒžååŒããŒããšé¢ä¿ã®ãããã®ã§ããïŒæ¬è³ªã® $1$ ã€ã§ããæŽæ°çè°è«ãšã¯é¢ä¿ã®ãªããã®ã§ããããšã«æ³šæããŠãã ããïŒ\r\n***\r\n**åé¡:** æ°å $a_n$ ã¯ïŒ$a_1=\\sqrt{2-2\\cos{\\left(\\dfrac{882}{5}\\right)^\\circ}},a_2=1-2\\cos{\\left(\\dfrac{882}{5}\\right)^\\circ}$ ãšããŠïŒä»¥äžã®æŒžååŒãæºãããŸãïŒ\\\r\n$$a_{n+1}=\\dfrac{(a_n)^2-1}{a_{n-1}}(n=2,3,4,\\cdots)$$\\\r\nããã®ãšãïŒ$\\lfloor a_{49}^2\\rfloor$ ã®å€ãæ±ããŠãã ããïŒãã ãïŒ$-0.998026729\\lt\\cos{\\Big(\\dfrac{882}{5}\\Big)^\\circ}\\lt-0.998026728$ ãçšããŠæ§ããŸããïŒ\r\n***\r\nããã®åé¡ã¯ïŒFåé¡ã®ãããªè§£æ³ãçµç±ããŠã解ãããšãã§ããŸããïŒããè¯éºã«è§£ãæ¹æ³ããããŸãïŒèŠã€ããããã²æããŠãã ããïŒ",
"text": "èªäœåé¡ã®çŽ¹ä»",
"url": "https://onlinemathcontest.com/contests/omc206/editorial/8346/411"
}
] | ã$k$ ãæ£ã®æŽæ°ãšããŸãïŒæ£ã®æŽæ°ãããªãæ°å $\\{a_n\\}\_{n=1,2,\ldots}$ ãïŒ$a_1=3,a_2=64$ ããã³ä»»æã®æ£ã®æŽæ° $n$ ã«å¯ŸããŠ
$$a_{n+2}=\dfrac{a_{n+1}^2-k} {a_n}$$
ãã¿ãããšãïŒ$k$ ãšããŠããããå€ã®ç·åãæ±ããŠãã ããïŒ |
OMC205 (for beginners) | https://onlinemathcontest.com/contests/omc205 | https://onlinemathcontest.com/contests/omc205/tasks/5867 | A | OMC205(A) | 100 | 364 | 373 | [
{
"content": "解ãšä¿æ°ã®é¢ä¿ãã $\\displaystyle 2\\alpha=\\frac{10101}{101}$ ãæç«ããïŒè§£çãã¹ãã¯$10101+202=\\bf10303$ .",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc205/editorial/5867"
}
] | ãå®æ° $p$ ã«å¯ŸãïŒæ¬¡ã® $x$ ã® $2$ 次æ¹çšåŒãé解 $x=\alpha$ ãæã¡ãŸããïŒ
$$101x^2-10101x+p=0$$
$\alpha$ ã®å€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããŸãïŒ$a+b$ ã®å€ã解çããŠãã ããïŒ |
OMC205 (for beginners) | https://onlinemathcontest.com/contests/omc205 | https://onlinemathcontest.com/contests/omc205/tasks/4962 | B | OMC205(B) | 100 | 331 | 352 | [
{
"content": "ãå
ã®æ°Žé㯠$40~ \\mathrm{L}$ïŒå ããåŸã®æ°Žé㯠$135~ \\mathrm{L}$ ãªã®ã§ïŒäœç©æ¯ã¯ $8:27$ïŒããªãã¡æ°Žäœã®æ¯ïŒïŒçžäŒŒæ¯ïŒã¯ $2:3$ ãšãªãïŒãã£ãŠïŒæ±ããé«ã㯠$24Ã\\dfrac{2}{3-2}=\\bf{48}~ \\mathrm{cm}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc205/editorial/4962"
}
] | ãååã«å€§ããåéç¶ã®å®¹åšãããïŒåºé¢ã®åãæ°Žå¹³ã«ãªãããã«ïŒé ç¹ãçäžã«ããŠåºå®ããŸããïŒã€ã¡ãŒãžãšããŠã¯æŒæã®ãããªãã®ãæ³åããŠãã ããïŒïŒããã«ã¯ããæ°Žã $40~ \mathrm{L}$ å
¥ã£ãŠããïŒããã«æ°Žã $95~ \mathrm{L}$ å ãããšããïŒæ°Žäœã $24~ \mathrm{cm}$ äžãããŸããïŒãã®ãšãïŒã¯ããã®æ°Žäœã¯äœ $\mathrm{cm}$ ã§ãããïŒ |
OMC205 (for beginners) | https://onlinemathcontest.com/contests/omc205 | https://onlinemathcontest.com/contests/omc205/tasks/6590 | C | OMC205(C) | 200 | 242 | 301 | [
{
"content": "ã$99!-1=N$ ãšãããšïŒ$100!-k=100N+100-k$ ã§ãããã\r\n$$\\gcd (N,100N+100-k)=\\gcd (N,\\lvert 100-k \\rvert ) $$\r\nã $1$ ãšãªãã°ããïŒããã§ïŒ$N$ 㯠$1$ ä»¥äž $100$ 以äžã®ãã¹ãŠã®æŽæ°ãšäºãã«çŽ ã§ããããïŒ$k=100$ ãé€ããŠãã¹ãŠæ¡ä»¶ãã¿ããïŒä»¥äžããïŒè§£çãã¹ãå€ã¯ $\\bf{20000}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc205/editorial/6590"
}
] | ã$99!-1$ ãš $100!-k$ ãäºãã«çŽ ãšãªããããªïŒ$1$ ä»¥äž $200$ 以äžã®æŽæ° $k$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC205 (for beginners) | https://onlinemathcontest.com/contests/omc205 | https://onlinemathcontest.com/contests/omc205/tasks/5244 | D | OMC205(D) | 300 | 187 | 259 | [
{
"content": "ã$2$ ã€ã®åã $9$ ãšãªã $9$ 以äžã®éè² æŽæ°ã®çµã¯ $(0,9),(1,8),(2,7),(3,6),(4,5)$ ã® $5$ ã€ã§ããïŒãããã®çµããïŒåçµã«ã€ãé«ã
$1$ çš®é¡ãéžã㧠$N$ ãæ§æãããã®ã§ïŒ\r\n\r\n- $N$ ã®ãã¡ïŒ$1$ æ¡ã®ãã®ã¯ïŒ$9$ éã. \r\n- $N$ ã®ãã¡ïŒ$2$ æ¡ã®ãã®ã¯ïŒ$9\\times8=72$ éã. \r\n- $N$ ã®ãã¡ïŒ$3$ æ¡ã®ãã®ã¯ïŒ$9\\times8\\times6=432$ éã. \r\n- $N$ ã®ãã¡ïŒ$4$ æ¡ã®ãã®ã¯ïŒ$9\\times8\\times6\\times4=1728$ éã. \r\n \r\nãããã $N$ 㯠$4$ æ¡ã®æ¡ä»¶ãæºããæ£æŽæ°ã®ãã¡ $1153$ çªç®ã«å°ããæ°ã§ããïŒãŸãïŒ$4$ æ¡ã® $N$ ã®ãã¡ïŒæäžäœã®å€ã $1,2,\\ldots,9$ ã§ãããã®ã¯ãããã $8\\times6\\times4=192$ åãã€ååšããïŒãããš$1153=192\\times 6+1$ ã§ããããšãšããããŠïŒåã®äœã $7$ ã§ãããã®ã®ãã¡æãå°ãããã®ãæ±ããã°ããïŒãã㯠$\\bf7013$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc205/editorial/5244"
}
] | ã以äžã®æ¡ä»¶ãæºããæ£æŽæ° $N$ ã®ãã¡ïŒ$1666$ çªç®ã«å°ãããã®ãæ±ããŠãã ããïŒ
- $N$ ãåé²æ³ã§è¡šèšãããšïŒåæ¡ã®æ°ã¯çžç°ãªãïŒ
- $N$ ãåé²æ³ã§è¡šèšãããšïŒã©ã®çžç°ãªã $2$ ã€ã®æ¡ã®æ°ã®åã $9$ ã«ãªããªãïŒ
ãã ãïŒæäžäœã®æ°ã¯ $0$ ã§ãªãããã«è¡šèšãããã®ãšãïŒ$N$ ã $1$ æ¡ã§ãããšã $2$ ã€ã®æ¡ä»¶ã¯æç«ãããã®ãšããŸãïŒ |
OMC205 (for beginners) | https://onlinemathcontest.com/contests/omc205 | https://onlinemathcontest.com/contests/omc205/tasks/3063 | E | OMC205(E) | 300 | 217 | 294 | [
{
"content": "ã$X=d(d(n))$ 㯠$3$ 以äžã®çŽ æ°ã§ããïŒãã®ãšã $d(n)$ ã¯çŽ æ°ã® $X-1$ ä¹æ°ã§ããïŒ$d(n)\\leq 2\\lfloor \\sqrt{n}\\rfloor \\leq 20$ ãªã®ã§\r\n$$d(n)=4,~ 9,~ 16$$\r\nãã®ãã¡ $d(n)=16$ ã«ã€ããŠïŒ$n$ ãšããŠããåŸãæå°å€ã¯ $120\\gt 100$ ã§ããã®ã§äžé©ã§ããïŒå®éã«ã¯ $100$ 以äžã®æ£æŽæ°ããã€æ£ã®çŽæ°ã¯é«ã
$12$ åã§ããïŒïŒ[蚌æ](https:\\/\\/onlinemathcontest.com\\/contests\\/omc205\\/editorial\\/3063\\/405)ïŒ\\\r\nããã£ãŠ $n$ ã¯çžç°ãªãçŽ æ° $p,q$ ãçšããŠæ¬¡ã®ããããã®åœ¢åŒã§è¡šãããïŒ\r\n$$p^3,\\quad pq,\\quad p^2q^2,\\quad p^8$$\r\nãããã£ãŠæ±ãã $n~(\\leq100)$ ã®åæ°ã¯ $2+30+2+0=\\textbf{34}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc205/editorial/3063"
},
{
"content": "ãæ°åŠçãªçµéšãåãã $nâŠ100$ ãªãã° $d(n) \\lt 16$ ã ãããšäºæ³ããããšãã§ããŸããïŒèšŒæããããšãå¯èœã§ãïŒ\\\r\nã以äžïŒ$n âŠ100$ ãšããŸãïŒ\r\n\r\n---\r\n\r\nã$d(n) ⊠18$ ã®èšŒæ\\\r\nã$d$ ã $n$ ã®çŽæ°ã§ããã°ïŒ$\\dfrac{n}{d}$ ã $n$ ã®çŽæ°ã§ããïŒãã®ããšããïŒ$n$ ã®çŽæ°ã®åæ°ã¯ $2 \\lfloor \\sqrt{n} \\rfloor $ 以äžã§ããããšãåŸãïŒïŒãªãïŒåæ§ã®è°è«ãçšããŠïŒ$d(n)$ ãå¥æ°ã§ããã°ïŒ$n$ ã¯å¹³æ¹æ°ã§ããããšãåŸãïŒãã®ããšã¯åŸã§çšããïŒïŒ\\\r\nã$ d(100)=9$ ã§ããïŒ$nâŠ99$ ã®ç¯å²ã§ã¯ïŒ$d(n) ⊠18$\r\n\r\nã$d(n)âŠ14$ ã®èšŒæ\\\r\nãå
ã»ã©ã®è°è«ããïŒéå $U=\\lbrace 1, 2, 3, 4, 5, 6, 7, 8, 9 \\rbrace$ ã®ãã¡ïŒããã€ãçŽæ°ãšããŠæãŠããèããã°ååã§ããïŒ\\\r\nãç¹ã«éå $S=\\lbrace 5, 7, 8, 9 \\rbrace$ ãèãããšïŒãããã®èŠçŽ ã¯ããããäºãã«çŽ ã§ããïŒãŸãïŒã©ã® $3$ æ°ã®ç©ããšã£ãŠã $100$ ãè¶
ããã®ã§ïŒéå $S$ ã®ãã¡ïŒ$2$ åãŸã§ãã $n$ ã®çŽæ°ã«ãªãåŸãªãïŒ\\\r\nããã£ãŠéå $U$ ã®ãã¡ $n$ ã®çŽæ°ã«åæã«ãªãåŸãã®ã¯æ倧㧠$7$ åã§ããïŒãããã $d(n)âŠ14$ ãåŸãïŒ\r\n\r\nã$d(n)âŠ12$ ã®èšŒæ\\\r\nãïŒæ¹éïŒïŒåæ§ã®ææ³ã貫ãã®ã§ããã°ïŒä»¥äžã®æ¹éãèããããïŒ\\\r\nãéå $U$ ã®éšåéåã§ãã£ãŠïŒèŠçŽ ã $7$ åæã€ãã®ã§ïŒãã®å
šãŠã®èŠçŽ ãããèªç¶æ° $n$ ã®çŽæ°ã§ãããã®ã¯ïŒ$\\lbrace 1, 2, 3, 4, 6, 8, 9\\rbrace$ ã ãã§ããããšããããïŒ\\\r\nããã®ãšã $n=72$ ãåŸãïŒ$d(n) \\lt 14$ ã§ããïŒ\\\r\nãäžæ¹ïŒ$d(n)=13$ ãæºããæ°ã¯å¹³æ¹æ°ã§ããïŒ$d(n)âŠ18$ ã®éã®è°è«ãã $49, 64, 81$ ã®ãããããåè£ãšããŠããåŸããïŒãããã®å Žåã $d(n) \\lt 13$ ã§ããïŒ\r\n\r\nãïŒæ¹éïŒïŒ$d(n)=14,13$ ããããã確ãããæ¹éïŒ\\\r\nãçŽæ°ã $14$ åæã€èªç¶æ°ã¯ïŒ$p^{13}$ïŒ$p^6q$ ã®ããããã®åœ¢åŒã§ããïŒããããèããŠïŒ$2^6Ã3=192$ ãæå°ã§ããïŒ\\\r\nãçŽæ°ã $13$ åæã€èªç¶æ°ã¯ïŒ$p^{12}$ ã®åœ¢åŒã§ããïŒæå°ã¯ $2^{12}=4096$ ã§ããïŒ\r\n\r\n---\r\n\r\nããªãïŒ$d(n)âŠ14$ ãŸã§ã®èšŒæã¯ïŒããçšåºŠäžè¬åããããšãå¯èœã§ãïŒãã ãïŒå¿
ãããããè©äŸ¡ã«ãªãããã§ã¯ãããŸããïŒ\\\r\nãäŸãã° $nâŠ1000$ ã®ãšãïŒåæ§ã®æ¹é㧠$d(n)âŠk$ ãæºãã $k$ ãè©äŸ¡ããŠã¿ãŸãïŒ$S=\\lbrace 7, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31 \\rbrace$ çãèããã°ç°¡åã« $d(n)âŠ44$ ãŸã§ã¯ãã©ãçããŸããïŒå®é㯠$d(840)=32$ ãæ倧å€ã«ãªããŸãïŒ\\\r\nã$nâŠ10000$ ã§ããã°ïŒ$S=\\lbrace 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97 \\rbrace$ çãèããã°$d(n)âŠ160$ ãšãªããŸããïŒå®é㯠$d(7560)=64$ ãæ倧å€ã§ãïŒ",
"text": "d(n)âŠ12 ã®èšŒæïŒèªã¿ç©ãšããŠã©ããïŒ",
"url": "https://onlinemathcontest.com/contests/omc205/editorial/3063/405"
}
] | ã$d(x)$ ã§æ£æŽæ° $x$ ã®æ£ã®çŽæ°ã®åæ°ãè¡šããšãïŒ
$$d(d(n)) \gt 2, ~~ d(d(d(n)))=2$$
ãæºãã $100$ 以äžã®æ£æŽæ° $n$ ã¯ããã€ãããŸããïŒ |
OMC205 (for beginners) | https://onlinemathcontest.com/contests/omc205 | https://onlinemathcontest.com/contests/omc205/tasks/5391 | F | OMC205(F) | 400 | 47 | 110 | [
{
"content": "ã$\\angle BAI=\\alpha, \\angle CBI=\\beta$ ãšãã. ååšè§ã®å®çããã³æ¥åŒŠå®çãã\r\n$$\\angle IPQ =\\angle IQP =\\angle PIB =\\alpha$$\r\nã§ãã, $BI\\/\\/PQ$ ãæãç«ã€. ãããã\r\n$$\\angle AIQ =\\angle APQ =\\angle ABI =\\beta$$\r\nã§ãã, $\\triangle AIQ \\sim \\triangle IBP$ ãåãã. ãããã£ãŠ, \r\n$$IP:AQ=IQ:AQ=BP:IP \\quad \\therefore BP=\\frac{25}{4}$$\r\nããã«, $\\triangle ABI \\sim \\triangle AIQ$ ãã\r\n$$AB:AI=AI:AQ \\quad \\therefore AI^2=53$$\r\nãããã§, çŽç· $QI$ ãš $BC$ ãšã®äº€ç¹ã $D$ ãšãããš, \r\n$$\\angle BID =180\\degree - (180\\degree -\\alpha -\\beta ) - \\beta =\\alpha, \\quad \\angle DBI=\\beta$$\r\nã§ãããã $\\triangle IBP \\equiv \\triangle IBD$ ã§ãã\r\n$$\\angle BIC =90\\degree +\\alpha \\quad \\therefore \\angle CID=90\\degree$$\r\nããã§, $\\triangle AIQ$ ã«é¢ããäœåŒŠå®çãã\r\n$$\\cos (180\\degree -\\alpha -\\beta )=\\frac{16+25-53}{2\\cdot 4\\cdot 5} =-\\frac{3}{10}$$\r\nã§ãããã, \r\n$$CD=\\frac{ID}{\\cos (\\alpha +\\beta )}=\\frac{50}{3}$$\r\nãããã£ãŠ, 解çã¯ä»¥äžã®èšç®ãã $\\bf{287}$ ãšãªã.\r\n$$BC=BD+CD=BP+CD=\\frac{25}{4} +\\frac{50}{3} =\\frac{275}{12}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc205/editorial/5391"
},
{
"content": "ãä»åã¯æ®ã©èšç®ããªãã§è§£ããŠã¿ãããšæããŸãã\r\n\r\nã $QI$ ãš $BC$ ã®äº€ç¹ã $D$ ïŒ $I$ ãã $BC$ ã«äžãããåç·ã®è¶³ã $X$ ãšããïŒ\r\n $$\\angle PIB = \\angle IAB = \\angle IAQïŒ\\angle IPB = \\angle AQI$$\r\nããïŒäžè§åœ¢ $IPB$ ïŒäžè§åœ¢ $AIB$ ïŒäžè§åœ¢ $AQI$ ã¯å
šãŠçžäŒŒã§ããã\r\nãŸãïŒ\r\n $$\\angle DIB = \\angle DIP - \\angle PIBïŒ\\angle IBD = \\angle IBP$$ \r\nããïŒäžè§åœ¢ $IPB$ ãšäžè§åœ¢ $IDB$ ã¯ååã§ããïŒ\r\n $$ID:DB = AI:IB = AQ:IP = 4:5$$ \r\nããïŒ $DB = 5\\times \\frac{5}{4}=\\frac{25}{4}$ ã§ããïŒ\r\n $\\angle AQI = \\angle IDB$ ããäžè§åœ¢ $CQD$ ã¯äºç蟺äžè§åœ¢ãªã®ã§ïŒ $CD = n$ ãšãããšïŒ $2CX = AC + CB - AB$ ããïŒ $CX = n-\\frac{3}{2}$ãšãªãïŒ\r\näžè§åœ¢ $IDX$ ãšäžè§åœ¢ $CDI$ ã¯çžäŒŒãªã®ã§ïŒ $CD = 5 \\times \\frac{5}{\\frac{3}{2}} = \\frac{50}{3}$ ã§ããïŒ\r\n\r\nããã£ãŠïŒæ±ããã¹ãå€ã¯ $\\frac{50}{3} + \\frac{25}{4} = \\frac{275}{12}$ ãšãªãïŒ",
"text": "ãªãã¹ãèšç®ããªãæ¹æ³(æšå¥š)",
"url": "https://onlinemathcontest.com/contests/omc205/editorial/5391/407"
},
{
"content": "ã$BI$ ãš $AC$ ã®äº€ç¹ã $E$ ãšããïŒå
¬åŒè§£èª¬ããã³ãŠãŒã¶ãŒè§£èª¬ã«èŒã£ãŠããçžäŒŒãã $$BA=\\dfrac{53}{4},AE=\\dfrac{53}{7},BE=BI+IE=\\dfrac{5\\sqrt{53}}{4}+\\dfrac{5\\sqrt{53}}{7}=\\dfrac{55\\sqrt{53}}{28}$$ ããããïŒ $\\angle{ABE}=\\angle{CBE}$ ããïŒ$BC=7k,CE=4k$ ãšããïŒ$BA\\times BC-EC\\times EA={BE}^2$ ããïŒ$k=\\dfrac{275}{84}$ ãšãªãïŒ$BC=\\dfrac{275}{12}$ ãåŸãïŒ",
"text": "IQãšBCã®äº€ç¹ãèããªãæ¹é",
"url": "https://onlinemathcontest.com/contests/omc205/editorial/5391/408"
}
] | ãäžè§åœ¢ $ABC$ ã®å
å¿ã $I$ ãšããŸãïŒ$A$ ãéã $I$ ã§çŽç· $BI$ ã«æ¥ããåãçŽç· $AB,AC$ ãããããš $A$ ã§ãªãç¹ã§äº€ãã£ãã®ã§ïŒãã®äº€ç¹ããããã $P,Q$ ãšãããšããïŒ
$$AP=7,\quad AQ=4,\quad IP=5$$
ãæãç«ã¡ãŸããïŒãã®ãšãïŒç·å $BC$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC204 (for experts) | https://onlinemathcontest.com/contests/omc204 | https://onlinemathcontest.com/contests/omc204/tasks/10266 | A | OMC204(A) | 200 | 203 | 213 | [
{
"content": "ã$x_n=\\dfrac{p+q}{p-q}$ ãšè¡šãããšãïŒ$x_{n+1}=\\dfrac{p^2+q^2}{p^2-q^2}$ ãæãç«ã€ããïŒ\r\n$$x_8=\\dfrac{(\\sqrt[16]{3})^{(2^7)}+(\\sqrt[16]{2})^{(2^7)}}{(\\sqrt[16]{3})^{(2^7)}-(\\sqrt[16]{2})^{(2^7)}}=\\dfrac{3^8+2^8}{3^8-2^8}$$\r\nãšèšç®ã§ããïŒãã£ãŠïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bm{13122}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc204/editorial/10266"
}
] | ãæ£ã®å®æ°å $\\{x_n\\}\_{n=1,2,\ldots}$ ã以äžã§å®ãããšãïŒ$x_8$ ãæ±ããŠãã ããïŒ
$$x_1=\dfrac{\sqrt[16]{3}+\sqrt[16]{2}}{\sqrt[16]{3}-\sqrt[16]{2}},\quad x_{n+1}=\dfrac{x_n}{2}+\dfrac{1}{2x_n}\quad (n=1,2,\ldots)$$
ãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC204 (for experts) | https://onlinemathcontest.com/contests/omc204 | https://onlinemathcontest.com/contests/omc204/tasks/2416 | B | OMC204(B) | 300 | 85 | 139 | [
{
"content": "ã$\\angle FEA = \\angle FAE = \\angle FDC$ ãã $4$ ç¹ $C, D, F, E$ ã¯å
±åã§ããïŒãŸã $CE = EF$ ãšååšè§ã®å®çãš $C$ ã $\\triangle ABD$ ã®å€å¿ã§ããããšããïŒ\r\n$$ \\angle ADB = \\angle FCE = \\angle CFE = \\angle CDE = \\angle CBD $$\r\nãã $AD \\parallel BC$ ããããïŒ$AC = BC = CD = x$ ãšããïŒ\r\n$$\\angle GAF = \\angle ABC = \\angle BAC $$\r\nãã $\\angle GAC = \\angle BAD$ ã§ããïŒååšè§ã®å®çã«ãã $\\angle GCA = \\angle BDA$ ãšããã㊠$\\triangle GAC \\sim \\triangle BAD$ ã§ããïŒãããã $AD = \\dfrac{14}{9} x$ ã§ããïŒ$\\cos \\angle CDA = \\dfrac{7}{9}$ ãšãããïŒ$\\angle ACB = \\angle CDA$ ãã $\\triangle ABC$ ã«äœåŒŠå®çãçšããããšã§ïŒ\r\n$$ AB = \\sqrt{x^2 + x^2 - 2x^2 \\cdot \\dfrac{7}{9} \\ } = \\dfrac{2}{3} x $$\r\nãæãç«ã¡ïŒ$GB = \\dfrac{23}{21} x$ ãšãããïŒä»¥äžãã解çãã¹ãå€ã¯ $\\mathbf{44}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc204/editorial/2416"
}
] | ãåžåè§åœ¢ $ABCD$ ã«ãããŠïŒ$C$ ã¯äžè§åœ¢ $ABD$ ã®å€å¿ã§ãïŒåè§åœ¢ $ABCD$ ã®å¯Ÿè§ç·ã®äº€ç¹ã $E$ ãšãããšãïŒèŸº $DA$ äžã« $CE = EF = FA$ ãªãç¹ $F$ ãåãããšãã§ããŸããïŒçŽç· $AB$ ãš $CF$ ã®äº€ç¹ $G$ ã«ã€ã㊠$GA : AB = 9 : 14$ ãæãç«ã€ãšãïŒæ¯ $GB : BC$ ã¯äºãã«çŽ ãªæ£ã®æŽæ° $p, q$ ãçšã㊠$p : q$ ãšè¡šãããã®ã§ïŒ$p+q$ ã®å€ã解çããŠãã ããïŒ |
OMC204 (for experts) | https://onlinemathcontest.com/contests/omc204 | https://onlinemathcontest.com/contests/omc204/tasks/5044 | C | OMC204(C) | 400 | 85 | 111 | [
{
"content": "ãçŽç· $BC, AB$ ãš $PQ$ ã®äº€ç¹ããããã $S, T$ ãšããïŒåãå£ $\\alpha$ ã¯å³1ã®ããã«ãããã®ã§ïŒ$\\alpha$ ã $\\beta$ äžã«ã€ããããããã®åœ±ã®å³åœ¢ã¯å³2ã®ããã«ãããïŒå³2ããïŒ\r\n$$â³BST:â³BTR:â³BRS = x:y:z = 10:6:5$$\r\nãšãããã®ã§ïŒ$BS:BT:BR=5:6:3$ ãåŸãïŒãã£ãŠïŒç«æ¹äœã®äžèŸºã®é·ãã $1$ ãšããã°ïŒ\r\n$$BR = \\frac{3}{5}BS = \\frac{3}{5}(BC + CS) = \\frac{3}{5}\\Big(BC + \\frac{5}{6}CP\\Big) = \\frac{17}{20}$$\r\nã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bm{37}$ ã§ããïŒ \r\n\r\n![figure 1](\\/images\\/jzSxIy4oGQJNIk3JKe6p5DDIVvh7CoLiXNBopqlz)\r\n![figure 2](\\/images\\/730DtkrFhZXYtYNYe6bBINKuPylBifxm3Oc797P1)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc204/editorial/5044"
},
{
"content": "ã$B$ ãåç¹ãšãïŒ$BC,BA,BF$ äžã« $x,y,z$ 軞ããšãïŒ$\\alpha$ ã®æ³ç·ãã¯ãã«ã®äžã€ã\r\n $\\vec{n}=\r\n\\begin{pmatrix}\r\n a_1 \\\\\\\\\r\n a_2 \\\\\\\\\r\n a_3\r\n\\end{pmatrix}$ \r\nãšããïŒ($a_1,a_2,a_3$ ã¯æ£ãšãªãïŒ) \r\nãŸãïŒç«æ¹äœã®äžèŸºã¯ $1$ ãšããïŒ \r\näžè¬ã«ïŒãªãè§ã $\\theta$ ã®äºã€ã®å¹³é¢ $\\alpha,\\beta$ ã«å¯ŸãïŒäº€ç·ã $d$ ãšãããšïŒå¹³é¢ $\\alpha$ äžã®å³åœ¢ $D$ ãå¹³é¢ $\\beta$ ã«æ£å°åœ±ããŠåŸãããå³åœ¢ã¯ïŒ$D$ ã $d$ ã«åçŽãªæ¹åã« $\\cos\\theta$ åååããŠåŸãããå³åœ¢ãšååã§ããïŒãã®ååã«ããé¢ç©ã¯ $\\cos\\theta$ åãããïŒ \r\nãã£ãŠïŒ$\\alpha$ ã®é¢ç©ã $S$ ãšãïŒ$\\alpha$ ãš $yz$ å¹³é¢ïŒ$zx$ å¹³é¢ïŒ$xy$ å¹³é¢ã®ãªãè§ããããã $\\theta_1,\\theta_2,\\theta_3$ ãšãããšïŒ$x=S\\cos\\theta_3,y=S\\cos\\theta_1,z=S\\cos\\theta_2$ ãšãªãïŒ$\\cos\\theta_1:\\cos\\theta_2:\\cos\\theta_3=6:5:10$ ãšãªãïŒ \r\n$\\vec{p_1}=\r\n\\begin{pmatrix}\r\n 1 \\\\\\\\\r\n 0 \\\\\\\\\r\n 0\r\n\\end{pmatrix}\r\n, \\vec{p_2}=\r\n\\begin{pmatrix}\r\n 0 \\\\\\\\\r\n 1 \\\\\\\\\r\n 0\r\n\\end{pmatrix}\r\n, \\vec{p_3}=\r\n\\begin{pmatrix}\r\n 0 \\\\\\\\\r\n 0 \\\\\\\\\r\n 1\r\n\\end{pmatrix}$ \r\nãšãããšïŒ$\\cos\\theta_i=\\dfrac{\\vec{n}\\cdot\\vec{p_i}}{|\\vec{n}||\\vec{p_i}|}=\\dfrac{a_i}{\\sqrt{{a_1}^2+{a_2}^2+{a_3}^2}}$ ã§ããã®ã§ïŒ$a_1:a_2:a_3=6:5:10$ ãšãªãïŒ$\\alpha$ ãå«ãå¹³é¢ã®åŒã¯ $6x+5y+10z=k$ ãšãããïŒ \r\nãã®å¹³é¢ã¯ $P(1,\\dfrac{1}{2},0)$ ãéãã®ã§ïŒ$k=\\dfrac{17}{2}$ ãšãªãïŒ$z$ åç㯠$\\dfrac{17}{20}$ ãšãªãïŒ \r\nãã£ãŠïŒ$\\dfrac{BR}{BF}=\\dfrac{17}{20}$ ã§ããïŒç¹ã«ïŒè§£çãã¹ãæ°å€ã¯ $\\textbf{37}$ïŒ",
"text": "空é座æšã§èãã",
"url": "https://onlinemathcontest.com/contests/omc204/editorial/5044/403"
}
] | ãéæãªç«æ¹äœ $ABCD-EFGH$ ã®èŸº $CD, DA, BF$ äžã«ããããç¹ $P, Q, R$ ããšãïŒç«æ¹äœ $ABCD-EFGH$ ã® $3$ ç¹ $P,Q,R$ ãéãå¹³é¢ã«ããåãå£ $\alpha$ ãé»ãå¡ããŸãïŒé¢ $EFGH, CDHG, AEHD$ ã«ã€ããŠïŒããããã®é¢ãäžã«ããŠç«æ¹äœ $ABCD-EFGH$ ãæ°Žå¹³ãªå°é¢ $\beta$ ã«çœ®ãïŒ$\beta$ ã«åçŽãªå¹³è¡å
ç·ãããŠããšãïŒ$\alpha$ ã $\beta$ äžã«ã€ãã圱ã®é¢ç©ãé ã« $x,y,z$ ãšããŸãïŒ
$$CP=DP, \quad x:y:z=10:6:5$$
ã§ãããšãïŒ$\dfrac{BR}{BF}$ ãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC204 (for experts) | https://onlinemathcontest.com/contests/omc204 | https://onlinemathcontest.com/contests/omc204/tasks/8639 | D | OMC204(D) | 500 | 63 | 110 | [
{
"content": "$$\\frac{d_1}{d_{16}} = \\frac{d_2}{d_{17}} = \\cdots = \\frac{d_{15}}{d_{30}}$$\r\nãæãç«ã€ããã®å¿
èŠååæ¡ä»¶ã¯ïŒ$d_{15}$ ãæ£ã®çŽæ°ãã¡ããã© $15$ åãã€ããšã§ããïŒ\r\n\r\n<details><summary> 蚌æ <\\/summary>\r\n**å¿
èŠæ§ïŒ**\\\r\nãå $k = 1, 2, ..., 15$ ã§\r\n$$\\frac{d_k}{d_{k+15}} = \\frac{d_k d_{16-k}}{n}$$\r\nãæãç«ã€ã®ã§ïŒ\r\n$$\r\nd_1d_{15} = d_2d_{14} = \\cdots = d_7d_9 = d_8^2\r\n$$\r\nãããããïŒç¹ã« $d_1 = 1$ ã«æ³šæããã° $d_1, d_2, ..., d_{15}$ ã¯ãã¹ãŠ $d_{15}$ ã®çŽæ°ã§ããïŒããªãã¡ $d_{15}$ ã®æ£ã®çŽæ°ã¯ $15$ å以äžã§ããïŒãŸãïŒ$d_{15}$ ã®çŽæ°ã¯ãã¹ãŠ $n$ ã®çŽæ°ã«ããªãããïŒ$d_{15}$ ã®æ£ã®çŽæ°ã¯ $15$ å以äžã§ãªããã°ãªããïŒãã®ããšãšããããŠæ£ã®çŽæ°ã¯ã¡ããã© $15$ åã§ããïŒ\r\n\r\n**ååæ§ïŒ**\\\r\nã$d_{15}$ ã®æ£ã®çŽæ°ã¯ãã¹ãŠ $n$ ã®çŽæ°ã§ããããïŒ$d_{15}$ ã®æ£ã®çŽæ°ã®å
èš³ã¯å°ããæ¹ãã $d_1, d_2, ..., d_{15}$ ã§ãªããã°ãªããªãïŒããã«å $k = 1, 2, ..., 15$ ã§\r\n$$\\frac{d_k}{d_{k+15}} = \\frac{d_k d_{16-k}}{n} = \\frac{d_{15}}{n}$$\r\nãæãç«ã€ã®ã§ïŒäžããããçåŒãæãç«ã€ïŒ\r\n<\\/details>\r\n\r\nãã®ããšãã $d_{15}$ ã¯ä»¥äžã®ããããã®åœ¢åŒã§è¡šãããïŒ\r\n- $p$ ãçŽ æ°ãšã㊠$d_{15} = p^{14}$ïŒ\r\n- $p, q$ ãçžç°ãªãçŽ æ°ãšã㊠$d_{15} = p^4q^2$ïŒ\r\n\r\nããã§ãã $d_{15}$ ãš $d_{16}$ ãäºãã«çŽ ã§ãããšïŒ$d_{15}, d_{16}$ ã®æ£ã®çŽæ°ã®åæ°ã®ç©ã¯ïŒ$n$ ã®æ£ã®çŽæ°ã®åæ°ãšçãããªãïŒãã®ããšãã $d_{16}$ ã®æ£ã®çŽæ°ã¯ $2$ åã§ãããïŒãã㯠$d_{16}$ ãåææ°ã§ããããšã«åããïŒãã£ãŠ $d_{15}, d_{16}$ ã¯äºãã«çŽ ã§ã¯ãªãïŒ\\\r\nã$d_{15}d_{16} = n$ ã®æ£ã®çŽæ°ã $30$ åããããšãš $d_{15} \\lt d_{16}$ ããïŒ$(d_{15}, d_{16})$ ã®è¡šãæ¹ãšããŠä»¥äž $3$ ã±ãŒã¹ãèããããïŒ\r\n- çŽ æ° $p$ ã«ãã£ãŠ $(d_{15}, d_{16}) = (p^{14}, p^{15})$ ãšè¡šããããšãïŒ\r\n- $q^2 \\lt p$ ãªãçŽ æ° $p, q$ ã«ãã£ãŠ $(d_{15}, d_{16}) = (p^4 q^2, p^5)$ ãšè¡šããããšãïŒ\r\n- $p^4 \\lt q$ ãªãçŽ æ° $p, q$ ã«ãã£ãŠ $(d_{15}, d_{16}) = (p^4 q^2, q^3)$ ãšè¡šããããšãïŒ\r\n\r\n---\r\n\r\n**Case 1.**ãå¥çŽ æ° $p$ ã«ãã£ãŠ $(d_{15}, d_{16}) = (p^{14}, p^{15})$ ãšè¡šããããšãïŒ\\\r\nã$d_7 = p^6, d_8 = p^7, n = p^{29}$ ã§ããïŒ\r\n$$p^6 \\lt 123 \\lt p^7$$\r\nãã¿ããã°ããïŒ$p = 2$ ã®ãšãã«éããããã¿ããïŒãã£ãŠïŒãã®ã±ãŒã¹ã§ã¯ $n = 2^{29}$ ãé©ããïŒ\r\n\r\n**Case 2.**ã$q^2 \\lt p$ ãªãçŽ æ° $p, q$ ã«ãã£ãŠ $(d_{15}, d_{16}) = (p^4 q^2, p^5)$ ãšè¡šããããšãïŒ\\\r\nã$d_7 = p^2, d_8 = p^2 q, n = p^9 q^2$ ã§ããïŒ\r\n$$q^2 \\lt pïŒp^2 \\lt 123 \\lt p^2 q$$\r\nãã¿ããã°ããïŒ$p^2 \\lt 123$ ã〠$p^4(p - 1) \\geq p^4 q^2 \\gt 123^2$ ãã $p = 11$ ãããããïŒãããã $q = 2, 3$ ãæ¡ä»¶ãã¿ããïŒãã£ãŠïŒãã®ã±ãŒã¹ã§ã¯ $n = 2^2 \\cdot 11^9, 3^2 \\cdot 11^9$ ãé©ããïŒ\r\n\r\n**Case 3.**ã$p^4 \\lt q$ ãªãçŽ æ° $p, q$ ã«ãã£ãŠ $(d_{15}, d_{16}) = (p^4 q^2, q^3)$ ãšè¡šããããšãïŒ\\\r\nã$d_7 = pq, d_8 = p^2 q, n = p^4 q^5$ ã§ããïŒ\r\n$$p^4 \\lt qïŒpq \\lt 123 \\lt p^2 q$$\r\nãã¿ããã°ããïŒ$p^5 \\lt pq \\lt 123$ ãã $p = 2$ ãããããïŒãã£ãŠ\r\n$$30.75 \\lt q \\lt 61.5$$\r\nããïŒ$q = 31, 37, 41, 43, 47, 53, 59, 61$ ãåŸãã®ã§ïŒãã®ã±ãŒã¹ã§ã¯ $n$ ã®å€ãšããŠä»¥äž $8$ ã€ãé©ããïŒ\r\n$$2^4 31^5ïŒ2^4 37^5ïŒ2^4 41^5ïŒ2^4 43^5ïŒ2^4 47^5ïŒ2^4 53^5ïŒ2^4 59^5ïŒ2^4 61^5$$\r\n\r\n---\r\n\r\nã以äžã®è°è«ãã $n$ ã®ãšãåŸãå€ã¯å
šéšã§ $11$ åããããšããããïŒãã®ç·ç© $P$ ã«ã€ããŠïŒããã $2$ ã§å²ãåããæ倧ã®åæ°ã¯ $29 + 2 + 4 \\times 8 = 63$ïŒ$11$ ã§å²ãåããæ倧ã®åæ°ã¯ $9 \\times 2 = 18$ ãªã®ã§\r\n$$P =2^{63} \\cdot 3^2 \\cdot 11^{18} \\cdot 31^5 \\cdot 37^5 \\cdot 41^5 \\cdot 43^5 \\cdot 47^5 \\cdot 53^5 \\cdot 59^5 \\cdot 61^5$$\r\nãšè¡šããïŒããã«ïŒ$P$ ã®æ£ã®çŽæ°ã®åæ°ã¯ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$(63 + 1)(2 + 1)(18 + 1)(5 + 1)^8 = \\mathbf{6127239168}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc204/editorial/8639"
}
] | ãæ£ã®çŽæ°ãã¡ããã© $30$ åãã€æ£æŽæ° $n$ ã«ã€ããŠïŒãã®æ£ã®çŽæ°ã®ãã¡ $k$ çªç®ã«å°ãããã®ã $d_k$ ãšãããšãïŒ
$$\frac{d_1}{d_{16}} = \frac{d_2}{d_{17}} = \cdots = \frac{d_{15}}{d_{30}}, \quad d_7 \lt 123 \lt d_8$$
ããšãã«æãç«ã¡ïŒããã« $d_{16}$ ã¯åææ°ã§ããïŒãã®ãã㪠$n$ ãšããŠãããããã®ã®ç·ç© $P$ ã«ã€ããŠïŒ$P$ ã®æ£ã®çŽæ°ã®åæ°ã解çããŠãã ããïŒ |
OMC204 (for experts) | https://onlinemathcontest.com/contests/omc204 | https://onlinemathcontest.com/contests/omc204/tasks/9456 | E | OMC204(E) | 700 | 24 | 41 | [
{
"content": "ã$A, B, C$ ã® $3$ çš®é¡ã§äœãããé·ã $20$ ã®æååã®éåã $S$ïŒ$0, 1, 2$ ãå€ã«ãšãé·ã $21$ ã®æŽæ°åã®éåã $T$ ãšãïŒ$T$ ã®å
$(a_0, ..., a_{20})$ ã§ãã£ãŠ $a_0 = 0$ ãã¿ãããã®ã®éåã $U$ ãšããïŒãŸãïŒ$S$ ã®å
ã $X = (x_1, ..., x_{20})$ ãšè¡šãããšãïŒ$x_k\\ (1 \\leq k \\leq 20)$ 㯠$X$ ã® $k$ æåç®ãè¡šãïŒãã㧠$S$ ãã $U$ ãžã®é¢æ° $f$ ã次ã®ããã«å®ããïŒä»¥åŸïŒ$\\equiv$ ãçšããåååŒã«ãããæ³ã¯ $3$ ã§ãããšããïŒ\r\n\r\n- $X = (x_1, ..., x_{20}) \\in S$ ã«å¯ŸãïŒ$a_0 = 0$ ãšããŠä»¥äžãã¿ãã $(a_0, a_1, ..., a_{20}) \\in U$ ãäžæçã«å®ããããã®ã§ïŒããã $f(X)$ ãšããïŒãã ãåæ¡ä»¶ã«ããã $k$ 㯠$1 \\leq k \\leq 20$ ãªãæŽæ°ã§ããïŒ\r\n - $x_k = A$ ã®ãšã㯠$a_k \\equiv a_{k - 1} + 1$ïŒ\r\n - $x_k = B$ ã®ãšã㯠$a_k \\equiv a_{k - 1} - 1$ïŒ\r\n - $x_k = C$ ã®ãšã㯠$a_k \\equiv a_{k - 1}$ïŒ\r\n\r\nãããš $f$ ã¯ïŒ$S$ ãã $U$ ãžã®å
šåå°ã§ããããšã確ãããããïŒãŸãïŒæ¬¡ã®è£é¡ãæãç«ã€ïŒ\r\n\r\n---\r\n\r\n**è£é¡ 1.** \\\r\nã$X = (x_1, ..., x_{20}) \\in S$ ãš $1 \\leq i \\leq j \\leq 20$ ãªãæ£æŽæ° $i, j$ ã«ã€ããŠä»¥äž $2$ ã€ã¯åå€ã§ããïŒ\r\n- æåå $X(i, j)$ ã«å«ãŸãã $A, B$ ã®åæ°ã $3$ ã§å²ã£ãäœããçããïŒ\r\n- $f(X) = (a_0, a_1, ..., a_{20})$ ã«å¯Ÿã $a_{i-1} = a_{j}$ ãæãç«ã€ïŒ\r\n\r\n<details><summary>è£é¡ 1. ã®èšŒæ<\\/summary>\r\nã$X(i, j)$ ã«å«ãŸãã $A, B$ ã®åæ°ããããã $\\alpha, \\beta$ ãšãããšïŒ$f$ ã®å®çŸ©ãã\r\n$$a_j \\equiv a_{i - 1} + \\alpha - \\beta$$\r\nãæãç«ã€ïŒç¹ã« $a_{i - 1}, a_{j} \\in \\\\{0, 1, 2\\\\}$ ã§ããããšã«æ³šæããã°ãã®äºå®ãã $\\alpha \\equiv \\beta$ ãš $a_{i - 1} = a_{j}$ ã®åå€æ§ã確ãããããïŒ\r\n<\\/details>\r\n\r\n---\r\n\r\nãã㧠$T$ ã«å±ããå $Y$ ã次ã®æ¡ä»¶ãã¿ãããšãïŒããã**æªãå**ãšåŒã¶ããšã«ããïŒ\r\n- $Y$ ã«å±ãã $0, 1, 2$ ã®åæ°ããããã $C_0, C_1, C_2$ ãšãããšãïŒ$C_0, C_1, C_2$ ã®æ倧å€ã¯ $8$ 以äžã§ããïŒå
·äœçã«ä»¥äž $3$ ã€ã®ã±ãŒã¹ãèããããïŒ\r\n - $C_0 = C_1 = C_2 = 7$ïŒ\r\n - $C_0, C_1, C_2$ ã $6, 7, 8$ ã®äžŠã³æ¿ããšãªã£ãŠããïŒ\r\n - $C_0, C_1, C_2$ ã®ãã¡ $2$ ã€ã $8$ ã§ããïŒæ®ã $1$ ã€ã $5$ ã§ããïŒ\r\n\r\nãããšïŒæ¬¡ã®è£é¡ãåŸãïŒ\r\n\r\n---\r\n\r\n**è£é¡ 2.** \\\r\nã$X \\in S$ ãåé¡ã®æ¡ä»¶ãã¿ããããã®å¿
èŠååæ¡ä»¶ã¯ïŒ$f(X)$ ãæªãåãšãªããªãããšã§ããïŒ\r\n\r\n<details><summary>è£é¡ 2. ã®èšŒæ<\\/summary>\r\n\r\n- å¿
èŠæ§ã®èšŒæïŒ \\\r\nãåé¡ã®æ¡ä»¶ã«é©ãã $(i_1, i_2, ..., i_9)$ ãéžã¶ãšïŒ$f(X) = (a_0, a_1, ..., a_{20})$ ãšãããšãã« $a_{i_1} = a_{i_2} = \\cdots = a_{i_9}$ ã§ããããšãïŒè£é¡ 1. ã«ãã£ãŠç¢ºãããããïŒãã㯠$f(X)$ ã®äžã«åäžã®æ°ã $9$ ã€ä»¥äžå«ãŸããããšãæå³ããã®ã§ïŒ$f(X)$ ã¯æªãåã§ã¯ãªãïŒ\r\n\r\n- ååæ§ã®èšŒæïŒ \\\r\nã$f(X) = (a_0, a_1, ..., a_{20})$ ãæªãåã§ãªããšãããšïŒ\r\n$$0 \\leq i_1 \\lt i_2 \\lt \\cdots \\lt i_9 \\leq 20ïŒa_{i_1} = a_{i_2} = \\cdots = a_{i_9}$$ \r\nããšãã«ã¿ãã $9$ åã®æŽæ°ã®çµ $(i_1, i_2, ..., i_9)$ ãåŸãããšãã§ããïŒè£é¡ 1. ãã $8$ ã€ã®æåå\r\n$$X(i_1 + 1, i_2)ïŒX(i_2 + 1, i_3)ïŒ...ïŒX(i_8 + 1, i_9)$$\r\nã¯ãã¹ãŠïŒããããã«å«ãŸãã $A, B$ ã®åæ°ã® $3$ ã§å²ã£ãäœããäžèŽããïŒããªãã¡ $X$ ã¯åé¡ã®æ¡ä»¶ãã¿ããïŒ\r\n<\\/details>\r\n\r\n---\r\n\r\nãè£é¡ 2. ããïŒ$U$ ã«å«ãŸããæªãåã§ãªãåã®åæ°ãæ±ããã°ããïŒãŸã㯠$T$ ã«å«ãŸããæªãåã®åæ°ãæ±ãããïŒæªãåã®å®çŸ©ã®ãšãã«æãã $3$ éãã®ã±ãŒã¹ã§ããããåæ°ãæ±ãããš\r\n$$\\frac{21!}{7!^3}ïŒ\\frac{21!}{6!7!8!} \\times 6ïŒ\\frac{21!}{5!8!^2} \\times 3$$\r\n\r\nã§ããïŒå
šäœã®åæ°ã¯ãããã®åã«ãã£ãŠæ±ããããïŒãŸãïŒ$Y \\in T$ ãšãïŒ$Y$ ã®åé
ã $0 \\rightarrow 1 \\rightarrow 2 \\rightarrow 0$ ãšåŸªç°ããŠçœ®ãæãããã®ã $Z$ ãšãããšïŒ$Y$ ãæªãåã®ãšãïŒãã€ãã®ãšãã«éã $Z$ ãæªãåãšãªãïŒãããã£ãŠïŒ$U$ ã«å«ãŸããæªãåã®åæ°ã $N$ ãšãããšã\r\n$$3N = \\frac{21!}{7!^3} + \\frac{21!}{6!7!8!} \\times 6 + \\frac{21!}{5!8!^2} \\times 3$$\r\nãæãç«ã€ã®ã§ïŒãããã\r\n$$N = \\frac{2 \\cdot 263 \\cdot 21!}{3 \\cdot 7! 8!^2}$$\r\nãåŸãïŒ$N$ ã¯æããã« $2, 3, 5, 7, 11, 13, 17, 19, 263$ 以å€ã®çŽ æ°ã§å²ãåããªãïŒçŽ æ° $p$ ã«å¯Ÿã $N$ ã $p$ ã§å²ãåãæ倧ã®åæ°ã $v_p$ ãšè¡šããšïŒLegendre ã®å
¬åŒãçšãããªã©ããããšã§\r\n$$v_2 = v_5 = v_{11} = v_{13} = v_{17} = v_{19} = v_{263} = 1ïŒv_3 = 2ïŒv_7 = 0$$\r\nã確ãããããïŒãããã£ãŠ\r\n$$N = 2 \\times 3^2 \\times 5 \\times 11 \\times 13 \\times 17 \\times 19 \\times 263$$\r\nã§ããïŒ$U$ ã«å«ãŸããåã¯å
šéšã§ $3^{20}$ åããã®ã§ïŒæ±ããåæ°ã¯\r\n$$3^{20} - N = \\mathbf{2393490771}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc204/editorial/9456"
}
] | ãé·ã $20$ ã®æåå $X$ 㯠$A, B, C$ ã® $3$ çš®é¡ã®æåãããªããŸãïŒãã ãïŒäžåºŠã䜿ããªãæåã®çš®é¡ããã£ãŠãæ§ããŸããïŒïŒããã§ïŒ$1 \leq i \leq j \leq 20$ ãªãæŽæ° $i, j$ ã«å¯ŸãïŒ$X$ ã® $i$ æåç®ãã $j$ æåç®ãŸã§ãåãåã£ãïŒé·ã $j - i + 1$ ã®ïŒæååã $X(i, j)$ ãšè¡šããŸãïŒãã®ãšãïŒæ¬¡ã®æ¡ä»¶ãã¿ãã $X$ ã¯å
šéšã§ããã€ãããŸããïŒ
- ãã $0 \leq i_1 \lt i_2 \lt \cdots \lt i_9 \leq 20$ ãªã $9$ åã®æŽæ°ã®çµ $(i_1, i_2, \ldots, i_9)$ ãååšããŠïŒ$1 \leq k \leq 8$ ãªãä»»æã®æŽæ° $k$ ã«ã€ããŠïŒæåå $X(i_k + 1, i_{k+1})$ ã«å«ãŸãã $A, B$ ã®åæ°ã®å·®ã $3$ ã®åæ°ãšãªãïŒ
<details><summary>$X(i, j)$ ã®äŸ<\/summary>
ãããšãã°æåå $X$ ã
$$BBCAACBCAABBAACABBAC$$
ãšè¡šããããšãïŒ$X(3, 7), X(10, 15), X(1, 1)$ ã¯ãããã
$$CAACB, \quad ABBAAC, \quad B$$
ã§ãïŒ
<\/details> |
OMC204 (for experts) | https://onlinemathcontest.com/contests/omc204 | https://onlinemathcontest.com/contests/omc204/tasks/7867 | F | OMC204(F) | 700 | 3 | 17 | [
{
"content": "ã$N = 100$ ãšããïŒæ¹çšåŒ $P(x)=0$ ã®ãã¹ãŠã®ïŒéè€ãå«ãïŒè§£ã®éæ°ã解ãšããæ¹çšåŒã¯ïŒ\r\n$$x^{18N+1}+px^{17N+1}-px^{9N+1}-1=0$$\r\nã§ããïŒãã®å·ŠèŸºã $R(x)$ ãšããïŒïŒ$Q(x)=0$ ã®è§£ã¯ $\\alpha, 1\\/\\alpha\\\\;(\\alpha\\neq0)$ ãšè¡šããïŒ$P(x)$ ã $Q(x)$ ã§å²ãåãããªãã°ïŒ$\\alpha$ 㯠$P(x)=0, R(x)=0$ ã®å
±é解ã§ããããïŒæ¬¡ã®åŒãæãç«ã€ïŒ\r\n$$R(\\alpha)-P(\\alpha)=p\\alpha^{N}(\\alpha^{8N+1}-1)(\\alpha^{8N}-1)=0$$\r\n\r\n$(1)$ $p=0$ ã®å Žåã$P(\\alpha)=0$ ããïŒ$\\alpha^{18N+1}=1$ïŒ\r\n- $\\alpha=1\\/\\alpha=1$ ã®ãšãïŒ$Q(x)=(x-1)^2$ ã§ããïŒãã®ãšãïŒåº§æšå¹³é¢ã«ãããŠïŒã°ã©ã $y=P(x)$ ã $x=1$ 㧠$x$ 軞ã«æ¥ããå¿
èŠããããïŒ$P^\\prime(1)\\neq0$ ã§ããäžé©ïŒ\r\n- $\\alpha\\neq1$ ã®ãšãïŒå¯Ÿå¿ãã $Q(x)$ ã¯ïŒè€çŽ æ°ã®çµ\r\n$$\\biggl(\\cos\\dfrac{2k\\pi}{18N+1}+i\\sin\\dfrac{2k\\pi}{18N+1},\\\\;\\cos\\dfrac{2k\\pi}{18N+1}-i\\sin\\dfrac{2k\\pi}{18N+1}\\biggr)\\quad(k=1, 2,\\cdots, 9N)$$\r\nãæ ¹ã«ã〠$9N$ åã§ããïŒãããã® $Q(x)$ ãã¹ãŠã«ã€ã㊠$q$ ã®ç·åã¯ïŒè§£ãšä¿æ°ã®é¢ä¿ããïŒæ¹çšåŒ $x^{18N+1}-1=0$ ã® $1$ 以å€ã®è§£ã®ç·åã« $-1$ ãããããã®ã«çãããã $1$ ã§ããïŒ\r\n\r\n$(2)$ $p\\neq0, \\alpha^{8N+1}\\neq1$ ã®å Žåã\r\n\r\nã$\\alpha^{8N}=1, \\alpha\\neq1$ ã§ãããïŒ$8N$ ãš $18N+1$ ãäºãã«çŽ ããïŒ$P(\\alpha)=\\alpha^{18N+1}-1\\neq0$ ã§ããäžé©ïŒ\r\n\r\n$(3)$ $p\\neq0, \\alpha^{8N+1}=1$ ã®å Žå\r\n- $\\alpha=1\\/\\alpha=1$ ã®ãšãïŒ$Q(x)=(x-1)^2$ ã§ããïŒãã®ãšãïŒ$P(1)=0, P^\\prime(1)=0$ ããã$p=-\\dfrac{18N+1}{8N}$ïŒ\r\n- $\\alpha\\neq1$ ã®ãšãïŒå¯Ÿå¿ãã $Q(x)$ ã¯ïŒè€çŽ æ°ã®çµ\r\n$$\\biggl(\\cos\\dfrac{2k\\pi}{8N+1}+i\\sin\\dfrac{2k\\pi}{8N+1},\\\\;\\cos\\dfrac{2k\\pi}{8N+1}-i\\sin\\dfrac{2k\\pi}{8N+1}\\biggr)\\quad(k=1, 2,\\cdots, 4N)$$\r\nãæ ¹ã«ã〠$4N$ åã§ããïŒãããã® $Q(x)$ ãã¹ãŠã«ã€ã㊠$q$ ã®ç·å㯠$1$ ã§ããïŒãŸãïŒ\r\n$$ p = \\dfrac{\\alpha^{18N+1}-1}{-\\alpha^{9N}+\\alpha^{N}} \r\n= \\dfrac{\\alpha^{2N-1}-1}{\\alpha^{N}-\\alpha^{N-1}} \r\n= \\frac{\\alpha^{2N-2} + \\alpha^{2N-3} + \\cdots + 1}{\\alpha^{N-1}}\r\n= 1 + \\sum_{l = 1}^{N-1} \\left( \\alpha^l + \\alpha^{-l} \\right) $$\r\nã§ããïŒ$\\zeta = \\cos\\dfrac{2\\pi}{8N+1}+i\\sin\\dfrac{2\\pi}{8N+1}$ ãšãããš $\\alpha$ 㯠$\\zeta^k$ $(1 \\leqq k \\leqq 4N)$ ãåãã®ã§ïŒãããå
šãŠã«ã€ããŠã® $p$ ã®ç·åã¯\r\n$$ \\begin{aligned}\r\n\\sum_{k = 1}^{4N} \\left( 1 + \\sum_{l = 1}^{N-1} \\left( \\zeta^{kl} + \\zeta^{-kl} \\right) \\right) \r\n&= 4N + \\sum_{l = 1}^{N-1} \\sum_{k = 1}^{4N} \\left( \\zeta^{kl} + \\zeta^{-kl} \\right) \\\\\\\\\r\n&= 4N + \\sum_{l = 1}^{N-1} \\left( \\frac{\\zeta^l (\\zeta^{4Nl} - 1)}{\\zeta^l - 1} + \\frac{\\zeta^{-l} (\\zeta^{-4Nl} - 1)}{\\zeta^{-l} - 1} \\right) \\\\\\\\\r\n&= 4N + \\sum_{l = 1}^{N-1} \\left( -1 \\right) = 3N + 1\r\n\\end{aligned} $$\r\nãšãªãïŒãã㧠$\\zeta^{(4N+1)l} = \\zeta^{-4Nl}$ ã«æ³šæããïŒ\r\n\r\nã以äžãã $S=\\dfrac{24N^2-10N-1}{8N}$ ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bm{239799}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc204/editorial/7867"
}
] | ãå®æ° $p, q$ ã«å¯ŸããŠïŒ$x$ ã®å€é
åŒ $P(x), Q(x)$ ã
$$P(x)=x^{1801}+px^{900}-px^{100}-1,\quad Q(x)=x^2+qx+1$$
ãšå®ããŸãïŒ$P(x)$ ã $Q(x)$ ã§å²ãåãããããªå®æ°ã®çµ $(p, q)$ ãã¹ãŠã«ã€ããŠã® $p+q$ ã®ç·åã $S$ ãšããŸãïŒ$S$ ã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ããïŒ
<details><summary>å€é
åŒãå²ãåãããšã¯<\/summary>
ãå®æ°ä¿æ°å€é
åŒ $A(x), B(x)$ ã«ã€ããŠïŒ $A(x)$ ã $B(x)$ ã§**å²ãåãã**ãšã¯ïŒããå®æ°ä¿æ°å€é
åŒ $C(x)$ ãååšããŠ
$$A(x) = B(x) C(x)$$
ãæãç«ã€ããšããããŸãïŒ
<\/details> |
OMC203 (for beginners) | https://onlinemathcontest.com/contests/omc203 | https://onlinemathcontest.com/contests/omc203/tasks/4248 | A | OMC203(A) | 100 | 288 | 336 | [
{
"content": "ã$AC=AD = CD$ ããäžè§åœ¢ $ADC$ ã¯æ£äžè§åœ¢ã§ããïŒç¹ $B$ ãçŽç· $AC$ ã«ã€ã㊠$D$ ãšåãåŽã«ãããå察åŽã«ãããã«ãã£ãŠ $\\angle ABC$ 㯠$30^\\circ, 150^\\circ$ ã®äºéãã®å€ãåãããããïŒããããã®å Žåã«ã€ããŠèšç®ããããšã§æ±ããçã㯠$132 \\times 12 = \\bf{1584}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc203/editorial/4248"
}
] | ãããäžè§åœ¢ $ABC$ 㯠$\angle ACB = 18^\circ$ ãæºãããŸãïŒãŸãïŒäžè§åœ¢ $ABC$ ã®å€å¿ã $D$ ãšãããš $AC = AD$ ãæãç«ã¡ãŸãïŒãã®ãšãïŒ$\angle BAC$ ã®å€§ãããšããŠèããããå€ã¯ $2$ ã€ããã®ã§ïŒãããã $a^\circ,b^\circ$ ãšè¡šãããšãã® $ab$ ã®å€ãæ±ããŠãã ããïŒ |
OMC203 (for beginners) | https://onlinemathcontest.com/contests/omc203 | https://onlinemathcontest.com/contests/omc203/tasks/4735 | B | OMC203(B) | 100 | 276 | 301 | [
{
"content": "ããã¹ãŠã®èŸºã®é·ããå¥æ°ã§ããé·æ¹åœ¢ã®é¢ç©ã¯å¥æ°ã§ããããïŒãããã¯ã¡ããã©å¥æ°å䜿ãããïŒéã«ïŒä»»æã® $1$ ä»¥äž $7^2$ 以äžã®å¥æ° $k$ ã«ã€ã㊠$k$ åããã€ããæ¹æ³ãããããååšããããšã確ãããããã®ã§ïŒæ±ããå€ã¯\r\n$$\\sum_{k=1}^{25}(2k-1)=25^2=\\mathbf{625}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc203/editorial/4735"
},
{
"content": "ãä»»æã® $1$ ä»¥äž $7^2$ 以äžã®å¥æ° $k$ ã«ã€ã㊠$k$ åããã€ãããå
·äœçãªæ¹æ³ã§ã. ãšãããã $1 \\leq k \\leq 39$ ãŸã§. å¥æ°Ãå¥æ°ã®é·æ¹åœ¢ã®ã¿ãèµ€ã衚瀺ããŠããŸã. ~~ãã£ãšç°¡åãªæ¹æ³ããããããããŸãã~~. (è¿œèš:1Ã1ã®é·æ¹åœ¢ã®ã¿ã®ç¶æ
ããåããŠ1Ã2ã®é·æ¹åœ¢ãå¢ãããŠããæ¹éã§ã§ãããããã§ã.)\r\nhttps:\\/\\/drive.google.com\\/file\\/d\\/1B3ajSNIAwa7clnCLzjHKDWRPMD--DrcL\\/view?usp=sharing",
"text": "æ§ææ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc203/editorial/4735/402"
}
] | ã $4$ 蟺ã®é·ããå
šãŠå¥æ°ã§ããé·æ¹åœ¢ã**è¯ãé·æ¹åœ¢**ãšåŒã³ãŸãïŒ$7\times 7$ ã®ãã¹ç®ãå蟺ã®é·ããæŽæ°ã®ããã€ãã®ïŒè¯ãé·æ¹åœ¢ãšã¯éããªãïŒé·æ¹åœ¢ã§æ·ãè©°ããŸãïŒäœ¿ãããé·æ¹åœ¢ã®ãã¡è¯ãé·æ¹åœ¢ã®æ°ãšããŠããããå€ã®ç·åãæ±ããŠãã ããïŒãã ãïŒæ£æ¹åœ¢ã¯é·æ¹åœ¢ã®äžçš®ãšèããŸãïŒ
<details> <summary>æ·ãè©°ãã®äŸ<\/summary>
ã以äžã¯æ·ãè©°ãããã®äžäŸã§ãïŒãã®å ŽåïŒè¯ãé·æ¹åœ¢ã¯ã¡ããã© $7$ å䜿ãããŠããã®ã§ïŒ$7$ ã¯æ±ããæ°ã®ã²ãšã€ã§ãïŒ
![figure 1](\/images\/8bK4X1nnAIhwO4w6e0nyt8kZRDwW5mL5IHhQYLIC)
<\/details> |
OMC203 (for beginners) | https://onlinemathcontest.com/contests/omc203 | https://onlinemathcontest.com/contests/omc203/tasks/2973 | C | OMC203(C) | 200 | 295 | 324 | [
{
"content": "ãããæ£æŽæ°ã $9$ ã§å²ã£ãããŸã㯠$10$ é²æ³ã«ããããã®æ°ã®æ¡åã $9$ ã§å²ã£ãããŸãã«çããã®ã§ïŒ$a_n\\equiv 2^1+2^2+\\cdots+2^n=2^{n+1}-2\\pmod 9$ ãæãç«ã€ïŒ$2^a\\equiv 1\\pmod 9$ ãæºããæ£æŽæ° $a$ ã®æå°å€ã $6$ ã§ããããšã«æ³šæããã°ïŒæ¬¡ãæãç«ã€ïŒ\r\n$$a_n=2^{n+1}-2\\equiv 3,6\\pmod 9 ~\\Longleftrightarrow ~ 2^n\\equiv 4,7\\pmod 9 ~\\Longleftrightarrow ~ n\\equiv 2,4\\pmod 6$$\r\nãããã£ãŠæ±ããç·åã¯\r\n$$\\sum_{k=1}^{167} (6k-4+6k-2)=\\textbf{167334}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc203/editorial/2973"
}
] | ãæ£æŽæ° $n$ ã«å¯ŸãïŒ$2^1,2^2,\ldots,2^n$ ãå·Šããé ã«ç¶ããŠäžŠã¹ãŠåŸãããæ°ã $a_n$ ã§è¡šããŸãïŒäŸãã° $a_5=2481632$ ã§ãïŒãã®ãšãïŒ$a_n$ ã $3$ ã§å²ãåããã $9$ ã§å²ãåããªããããªïŒ$1000$ 以äžã® $n$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC203 (for beginners) | https://onlinemathcontest.com/contests/omc203 | https://onlinemathcontest.com/contests/omc203/tasks/5184 | D | OMC203(D) | 200 | 233 | 250 | [
{
"content": "ãåž°çŽçã«ïŒ$i$ åç®ã®æäœã«ãã㊠$A$ ãã $B$ ã«æ°Žã移ããæç¹ã§ïŒ$A$ ã«å
¥ã£ãŠããæ°Žã®éãš $B$ ã«å
¥ã£ãŠããæ°Žã®éãçããããšã確èªã§ããïŒåŸã£ãŠïŒæ±ããçãã¯\r\n$$5184\\times\\frac{1}{2}\\times\\frac{2\\times40}{2\\times40+1}=\\bf2560 .$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc203/editorial/5184"
},
{
"content": "ããåž°çŽçã«ããã®éšåã軜ã瀺ãïŒ\r\n\r\nã $n$ åç®ã®æäœã§ $A$ ãã $B$ ã«ç§»ããããšïŒæ°Žã®éãçããã£ããšããïŒå
šäœã®éã $1$ ãšããã°ïŒ $B$ ãã $A$ ã«ç§»ããããšïŒæ°Žã®éã¯ïŒ $A=\\frac{1}{2}(1+\\frac{1}{2n+1})=\\frac{n+1}{2n+1},B=\\frac{1}{2}(1-\\frac{1}{2n+1})=\\frac{n}{2n+1}$ã§ããïŒãããŠïŒ $n+1$ åç®ã®æäœã§ $A$ ãã $B$ ã«ç§»ããããšïŒæ°Žã®éã¯ïŒ $A=\\frac{n+1}{2n+1}(1-\\frac{1}{2n+2})=\\frac{1}{2},B=\\frac{n}{2n+1}+\\frac{n+1}{2n+1}\\frac{1}{2n+2}=\\frac{1}{2}$ ãšãªãïŒ\r\n\r\nã $1$ åç®ã®æäœã®æã« $A$ ãã $B$ ã«ç§»ããããšïŒ $A=B=\\frac{1}{2}$ ãšãªãïŒ $k$ ã®ãšãã«æãç«ãŠã°ïŒ $k+1$ ã§ãæãç«ã€ã®ã§ïŒãã®ããšããïŒæ¬è§£èª¬ã®çµè«ã«èŸ¿ãçãïŒ",
"text": "æ¬è§£èª¬ã®è£è¶³",
"url": "https://onlinemathcontest.com/contests/omc203/editorial/5184/401"
}
] | ãååå€ãã®éã®æ°Žãå
¥ããããšã®ã§ããå®¹åš $A,B$ ããããŸãïŒã¯ããïŒå®¹åš $A$ ã«ã¯ $5184$ ãªããã«ã®æ°Žãå
¥ã£ãŠããïŒå®¹åš $B$ ã¯ç©ºã§ãïŒãããã«å¯ŸãïŒæ¬¡ã®æäœã $40$ åç¶ããŠè¡ããŸãïŒ
- $i$ åç®ã®æäœã§ã¯ïŒ$A$ ã«å
¥ã£ãŠããæ°Žã® $\dfrac{1}{2i}$ ã $B$ ã«ç§»ããããšïŒ$B$ ã«å
¥ã£ãŠããæ°Žã® $\dfrac {1}{2i+1}$ ã $A$ ã«ç§»ãïŒ
ããã¹ãŠã®æäœãçµäºããããšïŒ$B$ ã«ã¯äœãªããã«ã®æ°Žãå
¥ã£ãŠããŸããïŒ |
OMC203 (for beginners) | https://onlinemathcontest.com/contests/omc203 | https://onlinemathcontest.com/contests/omc203/tasks/4410 | E | OMC203(E) | 300 | 156 | 247 | [
{
"content": "ãäžè¬ã«ç³ã $n$ å䞊ã¹ãæ¹æ³ã $T_n$ éããšããïŒç³ã $n$ å䞊ã¹ãæ¹æ³ã§ãã£ãŠïŒå
é ãããããèµ€ã»éã»é»ã»ç·ã§ãããããªæ¹æ³ã¯ $T_{n-4},T_{n-3},T_{n-2},T_{n-1}$ éãããããïŒ$T_n=T_{n-1}+T_{n-2}+T_{n-3}+T_{n-4}$ ãæç«ããïŒ$T_{1}=4$ , $T_{2}=7$ , $T_{3}=13$ , $T_{4}=25$ ããé ã«èšç®ããã°ïŒ$T_{9}=\\mathbf{673}$ ãåŸãïŒ\r\n\r\n----\r\nè£è¶³ïŒãã㯠$T_0=T_{-1}=T_{-2}=T_{-3}=1$ ãšããŠèšç®ã§ãïŒçµå±ããã©ãããæ°åã«äžèŽããïŒãªãïŒ$T_{n+1}=2T_{n}-T_{n-4}$ ãšå€åœ¢ããŠããèšç®ããæ¹ãæ©ãã ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc203/editorial/4410"
}
] | ãèµ€ã»éã»é»ã»ç·ããããã®ç³ãååãªæ°ããïŒãããã®ç³ããã㊠$9$ åãïŒèµ€ã®å³é£ã¯éïŒéã®å³é£ã¯é»ïŒé»ã®å³é£ã¯ç·ã§ããããã«å·Šå³äžåã«äžŠã¹ãŸãïŒãã ãïŒäžçªå³ã®ç³ãç·ã§ããå¿
èŠã¯ãããŸããïŒãã®ãããªæ¡ä»¶ã§äžŠã¹ãæ¹æ³ã¯äœéããããŸããïŒ |
OMC203 (for beginners) | https://onlinemathcontest.com/contests/omc203 | https://onlinemathcontest.com/contests/omc203/tasks/5491 | F | OMC203(F) | 300 | 78 | 145 | [
{
"content": "ãçŽç· $DE$ äžã« $BC\\parallel AF$ ãªãç¹ $F$ ããšãïŒ$DE$ ã®äžç¹ã $M$ ãšãããšïŒåè§åœ¢ $ABDF$ ã¯å¹³è¡å蟺圢ã«ãªãã®ã§ $AF=BD,\\angle ABC=\\angle AFD$ ã§ããïŒãŸãïŒ$M$ ã¯äžè§åœ¢ $ADE$ ã®å€å¿ãªã®ã§, $$AM=DM=BD=AF$$\r\nã§ãããã $\\angle ADF=x$ ãšãããš\r\n$$\\angle CDF=\\angle ABC = \\angle AFD = \\angle AMF = 2x$$\r\nã§ãã. åŸã£ãŠ\r\n$$23.6^\\circ + 3x = 90^\\circ$$\r\nã§ãããã $\\angle ABC = 2x = \\dfrac{664}{15}^\\circ$ ãåããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{679}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc203/editorial/5491"
}
] | ãäžè§åœ¢ $ABC$ ãšç·å $BC, CA$ äžã«ããããç¹ $D, E$ ãããïŒä»¥äžãæºãããŠããŸãïŒ
$$\angle BCA=23.6^\circ,\quad \angle CAD=90^\circ,\quad DE=2BD,\quad AB\parallel ED$$
ããã®ãšã $\angle ABC$ ã®å€§ããã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšããŠåºŠæ°æ³ã§ $\dfrac{a}{b}$ 床ãšè¡šããã®ã§ $a+b$ ã®å€ã解çããŠãã ããïŒ |
OMC203 (for beginners) | https://onlinemathcontest.com/contests/omc203 | https://onlinemathcontest.com/contests/omc203/tasks/3251 | G | OMC203(G) | 300 | 94 | 172 | [
{
"content": "ãä»»æã®æ£æŽæ° $m,n$ ã«ã€ã㊠$m^n\\equiv m \\pmod2$ ãæãç«ã€ã®ã§ $a,b$ ã®å¶å¥ã¯äžèŽããããšã«æ³šæããïŒä»¥äžïŒåååŒã¯ãã¹ãŠ $8$ ãæ³ãšããŠèããïŒ\r\n***\r\n$(1)$ã$a,b$ ãå¥æ°ã®ãšã\r\n\r\nã$1^2\\equiv 3^2\\equiv 5^2\\equiv 7^2\\equiv 1$ ããïŒ$a^2\\equiv 1$ ãªã®ã§ $a^b\\equiv a^1\\equiv a$ ã§ïŒåæ§ã« $b^a\\equiv b$ ã§ããïŒãã£ãŠïŒ\r\n$$a^b\\equiv b^a\\iff a\\equiv b$$\r\nã$1$ ä»¥äž $100$ 以äžã§ïŒ$8$ ã§å²ã£ãŠ $1,3,5,7$ äœããã®ã¯ãããã $13,13,12,12$ åããïŒãã£ãŠæ±ããçµã®åæ°ã¯\r\n$$2\\times {}\\_{13}\\mathrm{C}\\_{2}+2\\times {}\\_{12}\\mathrm{C}\\_{2}=288.$$\r\n***\r\n$(2)$ã$a,b$ ãå¶æ°ïŒã〠$a\\geq 4$ ã®ãšã\r\n\r\nã$a^b,b^a$ ã¯ãšãã« $2^3$ ã§å²ãåããïŒããªãã¡ $a^b\\equiv b^a\\equiv 0$ ã§ããããïŒæ±ããçµã®åæ°ã¯\r\n$${}\\_{49}\\mathrm{C}\\_{2}=1176.$$\r\n***\r\n$(3)$ã$a,b$ ãå¶æ°ïŒã〠$a=2$ ã®ãšã\r\n\r\nã$b\\gt 3$ ãã $a^b\\equiv 0$ ã§ããïŒäžæ¹ã§, $b^2=b^a\\equiv 0 \\iff 4\\mid b$ ããïŒæ±ããåæ°ã¯ $25$ ãšãããïŒ\r\n***\r\nã以äžããïŒå
šäœã§æ±ããåæ°ã¯ $288+1176+25={\\bf 1489}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc203/editorial/3251"
}
] | ã$a^b\equiv b^a\pmod 8$ ã〠$1\leq a\lt b\leq 100$ ãæºããæŽæ°ã®çµ $(a,b)$ ã¯ããã€ãããŸããïŒ |
OMC203 (for beginners) | https://onlinemathcontest.com/contests/omc203 | https://onlinemathcontest.com/contests/omc203/tasks/8819 | H | OMC203(H) | 300 | 67 | 101 | [
{
"content": "ããŸãã¯ä»¥äžã®çåŒãã¿ããæ£æŽæ° $m$ ãããªãéå $S$ ãæ±ãããïŒ\r\n$$\\sqrt{\\lfloor \\sqrt{10m} \\rfloor + \\frac{1110}{\\lfloor \\sqrt{10m} \\rfloor}} = 11$$\r\nãããåŒå€åœ¢ãããš\r\n$$\\lfloor \\sqrt{10m} \\rfloor^2 - 121\\lfloor \\sqrt{10m} \\rfloor + 1110 = 0$$\r\nã§ããïŒããã $\\lfloor \\sqrt{10m} \\rfloor$ ã«ã€ããŠè§£ããš $\\lfloor \\sqrt{10m} \\rfloor = 10, 111$ ãåŸãããïŒããªãã¡ïŒã¿ããã¹ãæ¡ä»¶ã¯ä»¥äžã®ã©ã¡ããã§ããïŒ\r\n- $10^2 \\leq 10m \\lt 11^2$\r\n- $111^2 \\leq 10m \\lt 112^2$\r\n\r\nãã£ãŠ $S$ ã¯ä»¥äžã®ããã«è¡šãããïŒ\r\n$$S = \\\\{10, 11, 12, 1233, 1234, \\ldots, 1254\\\\}$$\r\n\r\nãããã§æ£æŽæ° $n$ ã«å¯ŸãïŒæ¬¡ã®æ¡ä»¶ãã¿ããæ£æŽæ° $m$ ã**è¯ãæ°**ãšåŒã¶ïŒ\r\n- $m$ ãš $m + n$ ã¯ã©ã¡ãã $S$ ã®å
ã§ããïŒ\r\n\r\nãè¯ãæ°ãã¡ããã© $1$ ã€ãšãªããã㪠$n$ ã調ã¹ãã°ããïŒ$n \\leq 20$ ã®ãšãã¯å°ãªããšã $1233, 1234$ ãè¯ãæ°ãšãªãã®ã§æ¡ä»¶ãã¿ãããªããïŒ$n = 21$ ã®ãšãã¯è¯ãæ°ã $1233$ ã®ã¿ãšãªãã®ã§æ¡ä»¶ãã¿ããïŒ\\\r\nãä»¥åŸ $n \\geq 22$ ãšããïŒãã®ãšãè¯ãæ°ãšãªãåŸãã®ã¯ $10, 11, 12$ ã®ããããã§ããïŒè¯ãæ°ãååšããããã«ã¯ $1221 \\leq n \\leq 1244$ ãå¿
èŠã§ããïŒ$1222 \\leq n \\leq 1242$ ã®ãšãã¯å°ãªããšã $11, 12$ ãè¯ãæ°ãšãªãïŒ$n = 1243$ ã®ãšã㯠$10, 11$ ãè¯ãæ°ãšãªãïŒããªãã¡ $1222 \\leq n \\leq 1243$ ã®ãšãã¯æ¡ä»¶ãã¿ãããªãïŒäžæ¹ã§ $n = 1221$ ã®ãšãã¯è¯ãæ°ã $12$ ã®ã¿ãšãªãïŒ$n = 1244$ ã®ãšãã¯è¯ãæ°ã $10$ ã®ã¿ãšãªãã®ã§ïŒãã® $2$ æ°ã¯æ¡ä»¶ãã¿ããïŒ\\\r\nã以äžã®ããšããæ¡ä»¶ãã¿ãã $n$ 㯠$21, 1221, 1244$ ã® $3$ ã€ãªã®ã§ïŒè§£çãã¹ãå€ã¯ $\\mathbf{2486}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc203/editorial/8819"
}
] | ãæ£æŽæ° $n$ ãå®ãããšããïŒæ¬¡ã®çåŒãã¿ããæ£æŽæ° $m$ ãã¡ããã© $1$ ã€ååšããŸããïŒ
$$\sqrt{\lfloor \sqrt{10m} \rfloor + \frac{1110}{\lfloor \sqrt{10m} \rfloor}} = \sqrt{\lfloor \sqrt{10(m + n)} \rfloor + \frac{1110}{\lfloor \sqrt{10(m+n)} \rfloor}} = 11$$
ãã®ãã㪠$n$ ã®å€ãšããŠãããããã®ã®**ç·å**ã解çããŠäžããïŒ |
OMC202 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc202 | https://onlinemathcontest.com/contests/omc202/tasks/7326 | A | OMC202(A) | 100 | 350 | 370 | [
{
"content": "ã$8$ æ¡ã®äžã« $1110$ ãé
眮ããæ¹æ³ã¯ $5$ éãããïŒå
é ã® $4$ æ¡ã«é
眮ããå Žå $10000$ éãã®æŽæ°ãåŸããïŒãã以å€ã«é
眮ããå Žåã¯ãããã $9000$ éããã€æŽæ°ãåŸãããïŒ$11101110$ ã $2$ åéè€ããŠæ°ããããããšã«æ³šæããã°ïŒæ¡ä»¶ãã¿ããæŽæ°ã®åæ°ã¯ä»¥äžã®ããã«æ±ããããïŒ\r\n$$10000 + 9000 \\times 4 - 1 = \\mathbf{45999}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc202/editorial/7326"
}
] | ã$19881110$ ãªã©ã®ããã«ïŒåé²æ³è¡šèšã§ã$1110$ããšããé£ç¶ãã $4$ æ¡ã®äžŠã³ãå«ããã㪠$8$ æ¡ã®ïŒ$10^7$ ä»¥äž $10^8$ æªæºã®ïŒæŽæ°ã¯å
šéšã§ããã€ãããŸããïŒ |
OMC202 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc202 | https://onlinemathcontest.com/contests/omc202/tasks/7355 | B | OMC202(B) | 300 | 323 | 343 | [
{
"content": "ã次ã®ãããªå®é¢æ° $f(x)$ ãèããïŒ\r\n$$f(x) = x^2 + \\frac{11}{10} x = \\left ( x + \\frac{11}{20} \\right )^2 - \\frac{121}{400}$$\r\nãã®é¢æ°ã¯å®æ°å
šäœã§ã¯ $x = - \\dfrac{11}{20}$ ã®ãšãã«æå°ãšãªããïŒæŽæ°å
šäœã«éããš$x = -1$ ã®ãšãã«æå°ãšãªãïŒããã«\r\n$$f \\left ( - \\frac{11}{20} \\right ) = - \\frac{121}{400} \\lt - \\frac{N}{1110} \\lt - \\frac{1}{10} = f(-1)$$\r\nãšãªãã°ããïŒã€ãŸã\r\n$$111 \\lt N \\lt \\frac{13431}{40} = 335.775$$\r\nã®ç¯å²ã«ãã $N$ ãæ¡ä»¶ãã¿ããïŒãã®ç¯å²ã«ãã $N$ 㯠$112, 113, ..., 335$ ã® $\\mathbf{224}$ åã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc202/editorial/7355"
}
] | ã次㮠$2$ ã€ã®æ¡ä»¶ããšãã«ã¿ãããããªæŽæ° $N$ ã¯å
šéšã§ããã€ãããŸããïŒ
- ãã**å®æ°** $x$ ãååšããŠïŒä»¥äžãæãç«ã€ïŒ
$$x^2 + \frac{11}{10} x + \frac{N}{1110} \lt 0.$$
- ãã¹ãŠã®**æŽæ°** $n$ ã«ã€ããŠïŒä»¥äžãæãç«ã€ïŒ
$$n^2 + \frac{11}{10} n + \frac{N}{1110} \gt 0.$$ |
OMC202 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc202 | https://onlinemathcontest.com/contests/omc202/tasks/7352 | C | OMC202(C) | 300 | 194 | 241 | [
{
"content": "ã$\\varphi$ 㯠Eulerã®Totienté¢æ°ã§ããïŒäžè¬ã« $2$ 以äžã®æŽæ° $M$ ãïŒçžç°ãªã $m$ åã®çŽ æ° $p_1, ..., p_m$ ãš $m$ åã®æ£æŽæ° $r_1, ..., r_m$ ã«ãã£ãŠ $M = p_1^{r_1} \\times \\cdots \\times p_m^{r_m}$ ãšè¡šããããšã\r\n$$\\varphi (M) = \\prod_{i = 1}^m (p_i - 1) p_i^{r_i-1}$$\r\nãæãç«ã€ïŒ\\\r\nã$1110$ ã®çŽ å æ°å解㯠$1110 = 2 \\times 3 \\times 5 \\times 37$ ãªã®ã§ïŒäžèšã®æ§è³ªãã $N$ 㯠$2, 3, 5, 37$ 以å€ã®çŽ æ°ã§å²ãåããŠã¯ãªããïŒããã«\r\n$$2 - 1 = 1ïŒ3 - 1 = 2ïŒ5 - 1 = 2^2ïŒ37 - 1 = 2^2 \\times 3^2$$\r\nãã $N$ 㯠$5, 37$ ã®äž¡æ¹ãçŽ å æ°ã«ãããªããã°ãªããªãïŒããã§éè² æŽæ° $a, b$ ãšæ£æŽæ° $c, d$ ãçšããŠ\r\n$$N = 2^a \\times 3^b \\times 5^c \\times 37 ^d$$\r\nãšè¡šãããšã«ããïŒæ¡ä»¶ãæºããã«ã¯ïŒ$\\varphi (N^2)$ ã®çŽ å æ°å解ã«ããã $2, 3, 5, 37$ ã®ã¹ãããã¹ãŠäžèŽããã°ããïŒ\r\n\r\n---\r\n\r\n**Case 1.**ã$b = 0$ ã®ãšãïŒ\r\n- $a = 0$ ãªãã°ïŒ$\\varphi (N^2) = 2^4 \\times 3^2 \\times 5^{2c-1} \\times 37^{2d-1}$\r\n- $a \\gt 0$ ãªãã°ïŒ$\\varphi (N^2) = 2^{2a + 3} \\times 3^2 \\times 5^{2c-1} \\times 37^{2d-1}$\r\n\r\nãæãç«ã€ãïŒãããã«ããå³èŸºã® $2, 3$ ã®ã¹ããäžèŽããïŒãã®ã±ãŒã¹ã¯äžé©ã§ããïŒ\r\n\r\n**Case 2.**ã$b \\gt 0$ ã®ãšãïŒ\r\n- $a = 0$ ãªãã°ïŒ$\\varphi (N^2) = 2^5 \\times 3^{2b + 1} \\times 5^{2c-1} \\times 37^{2d-1}$\r\n- $a \\gt 0$ ãªãã°ïŒ$\\varphi (N^2) = 2^{2a + 4} \\times 3^{2b + 1} \\times 5^{2c-1} \\times 37^{2d-1}$\r\n\r\nãæãç«ã€ïŒå³èŸºã® $2, 3, 5, 37$ ã®ã¹ãããã¹ãŠäžèŽããã®ã¯ $(a, b, c, d) = (0, 2, 3, 3)$ ã®ãšãã«éãããïŒã¹ãã®å¶å¥ã«æ³šæããïŒïŒ\r\n\r\n---\r\n\r\nã以äžããïŒæ¡ä»¶ãã¿ãã $N$ ã¯\r\n$$N = 3^2 \\times 5^3 \\times 37^3 = \\mathbf{56984625}$$\r\nã®ã¿ã§ããïŒããã解çãã¹ãå€ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc202/editorial/7352"
}
] | ãæ£æŽæ° $n$ ã«ã€ããŠïŒ$1$ ä»¥äž $n$ 以äžã®æŽæ°ã®ãã¡ $n$ ãšäºãã«çŽ ã§ãããã®ã®åæ°ã $\varphi (n)$ ãšè¡šããŸãïŒæ¬¡ã®æ¡ä»¶ãã¿ããæ£æŽæ° $N$ ã®ç·åã解çããŠäžããïŒ
- $\varphi (N^2) = 1110^k$ ãã¿ãããããªæ£æŽæ° $k$ ãååšããïŒ |
OMC202 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc202 | https://onlinemathcontest.com/contests/omc202/tasks/7325 | D | OMC202(D) | 400 | 127 | 174 | [
{
"content": "ãçŽç· $BC$ äžã«ïŒ$AR = 10$ ãã€ç¹ $C$ ãšç°ãªãç¹ $R$ ããšããšïŒ$AR \\lt AB$ ããç¹ $R$ ã¯ç·å $PB$ äžã«ããããšããããïŒãã®ãšã $\\angle PAC = \\angle PAR\\lt\\dfrac12\\angle BAC$ ã§ããã®ã§ïŒæ¡ä»¶ $\\angle BAC = 2 \\angle PAQ$ ãã $4$ ç¹ $B, Q, R, P$ ã¯ãã®é ã«äžçŽç·ã«äžŠã³ïŒããã«ã¯ $\\angle BAQ = \\angle RAQ$ ãæãç«ã€ïŒãã£ãŠ\r\n$$BQ : QR = AB : AR = 11 : 10$$\r\nã§ããïŒããã« $PQ : QB = 11 : 10$ïŒ$PC = PR$ ãåãããããšã§\r\n$$BQ : QR : RP : PC = 110 : 100 : 21 : 21$$\r\nãåŸãããïŒãã㧠$BC = 252x$ ãšãããšïŒ$2$ ã€ã®çŽè§äžè§åœ¢ $APB, APC$ ã«ãããŠäžå¹³æ¹ã®å®çãã\r\n$$AP^2 = 11^2 - (231x)^2 = 10^2 - (21x)^2$$\r\nããããã®ã§ïŒããã解ãããšã§\r\n$$x = \\sqrt{\\frac{1}{2520}}$$\r\nãåŸãããïŒãã£ãŠ\r\n$$BC = \\sqrt{\\frac{126}{5}}$$\r\nã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{131}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc202/editorial/7325"
}
] | ãäžè§åœ¢ $ABC$ 㯠$AB = 11,AC = 10$ ãã¿ãããŠããŸãïŒèŸº $BC$ äžã«ïŒ$4$ ç¹ $B,Q,P,C$ ããã®é ã«äžŠã¶ãã $2$ ç¹ $P, Q$ ããšã£ããšããïŒä»¥äžãæãç«ã¡ãŸããïŒ
$$\angle APB = 90^{\circ},\quad \angle BAC = 2 \angle PAQ,\quad PQ : QB = 11 : 10.$$
ãã®ãšã蟺 $BC$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $p, q$ ã«ãã£ãŠ $\sqrt{\dfrac{p}{q}}$ ãšè¡šããã®ã§ïŒ $p + q$ ã®å€ã解çããŠãã ããïŒ |
OMC202 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc202 | https://onlinemathcontest.com/contests/omc202/tasks/7901 | E | OMC202(E) | 500 | 78 | 129 | [
{
"content": "ã$A, B, C, D$ ã¯\r\n$$A + B + C + D = 1110 \\tag{1}$$\r\n$$10(AD + BC) = 11CD \\tag{2}$$\r\nãæºãããŠããïŒåŒ $(2)$ ã«ãããŠå·ŠèŸºã $10$ ã®åæ°ã§ããïŒã〠$C, D$ ãã©ã¡ãã $10$ ã§å²ãåããªãããšããïŒ$C, D$ ã®ãã¡äžæ¹ã¯ $5$ ã§å²ãåããªã $2$ ã®åæ°ã§ããïŒããäžæ¹ã¯ $2$ ã§å²ãåããªã $5$ ã®åæ°ã§ããããšãåããïŒ\\\r\nããŸã㯠$C$ ã $5$ ã§å²ãåããªã $2$ ã®åæ°ã§ãããšä»®å®ãããïŒãããš $C = 2X, D = 5Y$ ãªãæ£æŽæ° $X, Y$ ã§ãã£ãŠ\r\n- $A$ ãš $X$ ã¯äºãã«çŽ ã§ããïŒ\r\n- $B$ ãš $Y$ ã¯äºãã«çŽ ã§ããïŒ\r\n- $X$ 㯠$5$ ã§å²ãåããªãïŒ\r\n- $Y$ 㯠$2$ ã§å²ãåããªãïŒ\r\n\r\nããã¹ãŠæºãããã®ããšããïŒãããšåŒ $(2)$ ãã\r\n$$5AY + 2BX = 11XY \\tag{3}$$\r\nãåŸããïŒãã®åŒãã\r\n$$X \\mid 5AYïŒY \\mid 2BX$$\r\nãåŸãïŒãããã¯å
ã»ã©ã®æ¡ä»¶ãããããã\r\n$$X \\mid YïŒY \\mid X$$\r\nãšåå€ã§ããããšãåããïŒ$X = Y$ ãåŸãïŒãã£ãŠ $X$ 㯠$2$ ã§å²ãåããªãïŒïŒãããšïŒåŒ $(1), (3)$ ãã\r\n$$A + B + 7X = 1110ïŒ5A + 2B = 11X$$\r\nãåŸããïŒããããé£ç«ãã $B$ ãæ¶å»ãããš\r\n$$25X - 3A = 2220$$\r\nãåŸãããïŒãã®äžå®æ¹çšåŒã®è§£ã¯æŽæ° $k$ ã«ãã£ãŠ $A = 25k - 15$ïŒ$X = 3k + 87$ ãšè¡šãããšãã§ãïŒããã« $B = 516 - 46k$ ãšè¡šããïŒ$A, B, X \\gt 0$ ãã $1 \\leq k \\leq 11$ ãåããïŒããã« $X$ ã $2, 5$ ã®ãããã§ãå²ãåããªãããšãã $k = 2, 4, 8, 10$ ã«çµãããïŒããããã® $k$ ã«å¯Ÿãã $(A, B, X)$ ã¯\r\n$$(35, 424, 93)ïŒ(85, 332, 99)ïŒ(185, 148, 111)ïŒ(235, 56, 117)$$\r\nã§ããïŒãã®ãã¡ $(185, 148, 111)$ ã®ã¿ $B$ ãš $X$ ãäºãã«çŽ ãšãªããªãããäžé©ã§ãããïŒæ®ã $3$ çµã«ã€ããŠã¯é©ãã $(A, B, C, D)$ ãåŸãããšãã§ãïŒ$C$ ã®ãšãåŸãå€ãšã㊠$2 \\times 93, 2 \\times 99, 2 \\times 117$ ã® $3$ ã€ãåŸãããïŒ\\\r\nã $C$ ã $2$ ã§å²ãåããªã $5$ ã®åæ°ã§ãããšä»®å®ããå Žå㯠$A$ ãš $B$ïŒ $C$ ãš $D$ ãããããå
¥ãæ¿ããŠå
ã»ã©ãšåæ§ã«è°è«ããããšãã§ããã®ã§ïŒ$C$ ã®ãšãåŸãå€ãšã㊠$5 \\times 93, 5 \\times 99, 5 \\times 117$ ã® $3$ ã€ãåŸãããïŒ\\\r\nã以äžããïŒæ±ããç·å㯠$(2 + 5)(93 + 99 + 117) = \\mathbf{2163}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc202/editorial/7901"
}
] | ãæ£æŽæ° $A, B, C, D$ ã $2$ ã€ã®çåŒ
$$ A + B + C + D = 1110, \quad \frac{A}{C} + \frac{B}{D} = \frac{11}{10}$$
ããšãã«ã¿ããïŒããã«ä»¥äžã®æ¡ä»¶ããã¹ãŠã¿ãããŸããïŒ
- $A$ ãš $C$ ã¯äºãã«çŽ ã§ããïŒ
- $B$ ãš $D$ ã¯äºãã«çŽ ã§ããïŒ
- $C$ 㯠$10$ ã§å²ãåããªãïŒ
- $D$ 㯠$10$ ã§å²ãåããªãïŒ
ãã®ãšãïŒ$C$ ã®ãšãããå€ã®ç·åã解çããŠãã ããïŒ |
OMC202 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc202 | https://onlinemathcontest.com/contests/omc202/tasks/7830 | F | OMC202(F) | 500 | 38 | 58 | [
{
"content": "ãæ£æŽæ° $m$ ãš $2$ 以äžã®æŽæ° $n$ ãçšã㊠$x = m + \\dfrac{1}{n}$ ãšè¡šãããå®æ° $x$ ã«ã€ããŠïŒ$\\lfloor x \\rfloor = m$ïŒ$\\lceil x \\rceil = m + 1$ ã§ããããšãã \r\n$$f(x) = m + \\frac{1}{2n}ïŒg(x) = m + 1 + \\frac{1}{n - 1}$$\r\nãæãç«ã€ïŒãã㧠$xy$ å¹³é¢ã«ãããæ Œåç¹ããæ Œåç¹ãžã®é¢æ° $F, G$ ã\r\n$$F((m, n)) = (m, 2n)ïŒG((m, n)) = (m + 1, n - 1)$$\r\nãšå®ããïŒæ£æŽæ° $m, n$ ã«å¯Ÿãã $x = m + \\dfrac{1}{n}$ ãæ Œåç¹ $(m, n)$ ãšå¯Ÿå¿ä»ãïŒ$f, g$ ã®é©çšãããããæ Œåç¹ã«å¯Ÿãã $F, G$ ã®é©çšãšèŠãªããïŒ$\\dfrac{11}{10} = 1 + \\dfrac{1}{10}, 1110 = 1109 + \\dfrac{1}{1}$ ã¯ãããã $(1, 10), (1109, 1)$ ãšå¯Ÿå¿ä»ããããã®ã§ïŒæ¬¡ã®ãããªããšãèµ·ããåŸã $N$ ã«ã€ããŠèããã°ããïŒ\r\n- $xy$ å¹³é¢äžã®ç¹ $P$ ã¯æå $(1, 10)$ ã«ãããšããïŒ$P$ ã $F(P)$ ã $G(P)$ ã®ã©ã¡ããã«ç§»ãæäœãç¹°ãè¿ãããšãïŒ$N$ åç®ã®æäœãçµããæç¹ã§ $P$ ã® $y$ 座æšãåã㊠$1$ ãšãªãïŒãã€ãã®ãšãã® $P$ ã®åº§æšã¯ $(1109, 1)$ ã§ããïŒ\r\n\r\nã$(1, 10)$ ã $(1109, 1)$ ã«ç§»ããŸã§ã«å¿
èŠãª $G$ ã®é©çšåæ°ã¯ $1108$ åãšæ±ºãŸãã®ã§ïŒ$F$ ãé©çšããåæ°ã $M$ ãšããŠïŒ$M$ ã®ãšãåŸãæ倧å€ã»æå°å€ãæ±ãããïŒ$G$ ã§æ Œåç¹ã移ãããšãïŒ$x, y$ 座æšã®åã¯äžå€ã§ãã $y$ 座æšã¯ç§»ãåãããå°ãããªãããšã«æ³šæããã°\r\n$$1 + 10 \\times 2^M \\geq 1110$$\r\nãåŸãããïŒããªãã¡ïŒ$F$ ã«ãã $x, y$ 座æšã®åããªãã¹ã倧ããããããã°ïŒ$y$ 座æšãæ倧ã®ãšãã« $F$ ãé©çšããã®ãæåã§ãããšèããïŒïŒãŸãïŒ$y$ 座æšã $2$ 以äžã®ç¯å²ã«ããéã㯠$F$ ã«ãã $x, y$ 座æšã®åãå°ãªããšã $2$ ã¯å¢å ããã®ã§ïŒãããã\r\n$$11 + 2M \\leq 1110$$\r\nãåŸãïŒãã£ãŠïŒ$7 \\leq M \\leq 549$ ãåŸãããïŒ\\\r\nãäžæ¹ã§ïŒ$F, G$ ã®é©çšæé ã§ãã£ãŠ $M = 7$ ãªããã®ïŒããã³ $M = 549$ ãªããã®ã®ååšã瀺ãããšãã§ããïŒä»¥äžããïŒ$N = 1108 + M$ ã®ãšãåŸãæ倧å€ã»æå°å€ã¯ãããã $1115, 1657$ ã§ããã®ã§ïŒç¹ã«è§£çãã¹ãå€ã¯ $1115 \\times 1657 = \\mathbf{1847555}$ ã§ããïŒ\r\n\r\n<details><summary> $M = 7$ ãªãé©çšæé ã®äŸ <\\/summary>\r\nã以äžã®æé ã§é©çšããã°ããïŒ\r\n\r\n**æé 1.**ã$F$ ã $6$ åé©çšãïŒ$(1, 10) \\rightarrow (1, 640)$ ãšããïŒ\\\r\n**æé 2.**ã$G$ ã $171$ åé©çšãïŒ$(1, 640) \\rightarrow (172, 469)$ ãšããïŒ\\\r\n**æé 3.**ã$F$ ã $1$ åé©çšãïŒ$(172, 469) \\rightarrow (172, 938)$ ãšããïŒ\\\r\n**æé 4.**ã$G$ ã $937$ åé©çšãïŒ$(172, 938) \\rightarrow (1109, 1)$ ãšããïŒ\r\n<\\/details>\r\n\r\n<details><summary> $M = 549$ ãªãé©çšæé ã®äŸ <\\/summary>\r\nã以äžã®æé ã§é©çšããã°ããïŒ\r\n\r\n**æé 1.**ã$G$ ã $7$ åé©çšãïŒ$(1, 10) \\rightarrow (8, 3)$ ãšããïŒ\\\r\n**æé 2.**ã$F$ ã $1$ åé©çšãïŒ$(8, 3) \\rightarrow (8, 6)$ ãšããïŒ\\\r\n**æé 3.**ã$G$ ã $4$ åé©çšãïŒ$(8, 6) \\rightarrow (12, 2)$ ãšããïŒ\\\r\n**æé 4.**ãã$F$ ã $1$ åïŒ$G$ ã $2$ åãã®é ã§é©çšããæäœã $548$ åç¹°ãè¿ãïŒ$(12, 2) \\rightarrow (1108, 2)$ ãšããïŒ\\\r\n**æé 5.**ã$G$ ã $1$ åé©çšãïŒ$(1108, 2) \\rightarrow (1109, 1)$ ãšããïŒ\r\n\r\n<\\/details>",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc202/editorial/7830"
}
] | ãå®æ° $x$ ã«å¯ŸãïŒ$x$ 以äžã§æ倧ã®æŽæ°ã $\lfloor x \rfloor$ïŒ$x$ 以äžã§æå°ã®æŽæ°ã $\lceil x \rceil$ ãšè¡šããŸãïŒãŸãïŒé¢æ° $f\colon \mathbb{R}\to\mathbb{R}$ ãšïŒ$g\colon \mathbb{R}\setminus\mathbb{Z}\to\mathbb{R}$ ãïŒãããã以äžã®ããã«å®çŸ©ããŸãïŒ
$$f(x) = \frac{x + \lfloor x \rfloor}{2}, \quad g(x) = \lfloor x \rfloor + \frac{1}{\lceil x \rceil - x}$$
ããã§æ£æŽæ° $N$ ãå®ãããšããïŒé·ã $N + 1$ ã®å®æ°å $(a_0, a_1, \ldots, a_N)$ ã§ãã£ãŠïŒä»¥äž $3$ æ¡ä»¶ããã¹ãŠã¿ãããã®ãååšããŸããïŒ
- $a_0 = \dfrac{11}{10}$ ã〠$a_N = 1110$ ã§ããïŒ
- $a_1, \ldots, a_{N-1}$ ã¯ïŒããããæŽæ°ã§ãªãïŒ
- ä»»æã® $1$ ä»¥äž $N$ 以äžã®æŽæ° $n$ ã«ã€ããŠïŒ$a_n = f(a_{n - 1})$ ãŸã㯠$a_n = g(a_{n - 1})$ ãæãç«ã€ïŒ
ãã®ãã㪠$N$ ã®ãšãããæ倧å€ãšæå°å€ã®ç©ã解çããŠãã ããïŒ |
OMC201 (for beginners) | https://onlinemathcontest.com/contests/omc201 | https://onlinemathcontest.com/contests/omc201/tasks/7035 | A | OMC201(A) | 100 | 378 | 386 | [
{
"content": "ã$0 \\leq \\\\{x \\\\} \\lt 1$ ã§ããïŒ$\\lfloor x \\rfloor$ ãæŽæ°ã§ããããšããïŒ$\\lfloor x \\rfloor=68, ~ \\\\{ x \\\\}=\\dfrac{2}{3}$ ã§ããïŒãã£ãŠ $x=\\lfloor x \\rfloor+\\\\{ x\\\\}=\\dfrac{206}{3}$ ãšäžæã«å®ãŸãïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{209}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc201/editorial/7035"
}
] | ãæ£ã®å®æ° $x$ ã«ã€ããŠïŒ$\lfloor x \rfloor$ 㧠$x$ ã®æŽæ°éšåïŒ $\\{ x \\}$ 㧠$x$ ã®å°æ°éšåãè¡šããã®ãšããŸãïŒãã ãïŒ$x$ ãæŽæ°ã®ãšã $\lfloor x \rfloor=x,~ \\{ x \\}=0$ ãšããŸãïŒïŒãã®ãšãïŒ
$$\lfloor x \rfloor - \\{ x \\}=\frac{202}{3}$$
ãã¿ããæ£ã®å®æ° $x$ ã®ç·åãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯ïŒäºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC201 (for beginners) | https://onlinemathcontest.com/contests/omc201 | https://onlinemathcontest.com/contests/omc201/tasks/4618 | B | OMC201(B) | 100 | 249 | 340 | [
{
"content": "ãå·Šãã $4$ ãã¹ã®å€ãä»»æã«å®ããã°ïŒãã以éã®å€ãäžæã«é 次å®ãŸãããïŒæ±ããå Žåã®æ°ã¯ $5^4=\\mathbf{625}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc201/editorial/4618"
}
] | ãå·Šå³äžåã«äžŠãã $20$ åã®ãã¹ãããïŒããããã®ãã¹ã« $1,2,3,4,5$ ã®ãã¡äžã€ãéžãã§æžã蟌ã¿ãŸãïŒãã®ãšãïŒä»¥äžã®æ¡ä»¶ãæºãããããªæžã蟌ã¿æ¹ã¯äœéããããŸããïŒããã ãïŒæžã蟌ãŸããªãæ°ããã£ãŠãããïŒå·Šå³å転ã§äžèŽãããã®ãåºå¥ããŸãïŒ
- é£ç¶ãã $5$ ã€ã®ãã¹ã«æžã蟌ãŸããæ°ã®åã¯ïŒã€ãã« $5$ ã®åæ°ã§ããïŒ |
OMC201 (for beginners) | https://onlinemathcontest.com/contests/omc201 | https://onlinemathcontest.com/contests/omc201/tasks/4097 | C | OMC201(C) | 100 | 345 | 385 | [
{
"content": "ç«æ¹äœ $A$ ã®äžèŸºã¯ç«æ¹äœ $C$ ã®å¯Ÿè§ç·ã®é·ããšçãããã, $C$ ã®äžèŸºã®é·ãã $1$ ãšããã° $A$ ã®äžèŸºã®é·ã㯠$\\sqrt3$ ã§ãã. ãã£ãŠ, $x = (\\sqrt3)^3=3\\sqrt3$ ãåŸã. ç¹ã«æ±ããçã㯠$\\bf{27}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc201/editorial/4097"
},
{
"content": "ããç«æ¹äœ $A$ ã®äžèŸºã¯ç«æ¹äœ $C$ ã®å¯Ÿè§ç·ã®é·ããšçãããã¯ãªãèšããã®ã§ããããïŒ\\\r\nããã³ãïŒ $A, B, C$ ã§é·ãã移ããŠããã€ã¡ãŒãžã§ãïŒ\r\nã<details> <summary> 説æïŒã¿ããã§éãïŒ <\\/summary>\r\nãå³ãæããªã©ããŠïŒ$A$ ã®äžèŸºã¯ç $B$ ã®çŽåŸã«çããããšãåãããŸãïŒ\r\n\r\nããŸã $C$ ã®é ç¹ã¯ãã¹ãŠç $B$ ã®è¡šé¢ã«ããïŒããé ç¹ãš $C$ ã«ãããŠã¡ããã©å察åŽã®é ç¹(â»)ã¯ïŒçé¢äžã§ãã¡ããã©å察åŽã«ãããŸãïŒããã $2$ ã€ã®é ç¹ã®è·é¢ã¯ïŒ$C$ ã§èŠãã° $C$ ã®å¯Ÿè§ç·ã®é·ãã§ããïŒ$B$ ã§èŠãã° $B$ ã®çŽåŸã®é·ãã§ãïŒãã£ãŠããããçããã§ãïŒ\r\n\r\nãåŸã£ãŠïŒ$A$ ã®äžèŸºãš $C$ ã®å¯Ÿè§ç·ã®é·ããçããããšãããããŸããïŒ\r\n\r\nã(â») äŸãã° $C$ ã®é ç¹ã $EFGH-IJKL$ ã®ããã«ããã°ïŒã $C$ ã«ããã $E$ ã®å察åŽã®é ç¹ã㯠$K$ ãæããã®ãšããŸãïŒ\r\n<\\/details>",
"text": "解説è£è¶³",
"url": "https://onlinemathcontest.com/contests/omc201/editorial/4097/396"
}
] | ãç«æ¹äœ $A$ ã®äžã«ç $B$ ãå
æ¥ããŠããïŒç $B$ ã®äžã«ç«æ¹äœ $C$ ãå
æ¥ããŠããŸãïŒãã®ãšãïŒ$A$ ã®äœç©ã¯ $C$ ã®äœç©ã® $x$ åã«ãªããŸããïŒ$x^2$ ã解çããŠãã ããïŒ |
OMC201 (for beginners) | https://onlinemathcontest.com/contests/omc201 | https://onlinemathcontest.com/contests/omc201/tasks/3095 | D | OMC201(D) | 200 | 215 | 346 | [
{
"content": "ã$2,5$ ã®ãããã§ãå²ãåããªãæ£ã®æŽæ° $m$ ãçšã㊠$23!=2^{19}\\cdot 5^{4}\\cdot m$ ãšè¡šããïŒ\\\r\nãäžè¬ã«æ¢çŽåæ°ãæéå°æ°ãšããŠè¡šçŸã§ããããšã¯åæ¯ã®çŽ å æ°ã $2,5$ ã®ã¿ã§ããããšãšåå€ãªã®ã§ïŒ$n$ 㯠$m$ ã®åæ°ã§ããïŒãããš $0\\lt n \\lt 2^{19}\\cdot 5^{4}\\cdot m$ ããïŒ$n$ ã®åæ°ã¯ $2^{19}\\cdot 5^4-1=\\bf327679999$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc201/editorial/3095"
}
] | ã$1$ ä»¥äž $23!$ **æªæº**ã®æŽæ° $n$ ã§ãã£ãŠïŒ$\dfrac{n}{23!}$ ãåé²æ³è¡šèšã§æéå°æ°ãšããŠè¡šçŸã§ãããã®ã¯ããã€ãããŸããïŒ |
OMC201 (for beginners) | https://onlinemathcontest.com/contests/omc201 | https://onlinemathcontest.com/contests/omc201/tasks/4232 | E | OMC201(E) | 200 | 184 | 270 | [
{
"content": "ãç¹æ°ã**å¢ããªãã£ã**è©Šè¡ããã $1$ åããã®ã§ïŒããã $n+1$ åç® $(1\\leq n\\leq 5)$ ã®è©Šè¡ãšããïŒç¹æ°ãå¢ããè©Šè¡ã«ãããŠåºãç®ãé ã« $A_1,A_2,...,A_5$ ãšãïŒå¢ããªãã£ãè©Šè¡ã«ãããŠåºãç®ã $B$ ãšãããšæ¬¡ã®äžçåŒãæç«ããïŒ\r\n$$A_1\\lt A_2\\lt \\cdots \\lt A_5,ãA_{n}\\geq B$$\r\nååã§åºãç®ã®çµã¿åããã®æ°ã¯ãã®äžçåŒãæºããæŽæ°ã®çµ $(A_1,A_2,...,A_5,n,B)$ ã®æ°ã«çããïŒ\\\r\nããã®äžçåŒãæºããçµ $(A_1,A_2,...,A_5)$ ã«å¯ŸããŠçµ $(n,B)$ 㯠$A_1+A_2+...+A_5$ ã ãããã®ã§ïŒç¹æ°ã $5$ ã§ãããããªåºç® $6$ ã€ã®çµã®åæ°ã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\begin{aligned}\r\n\\sum_{1\\leq A_1\\lt A_2\\lt \\cdots \\lt A_5 \\leq6}(A_1+A_2+\\cdots+A_5)&=\\sum_{k=1}^6(1+2+\\cdots+6-k)\\\\\\\\\r\n&=5(1+2+\\cdots+6)\\\\\\\\\r\n&=105\r\n\\end{aligned}$$\r\n以äžããæ±ãã確ç㯠$\\dfrac{105}{6^6}=\\dfrac{35}{15552}$ ã§ããïŒç¹ã«è§£çãã¹ãã¯$\\bf15587.$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc201/editorial/4232"
}
] | ã äžè¬çãªå
é¢äœã®ãµã€ã³ããäžã€æããè©Šè¡ãïŒ$6$ åç¶ããããšãèããŸãïŒåè©Šè¡ããšã«ïŒ**ç¹æ°**ã次ã®ããã«æŽæ°ãããŸãïŒ
- ã¯ããïŒç¹æ°ã¯ $0$ ã§ããïŒ
- $1$ åç®ã®è©Šè¡ã®ããšïŒåºãç®ã«é¢ãããç¹æ°ã $1$ å¢ããïŒ
- $2$ åç®ä»¥éã®è©Šè¡ããããã®ããšïŒåºãç®ããã以åã«åºãç®ã®æ倧å€ããã倧ãããã°ç¹æ°ã $1$ å¢ããïŒããã§ãªããã°ç¹æ°ã¯å€ãããªãïŒ
æçµçãªç¹æ°ã $5$ ãšãªã確çã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC201 (for beginners) | https://onlinemathcontest.com/contests/omc201 | https://onlinemathcontest.com/contests/omc201/tasks/6823 | F | OMC201(F) | 300 | 165 | 213 | [
{
"content": "ã$P(x)=x^3-9x-9$ ãšããïŒ$\\alpha^3=9\\alpha+9$ ãæç«ããããïŒ\r\n$$\\alpha^3+\\alpha^2-10\\alpha-8=\\alpha^2-\\alpha+1=\\dfrac{\\alpha^3+1}{\\alpha+1}=\\dfrac{9\\alpha+10}{\\alpha+1}$$\r\nã§ããïŒ$\\beta,\\gamma$ ã«ã€ããŠãåæ§ã§ããããïŒæ±ããå€ã $S$ ãšããã°ä»¥äžã®ããã«èšç®ãã§ããïŒ\r\n$$\r\n\\begin{aligned}\r\nS\r\n&=\\left(\\dfrac{9\\alpha+10}{\\alpha+1}\\right)\r\n\\left(\\dfrac{9\\beta+10}{\\beta+1}\\right)\\left(\\dfrac{9\\gamma+10}{\\gamma+1}\\right)\\\\\\\\\r\n&=9^3\\times\\dfrac{P(-10\\/9)}{P(-1)}\\\\\\\\\r\n&=\\bf{271}\r\n\\end{aligned}\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc201/editorial/6823"
},
{
"content": "ãè¿œèšïŒ2024\\/01\\/17 23:02ãå
¬åŒè§£èª¬ã®è£è¶³ãè¿œèšããŸãã. \r\n\r\n\r\nãå¥è§£ãèšè¿°ããåã«, å
¬åŒè§£èª¬ $2$ åŒç®ã®è£è¶³ã§ã. \r\n$$P(x)=x^3-9x-9=(x-\\alpha)(x-\\beta)(x-\\gamma)$$\r\nããã, $x=-1, \\frac{9}{10}$ã代å
¥ããŠä»¥äžãåŸããã. \r\n$$\\begin{aligned}\r\n P(-1) &= (-1-\\alpha)(-1-\\beta)(-1-\\gamma) &= -(\\alpha + 1)(\\beta + 1)(\\gamma + 1)\\\\\\\\\r\n P\\left(-\\frac{10}{9}\\right) &= \\left(-\\frac{10}{9}-\\alpha\\right)\\left(-\\frac{10}{9}-\\beta\\right)\\left(-\\frac{10}{9}-\\gamma\\right) &= -\\frac{1}{9^3}(9\\alpha + 10)(9\\beta + 10)(9\\gamma + 10)\r\n\\end{aligned}$$\r\nã以äžãã $S$ ãå
¬åŒè§£èª¬ã®ããã«èšç®ã§ãã. \r\n***\r\nãå¥è§£ã®çŽ¹ä»ã§ã. ååã®æ¹éã¯å
¬åŒè§£èª¬ãšåãã§, åŸåã®ã¿ç°ãªããŸã. \r\n***\r\nã$P(x)=x^3-9x-9$ ãšãã, $\\alpha^3=9\\alpha+9$ ãæç«ããç¹ãŸã§ã¯è§£èª¬ãšå€ãããªã. $x^2 - x + 1 = 0$ ã®è§£ã¯è€çŽ æ° $z=\\frac{1+\\sqrt{3}i}{2}(=\\cos\\frac{\\pi}{3}+i\\sin\\frac{\\pi}{3})$ ãçšã㊠$x=z, \\overline{z}$ ãšè¡šãã. \r\n$$\\alpha^3+\\alpha^2-10\\alpha-8 = \\alpha^2 - \\alpha + 1 = (\\alpha - z)(\\alpha - \\overline{z})$$\r\nããšããã§, \r\n$$P(x)=x^3-9x-9=(x-\\alpha)(x-\\beta)(x-\\gamma)$$\r\nãã§ãããã, æ±ããå€ã $S$ ãšããã°, \r\n$$\r\n\\begin{aligned}\r\nS &= (\\alpha^2 - \\alpha + 1)(\\beta^2 - \\beta + 1)(\\gamma^2 - \\gamma + 1)\\\\\\\\\r\n &= (\\alpha - z)(\\beta - z)(\\gamma - z)(\\alpha - \\overline{z})(\\beta - \\overline{z})(\\gamma - \\overline{z})\\\\\\\\\r\n &= P(z)P(\\overline{z})\\\\\\\\\r\n &= (z^3-9z-9)(\\overline{z}^3-9\\overline{z}-9)\\\\\\\\\r\n &= (-10-9z)(-10-9\\overline{z})\\\\\\\\\r\n &= 100 + 90(z+\\overline{z}) + 81z\\cdot \\overline{z}\\\\\\\\\r\n &= \\mathbf{271}\r\n\\end{aligned}$$\r\n\r\n***",
"text": "å¥è§£ïŒå æ°å解 (+å
¬åŒè§£èª¬è£è¶³)",
"url": "https://onlinemathcontest.com/contests/omc201/editorial/6823/398"
}
] | ãæ¹çšåŒ $x^3-9x-9=0$ ã® $3$ ã€ã®è€çŽ æ°è§£ã $x=\alpha,\beta,\gamma$ ãšããŸãïŒãªãïŒãããã¯çžç°ãªãããšãä¿èšŒãããŸãïŒæ¬¡ã®å€ãæ±ããŠãã ããïŒ
$$(\alpha^3+\alpha^2-10\alpha-8)(\beta^3+\beta^2-10\beta-8)(\gamma^3+\gamma^2-10\gamma-8)$$ |