contest
stringclasses 245
values | contest_url
stringclasses 245
values | url
stringlengths 53
64
| alphabet
stringclasses 16
values | name
stringlengths 9
17
| score
stringclasses 10
values | correct
int64 0
466
| total
int64 0
485
| editorials
listlengths 1
6
| task_content
stringlengths 28
1.49k
|
---|---|---|---|---|---|---|---|---|---|
OMC201 (for beginners) | https://onlinemathcontest.com/contests/omc201 | https://onlinemathcontest.com/contests/omc201/tasks/6118 | G | OMC201(G) | 300 | 133 | 183 | [
{
"content": "ãéå°ãåº§æš $(x, y)$ ã«ãããšãïŒ$1$ ææäœåŸã« $ (x - 1, y + 1), (x, y + 1), (x + 1, y + 1), (x - 1, y - 1), (x + 1, y - 1)$ ã«ç§»åããæäœããããã $ T_{ul}, F, T_{ur}, T_{dl}, T_{dr}$ ãšããïŒ\\\r\nãæäœ $T$ ã®ååŸã§åº§æšã®åã®å¶å¥ã¯å€ãããªãïŒ$(x, y) = (10, 11)$ 㯠$(x, y) = (0, 0)$ ãšåº§æšã®åã®å¶å¥ãç°ãªãããïŒæäœ $F$ ã¯å¥æ°åè¡ãããããšãåããïŒæäœ $F$ ã®åæ°ã $k$ ã $0$ 以äžã®æŽæ°ãšããŠïŒ$2k+1 $ åãšããïŒãã®ãšãïŒæäœ $T$ ã®è¡ãããåæ°ã¯ $14-2k$ ãšãªãïŒ\\\r\nãæäœ $T_{ul}, T_{dl}$ãè¡ãããåæ°ã®åã $L$ïŒæäœ $T_{ur}, T_{dr}$ãè¡ãããåæ°ã®åã $R$ ãšãããšïŒ\r\n$$\\begin{aligned}\r\n& L + R = 14 - 2k\\\\\\\\\r\n& L - R = 10 \r\n\\end{aligned}$$\r\nãšãªãïŒ$L = 12 - k, R = 2 - k$ãšæ±ãŸã. \\\r\nãåæ§ã«ïŒæäœ $T_{ul}, T_{ur}$ãè¡ãããåæ°ã®åã $U$ïŒæäœ $T_{dl}, T_{dr}$ãè¡ãããåæ°ã®åã $D$ ãšãããšïŒ$U = 12 - 2k, D = 2$ ãšæ±ãŸãïŒ\\\r\nã以äžããïŒ$R \\geq 0$ ãã $ k \\leq 2$ ãšãªãããšãèžãŸãïŒæ±ããçãã¯ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$\r\n\\sum\\limits_{k=0}^{2} \\Big( {}\\_{15}\\mathrm{C}\\_{2k+1} \\times {}\\_{14-2k}\\mathrm{C}\\_{2-k} \\times {}\\_{14-2k}\\mathrm{C}\\_{2} \\Big)\r\n= \\mathbf{619710}\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc201/editorial/6118"
}
] | ãå°æ£ã®éå°ã®é§ã $xy$ å¹³é¢äžã«äžã€çœ®ãããŠããç¶æ³ãèããŸãïŒéå°ãç¹ $(x, y)$ ã«ãããšãïŒ$1$ ææäœããããšã§éå°ã¯
$$ (x - 1, y + 1),~ (x, y + 1),~ (x + 1, y + 1),~ (x - 1, y - 1),~ (x + 1, y - 1)$$
ã®ããããã®ç¹ã«ç§»åããããšãã§ããŸãïŒ\
ãã¯ããïŒ$(0, 0)$ ã«éå°ã眮ãããŠããŸãïŒãããã $15$ æé²ãããšãïŒãã®æ¹æ³ã¯ $5^{15}$ éãèããããŸããïŒãã®ãã¡æçµçã« $(10, 11)$ ã«äœçœ®ãããããªãã®ã¯äœéããããŸããïŒ |
OMC201 (for beginners) | https://onlinemathcontest.com/contests/omc201 | https://onlinemathcontest.com/contests/omc201/tasks/5402 | H | OMC201(H) | 300 | 97 | 136 | [
{
"content": "ã蟺 $BC$ ãšçŽç· $AE$ ã®äº€ç¹ã $P$ ãšããïŒãã®ãšãïŒ\r\n$$\\angle ACP = \\angle CBD,\\quad \\angle CAP = \\angle BCD$$\r\nããäžè§åœ¢ $ACP$ ãšäžè§åœ¢ $CBD$ ã¯çžäŒŒã§ããïŒããã«ïŒ\r\n$$\\angle CAP = \\angle ECP,\\quad \\angle APC = \\angle CPE$$\r\nããäžè§åœ¢ $ACP$ ãšäžè§åœ¢ $CEP$ ãçžäŒŒã§ããïŒåŸã£ãŠïŒ\r\n$$AB = AC = CE\\times\\frac{AP}{CP} = CE\\times\\frac{CD}{BD} = 1476$$\r\nãåããïŒãã£ãŠïŒ$AD = AB - BD = \\bf{1474}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc201/editorial/5402"
},
{
"content": "ã$\\angle ABC = \\angle AED = \\theta$ïŒ$\\angle BCD= \\angle CAE =\\phi$ ãšããïŒ\\\r\nã$\\triangle BCD$ ã«æ£åŒŠå®çãçšã㊠$\\dfrac{72}{\\sin \\theta}=\\dfrac{2}{\\sin \\phi}$ïŒãã£ãŠ $\\sin \\theta = 36 \\sin \\phi$ïŒ\\\r\nã$\\triangle ACE$ ã«æ£åŒŠå®çãçšã㊠$\\dfrac{AC}{\\sin (180^{\\circ}-\\theta)}=\\dfrac{41}{\\sin \\phi}$ïŒãããã\r\n$$AC=\\dfrac{41 \\sin \\theta}{\\sin \\phi}=41Ã36=1476$$\r\nåŸã£ãŠïŒ$AD=AB-BD=\\mathbf{1474}$ïŒ",
"text": "äžè§æ¯ãçšããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc201/editorial/5402/399"
}
] | ã$AB=AC$ ãªãäºç蟺äžè§åœ¢ $ABC$ ã®èŸº $AB$ äžã« $BD=2$ ãªãç¹ $D$ ããšããŸããïŒããã«ïŒç·å $CD$ äžã«ç¹ $E$ ããšã£ããšãïŒ
$$DE=31,\quad CE=41,\quad \angle BCD=\angle CAE$$
ãæç«ããŠããŸããïŒãã®ãšãïŒç·å $AD$ ã®é·ããæ±ããŠãã ããïŒ |
OMC200 | https://onlinemathcontest.com/contests/omc200 | https://onlinemathcontest.com/contests/omc200/tasks/5320 | A | OMC200(A) | 100 | 369 | 372 | [
{
"content": "ãæ¡æ°ããšã«é©ãããã®ã®åæ°ãæ°ããã°ïŒä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$ 4 + 4\\times 4 + 4\\times 4\\times 3 + 4\\times 4\\times 3\\times 2 + 4\\times 4\\times 3 \\times 2\\times 1=\\mathbf{260}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc200/editorial/5320"
}
] | ãäºé²æ³è¡šèšã§ãã¹ãŠã®æ¡ãçžç°ãªãæ£æŽæ°ã¯ããã€ãããŸããïŒ\
ããã ãïŒæé«äœã¯ $0$ ã§ãªãããã«è¡šèšãããã®ãšããŸãïŒ
----
ã21:03è¿œèšãäºé²æ³è¡šèšã§ $1$ æ¡ã®ãã®ãå«ã¿ãŸãïŒ |
OMC200 | https://onlinemathcontest.com/contests/omc200 | https://onlinemathcontest.com/contests/omc200/tasks/5479 | B | OMC200(B) | 200 | 254 | 287 | [
{
"content": "ã$\\angle IAB=\\angle IAQ$ ã〠$IB=IQ$ ããïŒäžè§åœ¢ $AIB$ ãšäžè§åœ¢ $AIQ$ ã¯ååïŒãŸãïŒ$\\angle ICB=\\angle ICP$ ã〠$IB=IP$ ããïŒäžè§åœ¢ $CIB$ ãšäžè§åœ¢ $CIP$ ãååïŒãããã£ãŠïŒ$AC=x$ ãšãããšïŒ$AB=x-11, ~ BC=x-10$ ã ããïŒäžå¹³æ¹ã®å®çãã $(x-11)^2+(x-10)^2=x^2$ïŒãã£ãŠ $x\\gt 21$ ã«æ³šæã㊠$x=21+2\\sqrt{55}$ ã ããïŒè§£çãã¹ãå€ã¯ $\\textbf{241}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc200/editorial/5479"
}
] | ã$\angle B=90^{\circ}$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠïŒå
å¿ã $I$ ãšããŸãïŒ$I$ ãäžå¿ãšãïŒ$B$ ãéãåã蟺 $AC$ïŒç«¯ç¹ãé€ãïŒãš $2$ ç¹ã§äº€ãã£ãã®ã§ïŒãããã®äº€ç¹ã $A$ ã«è¿ãæ¹ãã $P, Q$ ãšãããšïŒ$AP=10, ~ QC=11$ ãæç«ããŸããïŒãã®ãšãïŒèŸº $AC$ ã®é·ãã¯æ£æŽæ° $a, b$ ãçšã㊠$a+\sqrt b$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ãã. |
OMC200 | https://onlinemathcontest.com/contests/omc200 | https://onlinemathcontest.com/contests/omc200/tasks/5301 | C | OMC200(C) | 300 | 220 | 311 | [
{
"content": "ãæ±ããæ£æŽæ°ã $N=1599n$ ãšãããšïŒ$N$ ã® $4$ çªç®ã«å°ããæ£ã®çŽæ°ã $n$ ãšãªãã°ããïŒ\r\n $N$ 㯠$1,3,13,39$ ãçŽæ°ã«ãã€ã®ã§ïŒ$n\\leq39$ ãå¿
èŠïŒãŸãïŒ$n$ ã®æ£ã®çŽæ°ã¯é«ã
$4$ åãªã®ã§ïŒïŒçžç°ãªããšã¯éããªãïŒçŽ æ° $p\\le q$ ãçšã㊠$n=p, pq, p^3$ ã®ããããã®åœ¢ã§è¡šããïŒ\r\n- $n=p$ ã®å Žå\\\r\nã$13\\lt n\\lt 39$ ãšãªãã°ããïŒãããæºããçŽ æ°ã®ç·å㯠$156$ïŒ\r\n- $n=pq$ ã®å Žå\\\r\nã$q$ ã $5$ 以äžã§ãããšãïŒ$N$ 㯠$1,3,p,3p$ ãçŽæ°ã«æã€ã®ã§æ¡ä»¶ãæºãããªãïŒåŸã£ãŠïŒ$n=4,6,9$ ã®ã¿ãèãããïŒ$n = 4,6$ ãæ¡ä»¶ãæºããïŒ\r\n- $n = p^3$ã®å Žå\\\r\nã$n\\le39$ ãã $p=2,3$ ã®ã¿ãèãããããïŒãããã®å Žåãäžé©ã§ããïŒ\r\n\r\n以äžãã, æ±ããç·å㯠$1599\\times(156+4+6)=\\mathbf{265434}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc200/editorial/5301"
}
] | ã$4$ çªç®ã«å€§ããçŽæ°ã $1599$ ã§ããæ£æŽæ°ã®ç·åãæ±ããŠãã ããïŒ |
OMC200 | https://onlinemathcontest.com/contests/omc200 | https://onlinemathcontest.com/contests/omc200/tasks/5124 | D | OMC200(D) | 400 | 131 | 212 | [
{
"content": "ã$a=x+y-z, b=y+z-x, c=z+x-y$ ãšããã°ïŒ\r\n$$\\begin{cases}\r\na+b+c\\le40\\\\\\\\\r\na\\equiv b\\equiv c\\pmod2\r\n\\end{cases}$$ \r\nãæºããæ£æŽæ°ã®çµ $(a, b, c)$ ã®æ°ãæ±ããã°ãããšåããïŒ\r\n- $a,b,c$ ãå
šãŠå¶æ°ã®å Žå\\\r\nã$a=2(p+1),b=2(q+1),c=2(r+1)$ ãšããããšã§ïŒ$p+q+r\\le17$ ãæºããéè² æŽæ°ã®çµ $(p,q,r)$ ã®æ°ãæ±ããããšã«åž°çãããïŒãã㯠${}\\_{4+17-1}\\mathrm{C}\\_{17}=1140$ åã§ããïŒ\r\n\r\n- $a,b,c$ ãå
šãŠå¥æ°ã®å Žå\\\r\nã$a=2p+1,b=2q+1,c=2r+1$ ãšããããšã§ïŒ$p+q+r\\le 18.5$ ãæºããéè² æŽæ°ã®çµ $(p,q,r)$ ã®æ°ãæ±ããããšã«åž°çãããïŒãã㯠${}\\_{4+18-1}\\mathrm{C}\\_{18}=1330$ åã§ããïŒ\r\n\r\n以äžããïŒæ±ããçã㯠$1140 + 1330 = \\bf{2470}$ ã§ããïŒ\\\r\nããªãïŒåé ã®å€æã¯Raviå€æãšåŒã°ããŠããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc200/editorial/5124"
},
{
"content": "ã $a,b$ ãåºå®ããæïŒ $c$ ãšããŠããããå€ã®åæ°ã¯ïŒ $\\mathrm{min}(2a-1,2b-1,40-2a,40-2b)$ ãšãªãããšããããïŒ(æŒç¿ïŒãªãïŒ)ãã£ãŠïŒæ±ããã¹ãå€ã¯ïŒè¡šãªã©ã§ãŸãšããã°ïŒ $\\sum\\limits_{1\\leq x\\leq 19} x(39-2x)=\\textbf{2470}$ ãšãªãïŒ",
"text": "å€å€æ°ã®åé¡ã¯åºå®ããŠèãã",
"url": "https://onlinemathcontest.com/contests/omc200/editorial/5124/391"
},
{
"content": "ã$z$ ãåºå®ããŠæ¡ä»¶ãæºãã $x, y$ ã®çµã $xy$ å¹³é¢äžã«å³ç€ºããããšãèããïŒãããšïŒæ±ããã¹ã㯠$1 \\leq z \\leq 19$ ã®ããšã§ïŒ$4$ ç¹ $$(z, 0), (0, z), (20-z, 20), (20, 20-z)$$ ããé ç¹ã«æã€å¹³è¡å蟺圢ã®(å¢çãé€ã)å
éšã«ïŒãŸã㯠$2$ ç¹ $(20-z, 20), (20, 20-z)$ ãçµã¶(䞡端ç¹ãé€ã)ç·åäžã«ããæ Œåç¹ã®æ°ãæ±ããŠè¶³ãåãããå€ãšåããïŒå¹³è¡å蟺圢ã®åšäžã«ããæ Œåç¹ã $40$ åã§ããïŒå¹³è¡å蟺圢ã®é¢ç©ã $40z - 2z^{2}$ ã§ããããšããïŒåè
㯠Pick ã®å®çãã $40z - 2z^{2} - 19$ ãšåããïŒãŸãïŒåŸè
㯠$z - 1$ ã§ãããšå®¹æã«åããïŒãã£ãŠïŒãããã®åã $1 \\leq z \\leq 19$ ã®ããšã§è¶³ãåãããã°ããïŒèšç®ããã°çã㯠$\\mathbf{2470}$ ãšãªãïŒ",
"text": "Pickã®å®çã®å©çš",
"url": "https://onlinemathcontest.com/contests/omc200/editorial/5124/397"
}
] | ãæ£æŽæ°ã®çµ $(x,y,z)$ ã§ãã£ãŠïŒ$x+y+z\le40$ ãã€ïŒäžèŸºã®é·ãã $x,y,z$ ã§ãããããªééåãªïŒïŒæ£ã®é¢ç©ããã€ïŒäžè§åœ¢ãååšãããã®ã¯ããã€ãããŸããïŒ |
OMC200 | https://onlinemathcontest.com/contests/omc200 | https://onlinemathcontest.com/contests/omc200/tasks/4101 | E | OMC200(E) | 400 | 63 | 113 | [
{
"content": "ã$|x|\\gt1$ ã®ãšãïŒ$|y|=|x(4x^2-3)| \\gt |x| \\gt 1$ ãåŸãïŒãã£ãŠ $|x| =|2y^2-1| \\gt |y|$ ãšãªããïŒããã¯ççŸïŒåŸã£ãŠ $|x|\\leq1$ ã§ããããïŒ$x = \\cos \\theta$ ãªãå®æ° $0\\le\\theta\\le\\pi$ ãååšããïŒãã®ãšã $y = \\cos3\\theta$ ã〠$y^2 = \\cos^2\\dfrac{\\theta}{2}$\r\nãæç«ããããïŒ$\\theta=0,\\dfrac{2\\pi}{7},\\dfrac{2\\pi}{5},\\dfrac{4\\pi}{7},\\dfrac{4\\pi}{5},\\dfrac{6\\pi}{7}$ ãåŸãïŒ\\\r\nãããã§ïŒ\r\n$$\\cos^4\\theta = \\Bigg(\\frac{1+\\cos2\\theta}{2}\\Bigg)^2=\\frac{\\cos4\\theta+4\\cos2\\theta+3}{8}$$\r\nã§ããããïŒä»»æã®æ£ã®æŽæ° $n$ ã«ã€ããŠ\r\n$$\r\n\\sum_{k = 1}^{n}\\cos^4\\frac{2k\\pi}{2n+1} = \\frac{1}{8}\\sum_{k=1}^{n}\\Bigg(4\\cos\\frac{4k\\pi}{2n+1} + \\cos\\frac{8k\\pi}{2n+1}\\Bigg) + \\frac{3n}{8} = \\frac{5}{8}\\sum_{k=1}^{n}\\cos\\frac{2k\\pi}{2n+1} + \\frac{3n}{8}\r\n$$\r\nãåŸãïŒãŸãïŒ$n$ åã®ãã¯ãã«\r\n$$\r\n\\Bigg(\\cos\\frac{2\\pi}{2n+1}, \\cos\\frac{2\\pi}{2n+1}\\Bigg) \\quad \\Bigg(\\cos\\frac{4\\pi}{2n+1}, \\cos\\frac{4\\pi}{2n+1}\\Bigg)\\quad\\dots \\quad \\Bigg(\\cos\\frac{2n\\pi}{2n+1}, \\cos\\frac{2n\\pi}{2n+1}\\Bigg)\r\n$$\r\nã®åæãèããããšã§\r\n$$\r\n\\sum_{k=1}^{n}\\cos\\frac{2k\\pi}{2n+1} = -\\frac{1}{2}\r\n$$\r\nãåããããïŒ\r\n$$\r\n\\sum_{k = 1}^{n}\\cos^4\\frac{2k\\pi}{2n+1} = \\frac{6n - 5}{16}\r\n$$\r\nã§ããïŒä»¥äžããïŒæ±ããç·åã¯\r\n$$\r\n\\cos^40 + \\cos^4\\frac{2\\pi}{5} + \\cos^4\\frac{4\\pi}{5} + \\cos^4\\frac{2\\pi}{7} + \\cos^4\\frac{4\\pi}{7} + \\cos^4\\frac{6\\pi}{7} = 1 + \\frac{7}{16} + \\frac{13}{16} = \\frac{9}{4}\r\n$$\r\nã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf{13}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc200/editorial/4101"
},
{
"content": "ããŸãïŒ$x$ ã ãã®æ¹çšåŒã«ãããšïŒ$32x^6 - 48x^4 + 18x^2 - x - 1 = 0$ ãåŸãããïŒããã $6$ ã€ã®å®æ°è§£ããã€ããšã¯ïŒåŸ®åãçšããŠç¢ºèªããããšãã§ããïŒïŒããã§ïŒä»åèãããŠããã®ã¯ $4$ ä¹ã®ç·åãªã®ã§ïŒå®è³ªçã«ã¯ $2(4x^2 - 3) = 32x^4 - 48x^2 + 18 = 2(4x^2 - 3)^2 = 0$ ã® $4$ ä¹ã®ç·åãæ±ããã°ããïŒè§£èª¬ïŒ[ãŠãŒã¶ãŒè§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/omc200\\/editorial\\/4101\\/395)ïŒïŒãã㯠$\\dfrac{9}{4}$ ãšæ±ãŸãïŒ",
"text": "解ãæ±ããã«",
"url": "https://onlinemathcontest.com/contests/omc200/editorial/4101/392"
},
{
"content": "ãäžè¬ã« $n$ 次æ¹çšåŒ $f(x)=0$ ã®è§£ã® $k$ ä¹åã $s_k$ ãšãããš $\\dfrac{xf^\\prime(x)}{f(x)}=\\displaystyle\\sum_{k=0}^{\\infty}\\dfrac{s_k}{x^k}$ ãšãªãã®ã§ïŒçç®ããŠããã°ç°¡åã«æ±ãŸããŸãïŒçç®ã®éã«ã¯ $x$ ããæžããã«ä¿æ°ã ãã§ãã£ãŠããã®ãããããã§ãïŒ\r\n蚌æã¯[ãã¡ã](http:\\/\\/wwu.phoenix-c.or.jp\\/~tokioka3\\/k_power\\/k_power.pdf)ã®pdfãæå¿«ãªã®ã§ïŒåèã«ããŠã¿ãŠãã ããïŒ",
"text": "n次æ¹çšåŒã®è§£ã®kä¹å",
"url": "https://onlinemathcontest.com/contests/omc200/editorial/4101/394"
},
{
"content": "泚ïŒããã¯[ãŠãŒã¶ãŒè§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/omc200\\/editorial\\/4101\\/392)ã®ãŠãŒã¶ãŒè§£èª¬ã§ãïŒ[OMC118(E)ã®å
¬åŒè§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/omc118\\/editorial\\/2506)ã®ãå¥è§£ããåèã«ãªããšæããŸãïŒ\r\n\r\n---\r\n\r\nãäžè¬ã«ïŒå€æ° $x_1, \\cdots, x_n$ ã® $k$ 次察称åŒã $S_k$ ã§è¡šããšãïŒ$x_1,\\cdots, x_n$ ã® $m$ ä¹å㯠$S_1, \\cdots, S_m$ ã®æŽæ°ä¿æ°å€é
åŒãšããŠè¡šããããšãç¥ãããŠããŸãïŒããã¯äŸãã° [Newton ã®æçåŒ](https:\\/\\/manabitimes.jp\\/math\\/1304)ãã瀺ããŸãïŒ\r\n\r\nããããä»®å®ããã°ïŒæ±ããã¹ã $4$ ä¹å㯠$4$ 次ãŸã§ã®å¯Ÿç§°åŒã®ã¿ã§è¡šããŸãïŒè§£ãšä¿æ°ã®é¢ä¿ãèžãŸããã°ïŒ$1$ 次以äžã®é
ã®ä¿æ°ãä»»æã«èšå®ããŠã解㮠$4$ ä¹åã¯å€åããŸããïŒããªãã¡ïŒæ¬¡ã® $2$ ã€ã®åã¯çããã§ãïŒ\r\n\r\n- $32x^6 - 48x^4+18x^2 - x - 1=0$ ã®ïŒéè€èŸŒã¿ã®ïŒè€çŽ æ°è§£ã® $4$ ä¹åïŒ\r\n- $32x^6 - 48x^4+18x^2 = 0$ ã®ïŒéè€èŸŒã¿ã®ïŒè€çŽ æ°è§£ã® $4$ ä¹åïŒ\r\n\r\n解 $x=0$ ãå«ããªããŠã $4$ ä¹åã¯å€åããªãã®ã§ïŒåŸè
ã®åŒã®å·ŠèŸºã $x^2$ ã§å²ã£ãŠãå€åããŸããïŒããã§è¡éãåãŸããŸããïŒ",
"text": "nmoonããã®ãŠãŒã¶ãŒè§£èª¬ã®è§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc200/editorial/4101/395"
}
] | ãå®æ° $x,y$ ã以äžã® $2$ åŒããšãã«æºãããŠããŸãïŒ
$$
x^2 = \frac{3x + y}{4x},\quad y^2 = \frac{x+1}{2}.
$$
$x$ ãšããŠããããå€ãã¹ãŠã«ã€ããŠïŒããããã® $4$ ä¹ã®ç·åãæ±ããŠãã ããïŒãã ãïŒæ±ããçãã¯äºãã«çŽ ãªæ£ã®æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC200 | https://onlinemathcontest.com/contests/omc200 | https://onlinemathcontest.com/contests/omc200/tasks/7339 | F | OMC200(F) | 600 | 14 | 33 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã®éå¿ã $G$ ãšãïŒçŽç· $AM$ ãšäžè§åœ¢ $ABC$ ã®å€æ¥åã®äº€ç¹ã®ãã¡ $A$ ã§ãªãæ¹ã $X$ ãšããïŒ\\\r\nãçŽç· $AM$ ãš $HO$ 㯠$G$ ã§çŽäº€ããã®ã§ïŒ$AO = OX$ ãšäœµããŠçŽç· $HO$ ã¯ç·å $AX$ ã®åçŽäºçåç·ãªã®ã§ïŒ$AG = GX$ ã§ããïŒãŸãïŒ$AG : GM = 2:1$ ã§ããããïŒ$AM = 3MX$ ã§ããïŒ\\\r\nãããã§ïŒ$BM = CM = x$ ãšçœ®ããšïŒæ¹ã¹ãã®å®çãã $x^2 = \\dfrac13AM^2$ ã§ããããïŒ$AM = \\sqrt3x$ ã§ããïŒåŸã£ãŠïŒ$\\sqrt3\\cos\\angle AMB = y$ ãšãããšïŒäœåŒŠå®çãã $AB = 24 = x\\sqrt{4 - 2y}$ ã§ããïŒãã£ãŠïŒåã³äœåŒŠå®çãã $\\cos \\angle BAM = \\dfrac{3-y}{\\sqrt{12-6y}}$ ãšèšç®ã§ããã®ã§ïŒ\r\n$$AP = 17 = \\frac{AG}{\\cos\\angle BAM} = \\frac{2\\sqrt3x}{3\\cos\\angle BAM} = \\dfrac{2\\sqrt{4-2y}}{3-y}x$$\r\nã§ããïŒä»¥äžããïŒ$AB$ ã®åŒãš $AP$ ã®åŒã䜵ããŠè§£ãããšã§ $x = 24\\sqrt{\\dfrac{17}{62}},y = \\dfrac{3}{17}$ ãåŸãïŒåŸã£ãŠïŒäœåŒŠå®çããïŒ\r\n$$AC = x\\sqrt{4 + 2y} = 24\\sqrt{\\frac{37}{31}}$$\r\nã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf{21343}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc200/editorial/7339"
},
{
"content": "$HO$ ãš $AM$ ã®äº€ç¹ã $G$ ãšãããšïŒ$G$ ã¯äžè§åœ¢ $ABC$ ã®éå¿ã§ãã. $BC$ ã«ã€ã㊠$G$ ãšå¯Ÿç§°ãªç¹ã $I$ïŒ$GI$ ãš $BC$ ã®äº€ç¹ã $D$ ãšãã. $I$ ã¯äžè§åœ¢ $ABC$ ã®å€æ¥åäžã«ãã. ããŸïŒ$A, B, C, M$ ãã $HO$ ã«äžãããåç·ã®è¶³ã $H_A, H_B, H_C, H_M$ ãšãããšïŒ$$H_A=\\dfrac{AG}{GM}H_M=2H_M=H_B+H_C$$ ããïŒäžè§åœ¢ $AHO$ ã®é¢ç©ã¯ $BHO, CHO$ ã®é¢ç©ã®åã«çãã. ãã£ãŠïŒ$HO$ ãš $AC$ ã®äº€ç¹ã $Q$ ãšãããšïŒ$AQ:QC=|AHO|:|CHO|=|AHO|:|AHO|-|BHO|=17:10$ ãæãç«ã€. \r\nããã§ïŒäžè§åœ¢ $GBC$ ã®åå¿ã $H_G$ ãšãããšïŒè§åºŠè¿œè·¡ã«ããäžè§åœ¢ $H_GBC$ ãšäžè§åœ¢ $AQP$ ã¯çžäŒŒã§ããïŒãã£ãŠ $$BD:DC=H_GBÃIB:H_GCÃIC=17xÃ8\\sqrt 3:10Ã9\\sqrt 3x=8:9$$ ãæãç«ã€. ãããã£ãŠïŒ$AH$ ãš $BC$ ã®äº€ç¹ã $E$ ãšãããšïŒ$AE$ ãš $GD$ ã¯å¹³è¡ã ããïŒ$EM=3DM$ ãªã®ã§ïŒ$BE=14y, EC=20y$ ãšããã. ãã£ãŠïŒ$AE=\\sqrt{AM^2-EM^2}=\\sqrt{858}y$ ããïŒ$$AB=\\sqrt{AE^2+EB^2}=\\sqrt{1054}y,ãAC=\\sqrt{AE^2+EC^2}=\\sqrt{1258}y.$$ ãããã£ãŠïŒ$AB=24$ ããïŒ$AC=24\\sqrt{\\dfrac{1258}{1054}}=24\\sqrt{\\dfrac{37}{31}}$ ããããïŒè§£çãã¹ãå€ã¯ $\\textbf{21343}$.",
"text": "åç解ïŒæåºæã®è§£æ³ïŒã§ã",
"url": "https://onlinemathcontest.com/contests/omc200/editorial/7339/389"
},
{
"content": "ã $xy$ å¹³é¢äžã§ $A=(24,0),B=(0,0),P=(7,0),C=(2a,2b)$ ãšããïŒãããšïŒ $M=(a,b)$ ãšãªãïŒçŽç· $AM$ 㯠$y=\\frac{b}{a-24}x-\\frac{24b}{a-24}$ ãæºããïŒ\r\n\r\nããŸãïŒ $H=(2a,(24-2a)\\frac{a}{b})$ ãšãªãïŒçŽç· $OH$ ã¯ïŒ $y=\\frac{(24-2a)a}{(2a-7)b}x-\\frac{7(24-2a)a}{(2a-7)b}$ ãæºããïŒ\r\n\r\nã $OH$ ãš $AM$ ãçŽäº€ããŠããããšããïŒ $\\frac{(24-2a)a}{(2a-7)(a-24)}=-1$ ãšãªããããæºããã®ã¯ $a=168\\/31$ ã§ããïŒãã£ãŠïŒ $O=(12,\\frac{2880}{31b}$ ãšãªãïŒ\r\n\r\n $$OC^2=OB^2=(12-336\\/31)^2+(2b-\\frac{2880}{31b})^2=12^2+\\frac{2880}{31b}^2$$ ããïŒ $b=\\frac{12\\sqrt{858}}{31}$ ãšãªãã®ã§ïŒæ±ããã¹ãå€ã¯ïŒ $$AC^2=(24-\\frac{336}{31})^2+\\frac{24\\sqrt{858}}{31}^2=\\frac{21312}{31}$$ ããïŒ $\\textbf{21343}$ ãšãªãïŒ",
"text": "ããæŒã解æ³(éæšå¥š)",
"url": "https://onlinemathcontest.com/contests/omc200/editorial/7339/390"
}
] | ãéè§äžè§åœ¢ $ABC$ ã®åå¿ïŒå€å¿ããããã $H, O$ ãšããŸãïŒããã«ïŒèŸº $BC$ ã®äžç¹ã $M$ ãšãïŒçŽç· $HO$ 㚠蟺 $AB$ ã亀ãã£ãã®ã§ãã®äº€ç¹ã $P$ ãšãããšïŒçŽç· $AM$ ãšçŽç· $HO$ ã¯çŽäº€ãïŒããã«ä»¥äžãæç«ããŸããïŒ
$$AP=17,\quad PB=7.$$
ãã®ãšãïŒèŸº $AC$ ã®é·ãã® $2$ ä¹ã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠${\dfrac{a}{b}}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ãã. |
OMC199 (for beginners) | https://onlinemathcontest.com/contests/omc199 | https://onlinemathcontest.com/contests/omc199/tasks/3312 | A | OMC199(A) | 100 | 328 | 338 | [
{
"content": "ã$1$ åç®ã®è§£çãæ£è§£ã§ãã確ç㯠$1\\/3312$ïŒ$2$ åç®ã®è§£çãæ£è§£ã§ãã確çã¯\r\n$$\\dfrac{3311}{3312}\\times \\dfrac{1}{3311}=\\dfrac{1}{3312}$$\r\nã§ããïŒåæ§ã«ã㊠$n$ åç®ã®è§£çãæ£è§£ã§ãã確çã¯åžžã« $1\\/3312$ ã§ããïŒãã£ãŠïŒå
šäœã§æ±ãã確ç㯠$5\\/1656$ ã§ããïŒè§£çãã¹ãå€ã¯ $\\mathbf{1661}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc199/editorial/3312"
}
] | ãOMCã®ããã³ã³ãã¹ãã§ããããªãåé¡ã«åºäŒã£ãtkgåã¯ïŒæ£çã $1$ ä»¥äž $3312$ 以äžã®æŽæ°å€ã§ããããšã ãã¯ããã£ãã®ã§ïŒãã®ç¯å²ã§ã©ã³ãã ãªæ°ãæåºããããšã«ããŸããïŒå
·äœçã«ã¯ä»¥äžã®æäœãç¹°ãè¿ãïŒæ£è§£ãæåºãããïŒèš $10$ åæåºãè¡ã£ããïŒãã®æç¹ã§ãããŸãïŒ
- $1$ ä»¥äž $3312$ 以äžã®æŽæ°ã®ãã¡ïŒãŸã æåºããŠããªããã®ã®ãã¡äžã€ãç確çã«éžãã§æåºããïŒ
ãã®ãšãïŒtkgåãæ£è§£ãæåºãã確çã¯ïŒäºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC199 (for beginners) | https://onlinemathcontest.com/contests/omc199 | https://onlinemathcontest.com/contests/omc199/tasks/4289 | B | OMC199(B) | 100 | 296 | 314 | [
{
"content": "ã $p \\neq 2,3$ ã®ãšã $p \\equiv \\pm 1 \\pmod 6$ ãªã®ã§æ£æŽæ° $k$ ãçšã㊠$p=6k \\pm 1$ ãšè¡šãã°æ¬¡ãæãç«ã€ïŒ$$p^2=36k^2\\pm 12k+1\\equiv 12k^2+12k+1\\equiv 12k(k+1)+1\\equiv 1\\pmod {24}$$\r\nãããã£ãŠ $p^2$ ã $24$ ã§å²ã£ãããŸã㯠$p=2,3,5,7,\\ldots$ ãšåããã° $4,9$ ã®åŸã¯ $1$ ãç¶ãïŒ\\\r\nããŸãïŒ$m\\geq 4$ ã®ãšã $m!$ 㯠$4!=24$ ã§å²ãåããã®ã§ïŒ$m!$ ã $24$ ã§å²ã£ãããŸã㯠$m=1,2,3,4,\\ldots$ ãšåããã° $1,2,6$ ã®åŸã¯ $0$ ãç¶ãïŒ\\\r\nã以äžããæ¡ä»¶ãæºãã $(p,m)$ ã®çµã¯ $(2,3),(3,1)$ ã®ã¿ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{9}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc199/editorial/4289"
}
] | ã$p^2+m!-10$ ã $24$ ã§å²ãåãããããªçŽ æ° $p$ ãšæ£ã®æŽæ° $m$ ã®çµ $(p,m)$ ãã¹ãŠã«ã€ããŠïŒ $pm$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC199 (for beginners) | https://onlinemathcontest.com/contests/omc199 | https://onlinemathcontest.com/contests/omc199/tasks/3238 | C | OMC199(C) | 100 | 307 | 321 | [
{
"content": "ãäžãããã $6$ 次æ¹çšåŒã¯æ¬¡ã®ããã«ïŒå®æ°ä¿æ°ã®ç¯å²ã§ïŒå æ°å解ã§ããïŒ\r\n$$(x^2+2)(x+2)(x-2)(x+\\sqrt{5})(x-\\sqrt{5})=0$$\r\nããããæ±ããå®æ°è§£ã¯ $x=\\pm{2},\\pm{\\sqrt{5}}$ ãªã®ã§ïŒæ±ããç©ã¯ $\\textbf{20}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc199/editorial/3238"
}
] | ã$x$ ã«ã€ããŠã® $6$ 次æ¹çšåŒ
$$x^6-7x^4+2x^2+40=0$$
ã®ãã¹ãŠã®**å®æ°**解ã®ç©ãæ±ããŠãã ããïŒãªãïŒãã®æ¹çšåŒã«é解ã¯ååšããŸããïŒ |
OMC199 (for beginners) | https://onlinemathcontest.com/contests/omc199 | https://onlinemathcontest.com/contests/omc199/tasks/6949 | D | OMC199(D) | 200 | 157 | 279 | [
{
"content": "ã$n$ åã®ç¹ãäžãããããšãïŒããããçšããŠã§ããåé¢äœã¯æ倧㧠${}_{n}\\mathrm{C}_4$ åããïŒåŸã£ãŠïŒ${}_n \\mathrm{C}_4 \\geq 999$ ãæºããæå°ã® $n$ ãæ±ããã°ããïŒãã㯠$\\mathbf{14}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc199/editorial/6949"
}
] | ãåã空éå
ã« $999$ åã®ééåãªïŒïŒæ£ã®äœç©ããã€ïŒåé¢äœããããŸãïŒãããã¯å
±ééšåãæã£ãŠãããã§ããïŒ$4$ ã€ã®é ç¹ããã¹ãŠäžèŽãããã®ã¯ $2$ ã€ä»¥äžãããŸããïŒãããã®åé¢äœã®é ç¹ã«ãããç¹ã¯ïŒç©ºéå
ã«å°ãªããšãããã€ååšããŸããïŒ |
OMC199 (for beginners) | https://onlinemathcontest.com/contests/omc199 | https://onlinemathcontest.com/contests/omc199/tasks/4162 | E | OMC199(E) | 200 | 151 | 207 | [
{
"content": "ãçŽç· $\\ell$ ã®æ¹çšåŒã $y=g(x)$ ãšãããšïŒæ¡ä»¶ãã\r\n$$g(1) = 1, \\quad f(x)-g(x)=(x-3)^2(x-7)^2$$\r\nãæç«ããïŒåŸã£ãŠ, 以äžããæ±ããçã㯠$\\bf{145}$ ã§ããïŒ\r\n$$f(1)=(1-3)^2(1-7)^2 + g(1) = 145.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc199/editorial/4162"
}
] | ã$xy$ å¹³é¢äžã«ãããŠïŒæé«æ¬¡ã®ä¿æ°ã $1$ ã§ãã $4$ 次é¢æ° $y=f(x)$ ãšïŒ$(1,1)$ ãéãçŽç· $\ell$ ã $2$ ç¹ $(3,f(3)),~(7,f(7))$ ã§æ¥ãããšãïŒ$f(1)$ ã®å€ãæ±ããŠãã ããïŒ |
OMC199 (for beginners) | https://onlinemathcontest.com/contests/omc199 | https://onlinemathcontest.com/contests/omc199/tasks/3476 | F | OMC199(F) | 300 | 268 | 287 | [
{
"content": "ã$AD\\parallel BC$ ãã $\\angle PBC =\\angle PCB$ ãåããïŒåŸã£ãŠ $BP = CP$ ã§ããïŒãŸãäºè§çžçããäžè§åœ¢ $ PAB$ ãšäžè§åœ¢ $PCD$ ã¯çžäŒŒã§ããïŒãã®çžäŒŒæ¯ã¯ $3:4$ ã§ããïŒãã£ãŠ\r\n$$AP : CP = BP : DP = 3 : 4$$\r\nã§ããããïŒ$BP = CP$ ã«æ°ãã€ããããšã§ $AP : DP = 9 : 16$ ãåãã. 以äžãã\r\n$$AP = 10\\times\\frac{9}{25} = \\frac{18}{5}$$\r\nãåŸã. ç¹ã«è§£çãã¹ã㯠$\\bf{23}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc199/editorial/3476"
}
] | ã蟺 $AD$ ãšèŸº $BC$ ãå¹³è¡ã§ãããããªå°åœ¢ $ABCD$ ã
$$
AB=3,\hspace{2mm} CD=4,\hspace{2mm} DA=10
$$
ãã¿ãããŠããïŒãã®èŸº $AD$ äžã«ç¹ $P$ ããšããšïŒ
$$
\angle ABP=\angle ADC, \hspace{2mm} \angle APB= \angle CPD
$$
ãæãç«ã¡ãŸããïŒãã®ãšãïŒç·å $AP$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $p,q$ ãçšã㊠$\dfrac{p}{q}$ ãšè¡šãããã®ã§ïŒ$p+q$ ã®å€ã解çããŠãã ããïŒ |
OMC199 (for beginners) | https://onlinemathcontest.com/contests/omc199 | https://onlinemathcontest.com/contests/omc199/tasks/2529 | G | OMC199(G) | 300 | 278 | 282 | [
{
"content": "ã$274428=28 \\times 99^2$ ã§ããïŒ$x$ ã® $100,10,1$ ã®äœã®æ°åããããã $a,b,c$ ãšãããš $x-X=(100a+10b+c)-(100c+10b+a)=99(a-c)$ ãã $x \\equiv X \\pmod {99}$ ãæãç«ã€ïŒãããš $99^2\\mid xX$ ããïŒ$x \\equiv X\\equiv 0 \\pmod {99}$ ã§ããïŒãã£ãŠïŒæŽæ° $a,A$ ãçšã㊠$x=99a,X=99A$ ãšããïŒæ¬¡ã®åŒãæãç«ã€ïŒ\r\n$$aA=28, ~ 2\\leq a \\leq 10, ~ 2\\leq A \\leq 10$$\r\nãããæºãã $(a,A)$ ã®çµã¯ $(4,7),(7,4)$ ã® $2$ ã€ã§ããïŒãã®ãšã $(x,X)=(396,693),(693,396)$ ã§ããã®ã§æ¡ä»¶ãæºãããŠããïŒä»¥äžããïŒ$x$ ã®ç·å㯠$\\bf1089.$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc199/editorial/2529"
}
] | ããã $3$ æ¡ã®æ£æŽæ° $x$ ã«ã€ããŠïŒãã®çŸã®äœãšäžã®äœãå
¥ãæ¿ããŠåŸãããæ£æŽæ°ã $X$ ãšããŸãïŒ$x$ ãš $X$ ã®ç©ã $274428$ ã§ãã£ããšãïŒ$x$ ãšããŠããåŸãå€ã®ç·åãæ±ããŠãã ããïŒ |
OMC199 (for beginners) | https://onlinemathcontest.com/contests/omc199 | https://onlinemathcontest.com/contests/omc199/tasks/1685 | H | OMC199(H) | 300 | 50 | 107 | [
{
"content": "ãäžè¬æ§ã倱ãã $AB=3$ ãšããŠããïŒåº§æšå¹³é¢äžã§ $A(0,0),B(3,0)$ ãšèšå®ããã°ïŒ$\\tan\\angle ABC=2\\sqrt{3}$ ããã³ $\\tan\\angle BAD=-\\dfrac{\\sqrt{3}}{2}$ ã«çæããããšã§ $C(2,2\\sqrt{3}),D(-2,\\sqrt{3})$ ãšããŠåã蟌ããããšããããïŒãã®ãšã $\\tan\\angle ACD=\\dfrac{3\\sqrt{3}}{7}$ ãšèšç®ã§ãïŒãã®å¹³æ¹ã¯ $\\dfrac{27}{49}$ ã§ããïŒç¹ã«è§£çãã¹ã㯠$\\bf76.$ \\\r\nãäœè«ã ãïŒ$AB=3$ ã®ãšãïŒåè§åœ¢ã®åé ç¹ã¯äžèŸºã $1$ ã®æ£äžè§åœ¢ã«ãã£ãŠæ·ãè©°ããããæ Œåã®ç¹äžã«ååšããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc199/editorial/1685"
}
] | ãåžåè§åœ¢ $ABCD$ ã
$$\begin{aligned}
\tan\angle BAC&=\sqrt{3}, & \tan \angle CAD&=3\sqrt{3},\\\\
\tan\angle ABD&=\dfrac{\sqrt{3}}{5}, & \tan\angle CBD&=\dfrac{9\sqrt{3}}{11}
\end{aligned}$$
ãã¿ãããšãïŒ$\tan\angle ACD$ ã® $2$ ä¹ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ $a+b$ ã®å€ãæ±ããŠãã ããïŒ |
SOMC008 | https://onlinemathcontest.com/contests/somc008 | https://onlinemathcontest.com/contests/somc008/tasks/6043 | A | SOMC008(A) | 200 | 129 | 144 | [
{
"content": "ãæ±ããã¹ãå€ã¯ïŒ$(1,2,\\ldots,24)$ ã®äžŠã³æ¿ã $(a_1,a_2,\\ldots,a_{24}), (b_1,b_2,\\ldots,b_{24})$ ãã¹ãŠã«ã€ããŠã®\r\n$$ a_1 b_1 + a_2 b_2 + \\cdots + a_{24} b_{24} $$\r\nã®çžå å¹³åã§ããããšã«æ³šæããïŒ\\\r\nã䞊ã³æ¿ã $(a_1,a_2,\\ldots,a_{24})$ ã«å¯ŸããŠïŒå¥ã®äžŠã³æ¿ã $(25-a_1, 25-a_2,\\ldots,25-a_{24})$ ã察å¿ãããããšã§ïŒäžŠã³æ¿ãã®ãã¢ãäœãããšãã§ããïŒãã¢ã®é¢ä¿ã«ãã $2$ ã€ã®äžŠã¹æ¿ãã«å¯ŸããŠïŒãããã®ã¹ã³ã¢ã®åã¯\r\n$$(b_1+b_2+\\cdots+b_{24}) \\times 25 = 7500$$\r\nã«ãªãïŒãŸãå
šäœã§ãã¢ã¯ $\\dfrac{24!}{2}$ åã§ããïŒãã£ãŠïŒè§£çãã¹ãå€ã¯\r\n$$7500 \\times \\frac{24!}{2}Ã\\frac{1}{24!}=\\mathbf{3750}$$\r\nãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc008/editorial/6043"
},
{
"content": "ã$b_i$ ã¯åºå®ããŠããã®ã§ããã§ã¯ $(1,2,\\cdots,24)$ ãšããïŒã€ãŸãïŒ\r\n$$a_1+2a_2+\\cdots+24a_{24}$$\r\nã®æåŸ
å€ãèããã°ããïŒããã§ïŒ$i(1\\leq i\\leq24)$ ã®å¯äžãèããïŒ$i$ ã $a_j$ ã«äžèŽãããšãïŒå¯äžã¯\r\n$$23!\\times\\sum_{j=1}^{24}ij=23!\\times300i$$\r\nããïŒ$i$ ãåãããšïŒãã®ç·å㯠$23!\\times300^2$ ãªã®ã§ïŒããã $24!$ ã§å²ãã°çããæ±ãŸãïŒ\r\n***\r\nã幎çã®é¡ãæžãã®ã§å¢ãããŠãããŸãããïŒ(JMOçäžããïŒ)\\\r\n**åé¡**: OMCåã®ããããé¡ã®æåŸ
å€ã $10000$ åãåããŠè¶
ããã®ã¯ $1,2,\\cdots,N$ ã®é åã§ã²ãŒã ããããšãã§ãïŒ$N$ ãæ±ããŠãã ããïŒ\\\r\n\\\r\n\\\r\n\\\r\n\\\r\n\\\r\n\\\r\n\\\r\n\\\r\n\\\r\n\\\r\n\\\r\n\\\r\n\\\r\n**解説**: 以äžã®è£é¡ãæç«ããïŒ\\\r\n**ã幎çã®è£é¡**: $1,2,\\cdots,N$ ã®é åã§ã²ãŒã ããããšãã«OMCåãããããé¡ã®æåŸ
å€ã¯ $\\dfrac{N(N+1)^2}{4}$\\\r\nãã£ãŠ $\\mathbf{34}$ ïŒ",
"text": "å¥è§£ïŒOMCåã幞ãã«ããã",
"url": "https://onlinemathcontest.com/contests/somc008/editorial/6043/388"
}
] | ãOMCåã¯TKGããããã幎çãããããŸãïŒãã®é¡ã¯æ¬¡ã®ã²ãŒã ã§æ±ºãŸããŸãïŒ
- OMCåãšTKGããã¯ïŒ$(1,2,\ldots,24)$ ã®äžŠã³æ¿ã
$$(a_1,a_2,\ldots,a_{24}), \quad (b_1,b_2,\ldots,b_{24})$$
ãããããç¬ç«ã«éžã¶ïŒ$2$ 人ã¯åèªã®äžŠã³æ¿ããåæã«çºè¡šãïŒOMCåã¯
$$ a_1 b_1 + a_2 b_2 + \cdots + a_{24} b_{24} $$
åãã幎çãšããŠåãåãïŒ
ãOMCåãšTKGããããšãã«äžŠã³æ¿ãã $24!$ éãããç¡äœçºã«éžã¶ãšãïŒOMCåãåãåãã幎çã®é¡ã®æåŸ
å€ãæ±ããŠãã ããïŒ |
SOMC008 | https://onlinemathcontest.com/contests/somc008 | https://onlinemathcontest.com/contests/somc008/tasks/9609 | B | SOMC008(B) | 200 | 121 | 139 | [
{
"content": "ãåå $X, Y, Z$ ãå
¥ã£ãçŠè¢ã®åæ°ããããã $x, y, z$ ãšãããšïŒ$x+y+z \\leq n$ ãæãç«ã€ïŒ$2023$ åã®çŠè¢ãè²·ãã°å¿
ãåå $X$ ã $1$ ã€ä»¥äžæã«å
¥ããããããïŒåå $X$ ãå
¥ã£ãŠããªãçŠè¢ã¯ $2022$ å以äžã§ããïŒããªãã¡ $n - x \\leq 2022$ ãæãç«ã€ïŒåæ§ã«ïŒ\r\n$$ n - y \\leq 2023, \\quad n - z \\leq 2024 $$\r\nãæãç«ã€ã®ã§ïŒãããã足ãåãããŠ\r\n$$ 2022 + 2023 + 2024 \\geq 3n - x - y - z \\geq 2n $$\r\nãšãªãïŒ$n \\leq 3034$ ãæãç«ã€ïŒçå·ã¯äŸãã° $(x, y, z) = (1012, 1011, 1010)$ ã®ãšãã«æãç«ã€ïŒãã®ãšãäœãå
¥ã£ãŠããªãçŠè¢ã $1$ ã€ããããšã«æ³šæïŒïŒä»¥äžããïŒ$n$ ã®æ倧å€ã¯ $\\bf{3034}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc008/editorial/9609"
}
] | ã OMCåã¯çŠè¢ãè²·ãã«è¡ããŸãïŒããåºã§ã¯ $n$ åã®çŠè¢ã売ã£ãŠããïŒããããã®çŠè¢ã®äžèº«ã¯ä»¥äžã®ããããã§ãïŒ
- äœãå
¥ã£ãŠããªãïŒ
- åå $X$ ã®ã¿ãã¡ããã© $1$ ã€å
¥ã£ãŠããïŒ
- åå $Y$ ã®ã¿ãã¡ããã© $1$ ã€å
¥ã£ãŠããïŒ
- åå $Z$ ã®ã¿ãã¡ããã© $1$ ã€å
¥ã£ãŠããïŒ
ããŸïŒæ¬¡ããã¹ãŠæãç«ã€ãšãïŒæ£æŽæ° $n$ ãšããŠããããæ倧ã®å€ãæ±ããŠãã ããïŒ
- $2023$ åã®çŠè¢ãã©ã®ããã«è²·ã£ãŠãïŒå¿
ãåå $X$ ã $1$ ã€ä»¥äžæã«å
¥ãïŒ
- $2024$ åã®çŠè¢ãã©ã®ããã«è²·ã£ãŠãïŒå¿
ãåå $Y$ ã $1$ ã€ä»¥äžæã«å
¥ãïŒ
- $2025$ åã®çŠè¢ãã©ã®ããã«è²·ã£ãŠãïŒå¿
ãåå $Z$ ã $1$ ã€ä»¥äžæã«å
¥ãïŒ |
SOMC008 | https://onlinemathcontest.com/contests/somc008 | https://onlinemathcontest.com/contests/somc008/tasks/10720 | C | SOMC008(C) | 200 | 43 | 89 | [
{
"content": "ãéè² æŽæ° $x, y, z$ ã\r\n$$7x + 10y + 16z = 2024$$\r\nãæºãããŠãããšãïŒ$n = x+y+z$ ãšããŠããããå€ã®ç·åãæ±ããã°ããïŒããŸïŒ\r\n$$ x+y+z \\equiv 7x+10y+16z \\equiv 2024 \\equiv 2 \\pmod{3} $$\r\nã§ããïŒãŸã\r\n$$ \\frac{2024}{16} = \\frac{7x+10y+16z}{16} \\leq x+y+z \\leq \\frac{7x+10y+16z}{7} = \\frac{2024}{7} $$\r\nãã $127 \\leq x+y+z \\leq 289$ ãåŸãïŒä»¥äž $2$ ã€ãåããããšïŒ$x+y+z$ ãšããŠããããå€ã¯\r\n$$3a+128 \\quad (a = 0, 1, \\ldots, 53)$$\r\nã«éãããïŒãããã¯ïŒ\r\n$$ (x, y, z) = \r\n\\begin{cases}\r\n(4a, 2a+4, -3a+124) & (0 \\leq a \\leq 41) \\\\\\\\\r\n(10a-246, -7a+373, 1) & (42 \\leq a \\leq 53)\r\n\\end{cases}\r\n$$\r\nã«ãã£ãŠãã¹ãŠéæã§ããã®ã§ïŒè§£çãã¹ãå€ã¯\r\n$$ 128 + 131 + \\cdots + 287 = \\bf{11205} $$\r\nã§ããïŒãªãïŒå
·äœçã«æ§æããªããšãïŒå§ç¹ $a = 0$ ãšçµç¹ $a = 53$ ãéæã§ããã°ïŒ$x, y, z$ ãé©å®èª¿æŽããããšã§ $1 \\leq a \\leq 52$ ãéæå¯èœã§ããããšããããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc008/editorial/10720"
}
] | ã OMCåã¯æžãåããããŠããŸãïŒOMCåã挢åã®ã蟰ããšãç«ããšãéŸããåèš $n$ æåæžãããšããïŒç»æ°ã®åèšã $2024$ ãšãªããŸããïŒãã®ãšã $n$ ãšããŠããããå€ã®ç·åãæ±ããŠãã ããïŒãã ãïŒã蟰ããç«ããéŸãã®ç»æ°ã¯ãããã $7, 10, 16$ ã§ãïŒãŸãïŒäœ¿ããªã挢åããã£ãŠãããã§ãïŒ |
SOMC008 | https://onlinemathcontest.com/contests/somc008 | https://onlinemathcontest.com/contests/somc008/tasks/10565 | D | SOMC008(D) | 200 | 40 | 61 | [
{
"content": "ããŸãã¯å°åïŒéŒ»ïŒãç¡èŠããŠèããïŒäžå³ã®ããã«æ¥ç¹ãåã®äžå¿ã«ã©ãã«ã¥ãããïŒ$A$ ã¯äžåã©ããã®æ¥ç¹ïŒ$O$ ã¯å€§åã®äžå¿ïŒ$M$ ã¯ååã®äžå¿ïŒ$P$ ã¯å³åŽã®äžåã®äžå¿ïŒ$Q$ ã¯å€§åãšå³åŽã®äžåã®æ¥ç¹ã§ããïŒ\\\r\nãäžåã®ååŸã $r$ ãšããïŒåè§åœ¢ $AMRP$ ãæ£æ¹åœ¢ãšãªãããšã«æ³šæãããšïŒ$AP = r$ ããã³\r\n$$ OP = OQ - PQ = 24 - r $$\r\n$$ OA = AM - OM = r - (24 - 20) = r-4 $$\r\nãåŸãïŒäžå¹³æ¹ã®å®çãã $OP^2 = OA^2 + AP^2$ïŒããªãã¡\r\n$$ (24-r)^2 = (r-4)^2 + r^2 $$\r\nãæãç«ã€ã®ã§ïŒããã $r \\gt 0$ ã®ããšã§è§£ãããšã§ $r = -20 + 8\\sqrt{15}$ ãåŸãïŒ\r\n\r\n![figure 1](\\/images\\/8wYtsfp3hQrFgUzhcivohjMrtE7CUlPJSAc0OlAK)\r\n\r\nãã€ãã«å°åãå«ããŠèããïŒå°åã®äžå¿ã $O^\\prime$ ãšãïŒååŸã $r^\\prime$ ãšããïŒå
çšãšåæ§ã®è°è«ãè¡ããšïŒ \r\n$$O^\\prime A = r - r^\\prime, \\quad O^\\prime P = r + r^\\prime$$\r\nã§ããããïŒäžå¹³æ¹ã®å®çãã $O^\\prime P^2 = O^\\prime A^2 + AP^2$ïŒããªãã¡\r\n$$ (r + r^\\prime)^2 = (r - r^\\prime)^2 + r^2 $$\r\nãåŸãïŒãããã $r^\\prime = \\dfrac{r}{4} = -5+2\\sqrt{15} = -5+\\sqrt{60}$ ããããã®ã§ïŒè§£çãã¹ãå€ã¯ $\\mathbf{65}$ ã§ããïŒ\r\n\r\n![figure 1](\\/images\\/cP3SKzjqXwOLe6GMjOqWYZc2gET0YXvUpYmTsHeW)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc008/editorial/10565"
}
] | ãOMCåã¯çŠç¬ããããŠããŸãïŒå€§å $1$ ã€ïŒååŸãåãã§ããäžå $2$ ã€ïŒå°å $1$ ã€ïŒåå $1$ ã€ãçšããŠé¡ãäœã£ããšããïŒäžå³ã®ããã«ãªããŸããïŒããã§ïŒå€§åã»äžåã»ååã¯ã©ã® $2$ ã€ãæ¥ããŠããïŒå°å㯠$2$ ã€ã®äžåãšååã«å€æ¥ããŠãããã®ãšããŸãïŒ\
ãååã®ååŸã $20$ïŒå€§åã®ååŸã $24$ ã®ãšãïŒå°åã®ååŸã¯æ£ã®æŽæ° $a, b$ ãçšã㊠$-a+\sqrt{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ããïŒ
![figure 1](\/images\/JzQBkvSkMx7LetiCXxEf76G3DwqRHYQJWxuc3qpi) |
OMC198 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc198 | https://onlinemathcontest.com/contests/omc198/tasks/8713 | A | OMC198(A) | 400 | 116 | 143 | [
{
"content": "ã$P,Q$ ããããã®äžå¿ã® $x$ 座æšã $p,q$ïŒååŸã $u,v$ ãšããïŒãã®ãšãïŒ$P,Q$ ã®åæ¹ãšäºãã«å€æ¥ãïŒååŸã $k$ ã§ããåã®äžå¿ $(x,y)$ ãã¿ããã¹ãæ¹çšåŒã¯ïŒ\r\n$$(x-p)^2+y^2=(k+u)^2, \\quad (x-q)^2+y^2=(k+v)^2$$\r\nã§ããïŒããã解ãã°ïŒ$x$ ãšã㊠$k$ ã® $1$ 次åŒãåŸãããïŒã€ãŸãïŒæ±ããå€ã $t$ ãšãããšïŒ$(k, x) = (4,8),(16,11),(2023,t)$ ã¯åäžçŽç·äžã«äžŠã¶ããïŒ$t=\\dfrac{2051}4$ ã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\textbf{2055}$ ã§ããïŒ\\\r\nããªãïŒ$p=2$ïŒ$q=10$ïŒ$u=5$ïŒ$v=3$ ãšããŠæ¡ä»¶ã¯å®çŸå¯èœã§ããïŒ$B$ ã®äžå¿ã® $x$ 座æšã¯ $10$ïŒïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc198/editorial/8713"
}
] | ã$xy$ å¹³é¢ã«ãããŠïŒäžå¿ããšãã« $x$ 軞äžã«ããïŒäºãã«å€æ¥ããŠãã $2$ åã®å $P,Q$ ããããŸãïŒããŸïŒ$P,Q$ ã®åæ¹ãšäºãã«å€æ¥ãã $4$ åã®å $A,B,C,D$ ã§ãã£ãŠïŒæ¬¡ãã¿ãããã®ããšãããšãã§ããŸããïŒ
- $A$ ã®äžå¿ã® $x$ 座æšã¯ $8$ ã§ããïŒååŸã¯ $4$ ã§ããïŒ
- $B$ ã®äžå¿ã® $y$ 座æšã¯ $15$ ã§ããïŒååŸã¯ $12$ ã§ããïŒ
- $C$ ã®äžå¿ã® $x$ 座æšã¯ $11$ ã§ããïŒååŸã¯ $16$ ã§ããïŒ
- $D$ ã®ååŸã¯ $2023$ ã§ããïŒ
ããã®ãšãïŒå $D$ ã®äžå¿ã® $x$ 座æšã¯äžæã«å®ãŸãã®ã§ïŒãããæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $p,q$ ã«ãã£ãŠ $\dfrac{p}{q}$ ãšè¡šããã®ã§ïŒ$p+q$ ã解çããŠãã ããïŒ |
OMC198 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc198 | https://onlinemathcontest.com/contests/omc198/tasks/7030 | B | OMC198(B) | 400 | 169 | 246 | [
{
"content": "![figure 1](\\/images\\/FLtYYsRF8Z6tGDu1Bn4adxMgtJ2SpZBNrevwvjS8)\r\n\r\nã$1$ ã€ã® $2\\times 2$ ã®ã¿ã€ã«ã¯äžã®å³ã®é»ãã¹ã®éšåãã¡ããã© $1$ ã€å«ãã®ã§ $6$ ã€ã®é»ãã¹ãš $6$ ã€ã® $2\\times 2$ ã®ã¿ã€ã«ãäžå¯Ÿäžå¯Ÿå¿ããïŒåŸã£ãŠïŒæ°ããã¹ããã®ã¯ïŒ$6$ ã€ã®é»ãã¹ãå«ããã㪠$6$ ã€ã® $2\\times 2$ ã®ã¿ã€ã«ã®çœ®ãæ¹ã§ãã£ãŠïŒ$2\\times 2$ ã®ã¿ã€ã«å士ãéãªããªããã®ãšèšãæããããïŒ\\\r\nãé»ãã¹ãšãããå«ã $2\\times 2$ ã®ã¿ã€ã«ãšã®äœçœ®é¢ä¿ã¯ $4$ éããããïŒãããã瞊ããšã暪ãã®äºã€ã®ãã©ã¡ã¿ã«åé¢ããŠèããïŒã€ãŸãïŒé»ãã¹ã $2\\times2$ ã®ã¿ã€ã«ã®äžäžã©ã¡ãã®åŽã«ããããšããæ
å ±ãšïŒå·Šå³ã©ã¡ãã®åŽã«ããããšããæ
å ±ãåé¢ããŠèããïŒ\r\n\r\n\r\n- 暪ã®ã¿ã€ã«å士ãéãªããªããã㪠$6$ ã€ã®ã¿ã€ã«ã®ã暪ãã®ãã©ã¡ã¿ã®æ±ºãæ¹ã¯ $4\\times 4=16$ éãïŒ\r\n- 瞊ã®ã¿ã€ã«å士ãéãªããªããã㪠$6$ ã€ã®ã¿ã€ã«ã®ã瞊ãã®ãã©ã¡ã¿ã®æ±ºãæ¹ã¯ $3\\times 3 \\times 3=27$ éãïŒ\r\n\r\nãã£ãŠïŒæšªã®ã¿ã€ã«å士ãšçžŠã®ã¿ã€ã«å士ãéãªããªããã㪠$6$ ã€ã®ã¿ã€ã«ã®çœ®ãæ¹ã¯ $16\\times 27=432$ éãããïŒãããïŒããã¯æãã®ã¿ã€ã«å士ãéãªãå Žåãèæ
®ããŠããªãã®ã§ïŒãã®ãããªå ŽåãåŒãå¿
èŠãããïŒ\\\r\nãéãªãåãæãã®ã¿ã€ã«ã®çµã¿ã¯ïŒäžã®å³ã«ãããŠåãåã§å²ãŸããŠããäºã€ã®é»ã¿ã€ã«ã®çµã¿ã«å¯Ÿå¿ã㊠$4$ ãã¿ãŒã³èãããããïŒå¯Ÿç§°æ§ãã $1$ ãã¿ãŒã³ãèã㊠$4$ åããã°è¯ãïŒ\r\n\r\n![figure 2](\\/images\\/pvoRwVyFtQlNJkRqmUXUqIIBztZBNW8lY7P779Md)\r\n\r\n![figure 3](\\/images\\/VQX3ciczTk8LIdX76NI4GEjC5TmoOsl6wTcLRO41)\r\n\r\nãå·Šäžã®é»ã¿ã€ã«ãšäžæ®µäžå€®ã®é»ã¿ã€ã«ã«å¯Ÿå¿ããã¿ã€ã«å士ãéãªã£ãŠããå ŽåïŒå·ŠåŽåã€ã® $2\\times2$ ã¿ã€ã«ã®çœ®ãæ¹ã¯äžã®å³ã®ãããªçœ®ãæ¹ã«éããïŒæ®ãã® $2$ ã€ã®ã¿ã€ã«ã®çœ®ãæ¹ã¯ $6$ éãã§ããïŒ\\\r\nã以äžããïŒæ±ããçã㯠$432-6\\times 4=\\bold{408}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc198/editorial/7030"
}
] | ã$5\times 7$ ã®ãã¹ç®ã $2\times 2$ ã®æ£æ¹åœ¢ã®ã¿ã€ã« $6$ æãš $1 \times 1$ ã®æ£æ¹åœ¢ã®ã¿ã€ã« $11$ æã§ïŒéããããšãªãïŒãŸãééãªãïŒæ·ãè©°ããæ¹æ³ã¯äœéããããŸããïŒ\
ããã ãïŒåã倧ããã®ã¿ã€ã«ã¯åºå¥ããïŒå転ãããè£è¿ãããããŠåãã«ãªãæ·ãè©°ãæ¹ã¯éããã®ãšããŠæ°ããŸãïŒ |
OMC198 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc198 | https://onlinemathcontest.com/contests/omc198/tasks/9321 | C | OMC198(C) | 400 | 47 | 76 | [
{
"content": "$$\\angle CQP = \\angle DAP = \\angle RAP$$\r\nã§ããïŒåæ§ã« $\\angle ARP = \\angle QCP$ ãæãç«ã€ã®ã§ïŒäžè§åœ¢ $APR$ ãšäžè§åœ¢ $QPC$ ã¯çžäŒŒã§ããïŒãŸãïŒ\r\n$$\\begin{aligned}\r\n\\angle BAC &= \\angle BDC = \\angle PDC = \\angle PRC,\\\\\\\\\r\n\\angle ABC &= 180^\\circ - \\angle ADC = 180^\\circ - \\angle RDC = \\angle RPC\r\n\\end{aligned}$$\r\nãããããæãç«ã€ã®ã§ïŒäžè§åœ¢ $ABC$ ãšäžè§åœ¢ $RPC$ ãçžäŒŒã§ããïŒãã£ãŠïŒ\r\n$$AR : CQ = PR : CP = AB : BC = 5 : 7$$\r\nã§ããïŒãŸãïŒ\r\n$$\\begin{aligned}\r\n\\angle ABP &= \\angle ABD = \\angle ACD = \\angle ACQ\\\\\\\\\r\n\\angle APB &= 180^\\circ - \\angle APD = 180^\\circ - \\angle AQD = \\angle ACQ\r\n\\end{aligned}$$\r\nã§ããããïŒäžè§åœ¢ $ABP$ ãšäžè§åœ¢ $ACQ$ ã¯çžäŒŒã§ããïŒãã£ãŠïŒ\r\n$$AC : CQ = AB : BP = 5 : 2$$\r\nã§ããïŒä»¥äžããïŒ\r\n$$CQ:DQ=2:3,\\quad DR:AR=4:5$$\r\nãšããããŠèšç®ããããšã§ïŒ\r\n$$AC : CD : DA = 35 : 35 : 18$$\r\nãåŸãïŒãã£ãŠïŒäžè§åœ¢ $ACD$ 㯠$C$ ãé è§ãšããäºç蟺äžè§åœ¢ã§ããã®ã§ïŒ\r\n$$\\cos \\angle ADC = \\frac{AD}{2AC} = \\frac{9}{35}$$\r\nã§ããïŒãããã£ãŠïŒ$\\cos \\angle ABC = - \\cos \\angle ADC$ ã«æ°ãã€ããã°ïŒäœåŒŠå®çããïŒ\r\n$$AC^2 = AB^2 + BC^2 - 2AB\\cdot BC\\cos\\angle ABC = 92$$\r\nãåŸãïŒãã£ãŠïŒ\r\n$$AD^2 = \\frac{18^2AC^2}{35^2} = \\frac{29808}{1225}$$\r\nã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf{31033}$ ã§ããïŒ\r\n\r\n---\r\n\r\n**å¥è§£.**ãç¹ $D$ ãäžå¿ã«ååŸ $\\sqrt{CD\\times DA}$ ã®å転ãè¡ãïŒå転åŸã®ç¹ã $^{\\prime}$ ãä»ããèšå·ã§è¡šãïŒãã®ãšãïŒ\r\n$$ DC^{\\prime}:C^{\\prime}Q^{\\prime}=3:2, \\quad DA^{\\prime}:A^{\\prime}R^{\\prime}=4:5 $$\r\nãæãç«ã€ïŒãã£ãŠïŒãã§ãã®å®çãã $A^{\\prime} B^{\\prime} :B^{\\prime} C^{\\prime}=25:18$ïŒããã«ã¡ãã©ãŠã¹ã®å®çãã $D^{\\prime} B^{\\prime} :D^{\\prime} P^{\\prime}=33:43$ ãæãç«ã€ïŒãã£ãŠïŒ $DP :DB=33:43$ ã§ãããã $DB=43\\/5$ ã§ããããšãåããïŒ\\\r\nãããŸïŒ$DA=DC^{\\prime} ,DC=DA^{\\prime}$ ã§ããããšããïŒ$\\triangle ADC\\equiv\\triangle C^{\\prime}DA^{\\prime}$ ã«æ³šæããïŒããã§ïŒ $CX:XA=25:18$ ãªãç¹ $X$ ã察è§ç· $AC$ äžã«ãšããšïŒ$\\triangle XDC\\equiv\\triangle B^{\\prime}DA^{\\prime}$ ã§ããããšããïŒ$\\angle XDC = \\angle B^{\\prime}DA^{\\prime} =\\angle BDA$ïŒãŸãïŒååšè§ã®å®çãã $\\angle ABD=\\angle XCD$ ã§ããããšããïŒ$\\triangle ABD \\sim \\triangle XCD$ ãæãç«ã€ïŒåæ§ã®è°è«ããïŒ$\\triangle CBD \\sim \\triangle XAD$ ãæãç«ã€ïŒä»¥äžã«ããïŒ\r\n$$\r\nXC:CD=AB:BD=25:43, \\quad XA:AD=CB:BD=35:43\\\\\\\\\r\n \\implies DA:AX:XC:CD=(43\\times 18):(35\\times 18):(35\\times 25):(35\\times 43)\r\n$$\r\nãšãªãïŒããã«ããïŒ$AB:AD=CX:XD=175:36\\sqrt{23}$ ã§ããããïŒ\r\n$$DA^2=\\frac{5^2 \\times 36^2\\times 23}{175^2}=\\frac{29808}{1225}$$\r\nã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf{31033}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc198/editorial/9321"
},
{
"content": "ãã¬ããŒã®å®çã§length-chaseããŸãïŒ\r\n___\r\n\r\nãäžè¬ã«ïŒåã«å
æ¥ããåžåè§åœ¢ $XYZW$ ã«ãããŠïŒãã¬ããŒã®å®çãšæ£åŒŠå®çããïŒ\r\n\r\n$$ XY \\cdot \\sin \\angle ZXW + XW \\cdot \\sin \\angle YXZ = XZ \\cdot \\sin \\angle YXW$$\r\n\r\n(䞡蟺ãå€æ¥åã®çŽåŸã§å²ã£ãã®ã§ãã)\r\n\r\nãåè§åœ¢ $DABC, DAPQ, DRPC$ ã¯åžã§ãã[*1]ããïŒ\r\n\r\n$$ DA \\cdot \\sin \\angle BDC + DC \\cdot \\sin \\angle ADB = DB \\cdot \\sin \\angle ADC \\\\\\\\\r\nDA \\cdot \\sin \\angle BDC + DQ \\cdot \\sin \\angle ADB = DP \\cdot \\sin \\angle ADC \\\\\\\\\r\nDR \\cdot \\sin \\angle BDC + DC \\cdot \\sin \\angle ADB = DP \\cdot \\sin \\angle ADC $$\r\n\r\nããã§ïŒ$\\sin \\angle BDC : \\sin \\angle ADB : \\sin \\angle ADC = BC : AB : AC = 7 : 5 : AC$ ããïŒ\r\n\r\n$$ DA \\cdot 7 + DC \\cdot 5 = DB \\cdot AC \\\\\\\\\r\nDA \\cdot 7 + \\frac{3}{5} DC \\cdot 5 = \\left( DB-2 \\right) \\cdot AC \\\\\\\\\r\n\\frac{4}{9} DA \\cdot 7 + DC \\cdot 5 = \\left( DB-2 \\right) \\cdot AC $$\r\n\r\nãããã£ãŠïŒ\r\n\r\n$$ \\frac{2}{5} DC \\cdot 5 = \\frac{5}{9} DA \\cdot 7 = 2AC$$\r\n\r\nãããæŽçãããš $DC = AC, DA = \\dfrac{18}{35}AC$ ãåŸããïŒåŸã¯å
¬åŒè§£èª¬ãšåæ§ïŒ\r\n___\r\n[*1] äœçœ®é¢ä¿ã®è°è«ãããã°èšŒæã§ããïŒ(å®ã¯ïŒæåè§ãå©çšããŠåžæ§ã®è°è«ãçãããšãã§ãã)",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc198/editorial/9321/385"
}
] | ãåè§åœ¢ $ABCD$ ã¯åã«å
æ¥ãïŒ$AB = 5, BC = 7$ ãæºãããŠããŸãïŒç·å $BD$ äžã« $BP=2$ ãæºããããã«ç¹ $P$ ããšããšïŒäžè§åœ¢ $ADP$ ã®å€æ¥åãšèŸº $CD$ ã $D$ ã§ãªãç¹ $Q$ ã§äº€ããïŒäžè§åœ¢ $CDP$ ã®å€æ¥åãšèŸº $AD$ ã $D$ ã§ãªãç¹ $R$ ã§äº€ãããŸããïŒ
$$CQ:DQ=2:3,\quad DR:AR=4:5$$
ãæãç«ã€ãšãïŒ$AD^2$ ã®å€ãæ±ããŠãã ããïŒãã ãïŒæ±ããçãã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ããïŒ |
OMC198 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc198 | https://onlinemathcontest.com/contests/omc198/tasks/8686 | D | OMC198(D) | 400 | 48 | 78 | [
{
"content": "ããŸãïŒ$f(n,m)$ ã«ã€ããŠèå¯ããïŒ$m^n$ åã®æ°åã®ãã¡ïŒç¹ã«åé
ã $k$ ã®åæ°ã§ãããã®ã¯ $\\lfloor m\\/k \\rfloor ^ n$ åååšãããïŒãã®äžã«ã¯æ倧å
¬çŽæ°ã $2k$ ã $3k$ ãªã©ãšãã£ããã®ãå«ãŸããŠããããïŒæçŽã«ã¯è¶³ãåãããããªãïŒããã§ïŒæŽæ°å $p=(p_1,p_2,\\dots)$ ã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ãã¿ãããã®ããã£ããšãããïŒ\r\n\r\n- ä»»æã®æ£æŽæ° $n$ ã«å¯ŸããŠïŒ$\\displaystyle\\sum_{d\\mid n}^{} p_d = n$ ãã¿ããïŒ\r\n\r\nãããšïŒåé
ã $k$ ã®åæ°ã§ãããããªæ°åã $p_k$ åéããŠåå®ããããšã§ïŒãã¹ãŠã®æ°åã«å¯ŸããŠã¡ããã©æ倧å
¬çŽæ°åã®å¯äžãäžããããïŒå®éïŒæ倧å
¬çŽæ°ã $k$ ã§ããæ°åã«å¯ŸããŠïŒ$k$ ã®çŽæ°ã $d_1,d_2,\\dots,d_t$ ãšãããšãã㯠$p_{d_1}+\\cdots+p_{d_t}$ åã«ãŠã³ããããŠããŠïŒ$p$ ã®å®çŸ©ãããã㯠$k$ ã«çããïŒ\\\r\nãããŠïŒ$p$ ã«ã€ããŠèå¯ããïŒçµè«ããè¿°ã¹ãã°ïŒEuler ã® totienté¢æ° $\\varphi$ ã $p$ ãšããŠã®æ¡ä»¶ãã¿ããïŒå®éïŒä»»æã® $n$ ã®çŽæ° $d$ ã«å¯ŸããŠïŒ$1 \\le i \\le n$ ã〠$\\gcd(i,n) = d$ ãã¿ããæŽæ° $i$ 㯠$\\varphi(n\\/d)$ åååšããã®ã§ïŒ\r\n$$ \\sum_{d\\mid n}^{} \\varphi(d) = \\sum_{d\\mid n} \\varphi\\left(\\frac{n}{d}\\right) = n $$\r\nãæãç«ã€ïŒãã ãïŒäžã€ç®ã®çå·ã§ã¯ $d$ ã $n\\/d$ ã«ãããããïŒä»¥äžããæ°å $(a_1,\\dots,a_{g(m)})$ ã«ã¯ïŒå $1 \\le i \\le m$ ã«å¯Ÿã㊠$\\lfloor m\\/i \\rfloor$ ã $\\varphi(i)$ åãã€å«ãŸããŠããïŒ$g(m)=\\varphi(1)+\\cdots+\\varphi(m)$ ã§ããïŒç¹ã«ïŒ\r\n$$g(1001) - g(999) = \\varphi(1001) + \\varphi(1000) = 720 + 400 = \\textbf{1120}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc198/editorial/8686"
}
] | ãé·ã $n$ ãã€åé
ã $1$ ä»¥äž $m$ 以äžã§ãããããªæ£æŽæ°å $m^n$ åãã¹ãŠã«å¯ŸããŠïŒ$n$ æ°ã®æ倧å
¬çŽæ°ã®ç·åã $f(n,m)$ ãšãããŸãïŒãã®ãšãïŒæ£æŽæ° $m$ ããããã«å¯ŸããŠïŒä»¥äžãã¿ããæ£æŽæ° $g(m)$ ããã³åºçŸ©å調å¢å ãªæ£æŽæ°å $(a_1,a_2,\dots,a_{g(m)})$ ãäžæã«å®ãŸããŸãïŒ
- ä»»æã®æ£æŽæ° $n$ ã«å¯ŸããŠïŒ$a_1^n + a_2^n +\cdots+ a_{g(m)}^n = f(n,m)$ ãæãç«ã€ïŒ
ããã®ãšãïŒ$g(1001) - g(999)$ ã®å€ãæ±ããŠãã ããïŒ |
OMC198 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc198 | https://onlinemathcontest.com/contests/omc198/tasks/7033 | E | OMC198(E) | 800 | 18 | 76 | [
{
"content": "ãçµè«ããè¿°ã¹ãã°ïŒããç¶æ
ããå§ããŠåŸæãåã€ããšã¯ä»¥äžãšåå€ã§ããïŒ\r\n\r\n- åå±±ã®ç³ã®æ°ãäºé²æ³ã§è¡šãããšãïŒã©ã®äœã«ã€ããŠãããã $1$ ã§ãããã®ã $3$ ã®åæ°åååšããïŒ\r\n\r\nãã®ç¶æ
ã以äžã§ã¯**è¯ãç¶æ
**ãšãã³ïŒããã§ãªãç¶æ
ã**è¯ããªãç¶æ
**ãšãã¶ïŒ\\\r\nãæåŸãè¯ãç¶æ
ã§ããããšã«æ³šæããã°ïŒä»¥äžã®äºã€ã瀺ãã°ããïŒ\r\n\r\n- ã©ã®è¯ãç¶æ
ããã©ã®ããã« $1$ åæäœããŠãè¯ããªãç¶æ
ã®ç€é¢ã«ãªãããšïŒ\r\n- ã©ã®è¯ããªãç¶æ
ãããïŒé©åœã« $1$ åæäœããããšã§è¯ãç¶æ
ã®ç€é¢ã«ã§ããããšïŒ\r\n\r\n以äžïŒç¹ã«æããªããäœããªã©ãšãã£ããšãïŒäºé²æ³ã«ããè¡šèšã§èãããã®ãšããïŒ\\\r\nããŸãåè
ãã瀺ãïŒã©ã®äœã«ã€ããŠãïŒããã $1$ ã§ãããããªå±±ã®æ°ã®å·®ã¯ïŒ $1$ åã®æäœã®ååŸã§ $2$ 以äžã§ããïŒãã£ãŠïŒè¯ãç¶æ
ããæäœããŠåã³è¯ãç¶æ
ã§ããããã«ã¯ïŒã©ã®äœã«ã€ããŠãæäœåãšåŸã§ãã®äœã $1$ ã§ãããããªå±±ã®æ°ãå€ãããªãå¿
èŠãããïŒããã¯æäœã®ååŸã§ç³ã®ç·æ°ãå€ãããªãããšãæå³ããã®ã§äžé©ã§ããïŒ\\\r\nã以äžïŒåŸè
ã瀺ãïŒåäœã«ã€ããŠãã®äœã $1$ ã§ãããããªå±±ã®æ°ã $3$ ã§å²ã£ãäœããèããïŒ\r\n\r\n\r\n- $0$ ã§ãªãæäžäœã®äœã®äœãã®æ°ã $2$ ã®å Žåã«è¡ãã¹ãæäœïŒ\\\r\nããã®äœã $1$ ã§ãããã㪠$2$ ã€ã®ç³ã®å±±ãéžã³ïŒãã®äœããããã $0$ ã«ãªãããã«ããïŒ\\\r\nãããããäžã®äœã«ã€ããŠãïŒåæ§ã«ããŠèª¿æŽãå¯èœã§ããïŒ\r\n\r\n- $0$ ã§ãªãæäžäœã®äœã®äœãã®æ°ã $1$ ã®å Žåã«è¡ãã¹ãæäœïŒ\\\r\nããŸãïŒãã®äœã $1$ ã§ãããã㪠$1$ ã€ã®ç³ã®å±±ãéžã³ïŒãã®äœã $0$ ã«ãªãããã«ããïŒ\\\r\nãããããäžã®äœã«ã€ããŠïŒå
ã«éžæãã以å€ã®å±±ã§ãã£ãŠãã®äœã $1$ ã§ãããããªãã®æ°ã $3$ ã§å²ã£ãäœããèããïŒãã®ãšãïŒäœãã $1$ ã§ããäœããªããã°ïŒå
ã«éžæããç³ã®å±±ã§ã®èª¿æŽã®ã¿ã§ãã¹ãŠã®äœã®äœãã $0$ ã«ã§ããïŒããã§ãªãå ŽåãïŒäœãã $1$ ã§ããäœã®æäžäœã $1$ ã§ãããããªç³ã®å±±ãæ°ãã« $2$ ã€ç®ãšããŠéžæããã°ïŒããããå©çšããŠèª¿æŽãå¯èœã§ããïŒ\r\n\r\nãæåŸã«ïŒæåãè¯ãç¶æ
ã«ãªããã㪠$N$ïŒä»¥äžïŒããã**è¯ãæ°**ãšãã¶ïŒã®æ¡ä»¶ãèããïŒ\\\r\nããŸãïŒ$N$ 以äžã®æ£æŽæ°ã§ãã£ãŠïŒ $2^k$ ã®äœã $1$ ã§ãããã®ã®åæ°ã¯ïŒä»¥äžã®ããã«è¡šããïŒ\r\n$$\r\n\\begin{cases}\r\n\\biggl\\lfloor \\dfrac{N}{2^{k+1}} \\biggr\\rfloor \\times 2^k & N\\ ã®\\ 2^k\\ ã®äœã\\ 0\\ ã®ãšã \\\\\\\\\r\n\\\\\\\\\r\nN- \\biggl(\\biggl\\lfloor \\dfrac{N}{2^{k+1}} \\biggr\\rfloor+1\\biggr) \\times 2^k & N\\ ã®\\ 2^k\\ ã®äœã\\ 1\\ ã®ãšã\r\n\\end{cases}\r\n$$\r\nãããŸïŒ$2^a$ ã®äœãš $2^b$ ã®äœïŒ$a\\lt b$ïŒã $1$ ã§ïŒãã®éã®äœããã¹ãŠ $0$ ã§ãããããªè¯ãæ° $N$ ã«ã€ããŠïŒ\r\n$$\r\n\\biggl(\\biggl\\lfloor \\frac{N}{2^{a+1}}\\biggr\\rfloor+1\\biggr) \\times 2^a \\equiv \\biggl(\\biggl\\lfloor \\frac{N}{2^{b+1}} \\biggr\\rfloor+1\\biggr) \\times 2^b\\pmod 3\r\n$$\r\nãæç«ããäžæ¹ã§ïŒ\r\n$$\r\n\\biggl\\lfloor \\frac{N}{2^{a+1}}\\biggr\\rfloor= \\biggl\\lfloor \\frac{N}{2^{b+1}} \\biggr\\rfloor \\times 2^{b-a}+2^{b-a-1}\r\n$$\r\nãæãç«ã€ïŒããããããããã°ïŒ$2^{a} \\equiv 2^{b-1} \\pmod 3$ïŒããªãã¡ $a$ ãš $b$ ã®å¶å¥ã¯ç°ãªãããšããããïŒèšããããã°ïŒ$2$ ã€ã® $1$ ã«é£ç¶ããŠæãŸãã $0$ ã¯å¶æ°åã§ããïŒåæ§ã«ããŠïŒ$2$ ã€ã® $0$ ã«æãŸãã $1$ ãå¶æ°åã§ããããšããããïŒãããã£ãŠïŒè¯ãæ°ã¯äžäœããèŠããš $2$ æ¡ããšã«åããã®ã䞊ã¶ïŒäŸïŒ$1111000000110\\cdots$ïŒïŒ\\\r\nããããã«å ããŠïŒå¶æ°ã§ããããšã»æ¡æ°ãå¥æ°ã§ããããšã® $3$ ã€ã§å¿
èŠååæ¡ä»¶ãšãªãããšããããïŒ\\\r\nã$0$ ä»¥äž $2047~(=2^{11}-1)$ 以äžã«ãã®ãããªæ°ã¯ $2^5$ åååšããïŒ$a$ ãè¯ãæ°ãªãã° $2046-a$ ãè¯ãæ°ã§ããããšã«æ³šæãïŒç¯å²å€ã® $0,2040,2046$ ãé€ãã°ïŒç·åã¯\r\n$$2046 \\times 2^5 \\times \\frac{1}{2}-0-2040-2046=28650$$\r\nãšãªãïŒç¹ã«ïŒæ±ããå€ã¯ïŒ$(1+2+\\cdots+2023)-28650=\\mathbf{2018626}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc198/editorial/7033"
}
] | ã$0$ å以äžã®ç³ãããªãå±± $N$ åãå·Šå³äžåã«äžŠãã§ããŸãïŒ$k = 1,2,\ldots,N$ ã«ã€ããŠïŒå·Šãã $k$ çªç®ã®å±±ã¯ã¯ãã $k$ åã®ç³ãããªããŸãïŒããã $N$ åã®å±±ã䜿ã£ãŠïŒãµã³ã¿ãšããã«ã€ã次ã®ã²ãŒã ãããŸãïŒ
- ãµã³ã¿ãå
æãšããŠïŒæ¬¡ã®æäœãå¯èœãªéã亀äºã«è¡ãïŒ
- $1$ ã€ãŸã㯠$2$ ã€ã®å±±ãéžæãïŒããããããç³ã $1$ å以äžãã€åãïŒ$2$ ã€ã®å±±ãéžãã ãšãïŒããããããç°ãªãåæ°ã®ç³ãåã£ãŠãããïŒïŒããã§ïŒç³ã $1$ åããªãå±±ãéžæããããšã¯ã§ããªããïŒæäœã®çµæãšããŠããå±±ã«å«ãŸããç³ã $0$ åã«ãªã£ãŠãããïŒ
- å
ã«æäœãåºæ¥ãªããªã£ãæ¹ãè² ããšãªãïŒããäžæ¹ãåã¡ãšãªãïŒ
ãäž¡è
ãèªèº«ã®åã¡ãç®æšãšããŠæé©ãªè¡åããšããšãïŒå
æã®ãµã³ã¿ãåã€ãããªæ£æŽæ° $N$ ã**è¯ãæ°**ãšãã³ãŸãïŒ$2023$ 以äžã®è¯ãæ°ã®ç·åãæ±ããŠãã ããïŒ |
OMC198 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc198 | https://onlinemathcontest.com/contests/omc198/tasks/9322 | F | OMC198(F) | 800 | 1 | 17 | [
{
"content": "ã$(x+a, y+b, z+c) \\in B$ ãã¿ããæ£ã®æŽæ° $x, y, z, a, b, c$ ã«ã€ããŠïŒ\r\n\r\n$$ \\begin{aligned} \r\ng(x, y, z, a, b, c) = ~&f(x,y,z)+f(x,y+b,z+c)+f(x+a,y,z+c)+f(x+a,y+b,z)\\\\\\\\\r\n&-f(x+a,y,z)-f(x,y+b,z)-f(x,y,z+c)-f(x+a,y+b,z+c)\r\n\\end{aligned} $$\r\n\r\nã«ããé¢æ° $g(x, y, z, a, b, c)$ ãå®ããïŒè¯ãé¢æ°ã§ããããã®æ¡ä»¶åŒã¯ $g(x,y,z,a,a,a)\\geq 1$ ãšè¡šããïŒ\r\nããã§ïŒåŒã®æã¡æ¶ããããèããããšã§ïŒ\r\n$$\r\n\\sum_{i=0}^{a-1}g(x+i,y,z,1,b,c)=g(x,y,z,a,b,c)\\\\\\\\\r\n\\sum_{i=0}^{b-1}g(x,y+i,z,a,1,c)=g(x,y,z,a,b,c)\\\\\\\\\r\n\\sum_{i=0}^{c-1}g(x,y,z+i,a,b,1)=g(x,y,z,a,b,c)\r\n$$\r\nãæãç«ã€ããïŒ\r\n$$\r\n\\begin{aligned}\r\n\\sum_{i=0}^{a-1}\\sum_{j=0}^{b-1}\\sum_{k=0}^{c-1}g(x+i,y+j,z+k,1,1,1) &= \\sum_{i=0}^{a-1}\\sum_{j=0}^{b-1}g(x+i,y+j,z,1,1,c) \\\\\\\\\r\n &= \\sum_{i=0}^{a-1}g(x+i,y,z,1,b,c) \\\\\\\\\r\n &= g(x,y,z,a,b,c)\r\n\\end{aligned}\r\n$$\r\nãšãªãïŒããããïŒ$g(x,y,z,a,b,c)\\geq abc$ ãæãç«ã€ããšïŒãŸã $f$ ãè¯ãé¢æ°ã§ããããã«ã¯ä»»æã® $(x, y, z) \\in B$ ã«ã€ã㊠$g(x,y,z,1,1,1)\\geq 1$ ã§ããã°ååã§ããããšããããïŒããŠïŒ\r\n\r\n$$ \\begin{aligned} \r\ng(x,y,z,a,b,c)\\leq \r\n~&|f(x,y,z)|+|f(x,y+b,z+c)|+|f(x+a,y,z+c)|+|f(x+a,y+b,z)|\\\\\\\\\r\n&+|f(x+a,y,z)|+f(x,y+b,z)|+|f(x,y,z+c)|+|f(x+a,y+b,z+c)|\r\n\\end{aligned} $$\r\n\r\nã§ããããšããïŒ\r\n$$\r\n\\begin{aligned}\r\nS=\\sum_{i=1}^{5}\\sum_{j=1}^{6}\\sum_{k=1}^{7} |f(i,j,k)| &\\geq \\sum_{i=1}^{2}\\sum_{j=1}^{3}\\sum_{k=1}^{3} g(i,j,k,3,3,4)\\\\\\\\\r\n&\\geq \\sum_{i=1}^{2}\\sum_{j=1}^{3}\\sum_{k=1}^{3} 3\\times 3\\times 4\\\\\\\\\r\n&=648\r\n\\end{aligned}\r\n$$ \r\nãæãç«ã¡ïŒãã®çå·ãæç«ããã®ã¯ïŒ$f$ ã®å€ã以äžã®æ¡ä»¶ãå
šãŠæºããæã«ãªãïŒ\r\n$$\r\n\\begin{cases} \r\nf(x,y,z)\\geq 0 \\quad ((x-3)(y-3.5)(z-4)\\lt 0)\\\\\\\\\r\nf(x,y,z)=0 \\quad ((x-3)(z-4) = 0)\\\\\\\\\r\nf(x,y,z)\\leq 0\\quad ((x-3)(y-3.5)(z-4)\\gt 0)\\\\\\\\\r\ng(x,y,z,1,1,1)=1\r\n\\end{cases} \r\n$$\r\nããã¯ããšãã° $f(x,y,z)=-(x-3)(y-4)(z-4)$ ãªã©ã§æºããããã®ã§ïŒ$S_{\\mathrm{min}}=648$ ãšåããïŒ\\\r\nã察称æ§ããïŒ$x\\lt 3, z\\lt 4$ ã®éšåã«ã€ããŠèããã°ããïŒ$f(x,3,z), f(x,4,z)$ ã®ããããã®å€ã決ãŸãã°ïŒæ®ãã®å€ã $g(x,y,z,1,1,1)=1$ ãæºããããã«äžæã«æ±ºããããšãã§ããïŒããã« $f(x,3,z)\\geq 0$ ãªãã° ïŒ$y\\lt 3$ ã«ã€ã㊠$f(x,y,z)=f(x,3,z)+g(x,y,z,3-x,3-y,4-z)\\gt 0$ ãšãªãïŒ$f(x,4,z)\\leq 0$ ãªãã° $y\\gt 4$ ã«ã€ã㊠$f(x, y, z) = f(x,4,z)-g(x,4,z,3-x,y-4,4-z)\\lt 0$ ãšãªãã®ã§ïŒ$f(x,3,z)\\geq 0, f(x,4,z)\\leq 0$ ãã¿ããããã« $f(x,3,z), f(x,4,z)$ ãå®ããã°ååæ§ã¯æ
ä¿ãããïŒãããã£ãŠ $f(x,3,z),f(x,4,z) $ ã®å€ãäœéããããèããã°ããïŒããŸïŒ\r\n$$f(x,3,z)-f(x,4,z)=g(x,3,z,3-x,1,4-z)=(3-x)(4-z)$$\r\nãæãç«ã¡ïŒéã«å
šãŠã® $(x,z)$ ã«ã€ããŠãããæºããã° $g(x,3,z,1,1,1)=1$ ã¯ä¿èšŒãããïŒãããã£ãŠ\r\n$$f(x,3,z)-f(x,4,z)=(3-x)(4-z), \\quad f(x,3,z)\\geq 0, \\quad f(x,4,z)\\leq 0$$\r\nãæºãã $(f(x,3,z),f(x,4,z))$ ã®çµã®åæ°ãæ±ããã°ããïŒããã¯å $x, z$ ã«ã€ã㊠$(3-x)(4-z)+1$ çµååšããïŒããã $x\\lt 3,z\\lt 4$ ãæºãã $(x,z)$ ã«ã€ããŠããåãããŠïŒ\r\n$$7\\times 5\\times 3\\times 4\\times 3\\times 2=2520$$\r\nããïŒ$x\\lt 3, z\\lt 4$ ã®éšåã«ã€ã㊠$f$ ã®å€ã¯ $2520$ éããããšåãã£ãïŒ\\\r\nã$(x\\lt 3, z\\gt 4),(x\\gt 3, z\\lt 4),(x\\gt 3, z\\gt 4)$ ã®å Žåã察称æ§ã«ãã $2520$ éããšåããã®ã§ïŒçãã®å€ã¯ $2520^4=\\mathbf{40327580160000}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc198/editorial/9322"
}
] | ãæ£ã®æŽæ° $3$ ã€ã®çµãããªãéå $B$ ã
$$ B = \\{ (x, y, z) \mid 1\leq x \leq 5, ~ 1\leq y \leq 6, ~ 1\leq z \leq 7 \\} $$
ã§å®ããŸãïŒ$B$ ã®å
ã«å¯ŸããŠå®çŸ©ããæŽæ°å€ããšãé¢æ° $f$ ã**è¯ãé¢æ°**ã§ãããšã¯ïŒ$(x+a, y+a, z+a) \in B$ ãã¿ããä»»æã®æ£ã®æŽæ° $x,y,z,a$ ã«ã€ããŠïŒ
$$ \begin{aligned}
&f(x,y,z)+f(x,y+a,z+a)+f(x+a,y,z+a)+f(x+a,y+a,z) \\\\
&\gt f(x+a,y,z)+f(x,y+a,z)+f(x,y,z+a)+f(x+a,y+a,z+a)
\end{aligned} $$
ãæºããããšããããŸãïŒè¯ãé¢æ° $f$ ã®**ã¹ã³ã¢** $S$ ã次ã®ããã«å®çŸ©ããŸãïŒ
$$S=\sum_{i=1}^{5}\sum_{j=1}^{6}\sum_{k=1}^{7} \lvert f(i,j,k)\rvert $$
$S$ ãšããŠããåŸãæå°å€ã $S_{\mathrm{min}}$ ãšãããšãïŒã¹ã³ã¢ã $S_{\mathrm{min}}$ãšãªããããªè¯ãé¢æ°ã¯ããã€ãããŸããïŒ |
SOMC007 | https://onlinemathcontest.com/contests/somc007 | https://onlinemathcontest.com/contests/somc007/tasks/2737 | A | SOMC007(A) | 100 | 100 | 100 | [
{
"content": "ã$1224569$ ã®åæ°ã $1,2,2,4,5,6,8$ ã®äžŠã³æ¿ãã«ãªããã©ãããé ã«ç¢ºèªããŠããã°è¯ãïŒ\\\r\nãå
·äœçã«ã¯ $\\mathbf{6122845}$ ãæ¡ä»¶ãæºããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc007/editorial/2737"
}
] | ãåæ¡ã $1,2,2,4,5,6,8$ ã䞊ã³æ¿ããŠã§ãã $7$ æ¡ã®æ£æŽæ°ã§ãã£ãŠïŒ$1224569$ ã§å²ãåããå¯äžã®ãã®ãæ±ããŠãã ããïŒ |
SOMC007 | https://onlinemathcontest.com/contests/somc007 | https://onlinemathcontest.com/contests/somc007/tasks/4229 | B | SOMC007(B) | 200 | 38 | 54 | [
{
"content": "$$A(AB+C)=\\displaystyle{ \\sum_{k=C}^{AB}k}=\\dfrac{1}{2}(AB+C)(AB-C+1)$$\r\nãæŽçããããšã§ $A(B-2)=C-1$ ã§ããïŒç¹ã« $B\\geq 2$ ã§ããïŒãã㧠$A\\geq C$ ãã\r\n$$A(B-2)\\leq A-1 \\implies A(3-B)\\geq 1.$$\r\nããªãã¡ $B=2$ ã§ããïŒ$C=1$ ãšãªãïŒãã®ãšãïŒ\r\n$$\\displaystyle \\frac{1}{6}A(A+1)(2A+1)= \\sum_{k=1}^{A} k^2 = A(2A+1)$$\r\nãã $A=5$ ã§ããããïŒè§£çãã¹ãå€ã¯ $5\\times(5\\times 2+1)=\\bm{55}$ ãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc007/editorial/4229"
}
] | ã$A\geq C$ ãªãæ£æŽæ°ã®çµ $(A, B, C)$ ã以äžã®çåŒãã¿ãããŸãïŒ
$$ \sum_{k=C}^{A \times B} k = \sum_{k=C}^{A} k^B = A\left(A\times B+C\right). $$
ãã®ãšãïŒåŒã®å€ $A\left(A\times B+C\right)$ ãšããŠãããããã®ã®ç·åãæ±ããŠäžããïŒ |
SOMC007 | https://onlinemathcontest.com/contests/somc007 | https://onlinemathcontest.com/contests/somc007/tasks/2660 | C | SOMC007(C) | 200 | 29 | 43 | [
{
"content": "ã$n$ ã®çŽ å æ°å解ã $n=p_1^{a_1}\\times p_2^{a_2}\\times \\cdots$ ãšè¡šãã°ïŒ\r\n$$n^2f(n)=p_1^{2a_1+1}\\times p_2^{2a_2+1}\\times \\cdots$$\r\nã§ããïŒããã§ïŒ\r\n$$1+p+\\cdots+p^{2n+1}=\\left(1+p^{n+1}\\right)\\left(1+p+p^2+\\cdots +p^n\\right)$$\r\nã§ããããïŒäžåŒã«ã€ããŠ\r\n$$\\dfrac{S\\big(n^2f(n)\\big)}{S(n)}=\\left(1+p_1^{a_1+1}\\right)\\left(1+p_2^{a_2+1}\\right)\\cdots$$\r\nãæãç«ã€ïŒãããã£ãŠïŒ$k$ ãå¥æ°ã§ããã®ã¯ $n$ ã $2$ ã¹ãã®å Žåã§ããïŒãããã \r\n$$n_{i}=2^{i-1},\\quad k_{i}=1+2^{i}$$\r\nã§ããïŒãã ã $k_1=1$ïŒïŒç¹ã«ïŒ$k_{4000}\\equiv \\textbf{108} \\pmod{3989}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc007/editorial/2660"
}
] | ãæ£æŽæ° $n$ ã«å¯ŸãïŒ$S(n)$ ã $n$ ã®æ£ã®çŽæ°ã®ç·åïŒ$f(n)$ ã $n$ ã«å«ãŸããçŽ å æ°ã®ç·ç©ãšããŸãïŒäŸãã°ïŒ
$$S(6)=1+2+3+6=12,\quad f(72)=2\times 3=6$$
ã§ãïŒãã ãïŒ$f(1)=1$ ãšããŸãïŒãã®ãšãïŒä»¥äžã®å
$$\dfrac{S\big(n^2f(n)\big)}{S(n)}$$
ãæŽæ°ã§ããïŒããã«å¥æ°ã§ãããããªæ£æŽæ° $n$ ã®ãã¡ïŒ$i$ çªç®ã«å°ãããã®ã $n_i$ ãšãïŒãã®ãšãã®åã $k_i$ ãšããŸãïŒ$k_{4000}$ ãçŽ æ° $3989$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ |
SOMC007 | https://onlinemathcontest.com/contests/somc007 | https://onlinemathcontest.com/contests/somc007/tasks/4198 | D | SOMC007(D) | 300 | 15 | 21 | [
{
"content": "ãwell-known factãšã㊠$I$ 㯠$J_AJ_BJ_C$ ã®åå¿ã§ããïŒãã€ç¹ $A, B, C$ ã¯ããããäžè§åœ¢ $J_AJ_BJ_C$ ã®åé ç¹ãã察蟺ã«äžãããåç·ã®è¶³ã§ããïŒãŸãïŒç°¡åãªè§åºŠèšç®ã«ãã£ãŠ\r\n$$\\angle AJ_BC = \\angle CIJ_A = \\angle AIJ_C = 60^\\circ$$\r\nãåããã®ã§ïŒ\r\n$$AJ_A = AI + IJ_A = AI + \\frac{CI}{\\cos60^\\circ} = 43, \\quad J_AJ_B = \\frac{AJ_A}{\\sin60^\\circ} = \\frac{86}{\\sqrt3}$$\r\nãåŸãïŒãŸãïŒåæ§ã«ã㊠$CJ_C = 41$ ã§ããããïŒäžè§åœ¢ $J_AJ_BJ_C$ ã®é¢ç©ã¯\r\n$$41Ã\\dfrac{86}{\\sqrt 3}Ã\\dfrac{1}{2}={\\dfrac{1763}{\\sqrt3}}$$\r\nã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{1766}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc007/editorial/4198"
}
] | ã$\angle{B}=60^\circ$ ãªãäžè§åœ¢ $ABC$ ãããïŒãã®å
å¿ã $I$ïŒè§ $A,B,C$ å
ã®åå¿ããããã $J_A, J_B, J_C$ ãšããŸãïŒ$AI=13, ~ CI=15$ ã§ãããšãïŒäžè§åœ¢ $J_AJ_BJ_C$ ã®é¢ç©ãæ±ããŠãã ããïŒãã ãïŒçãã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{\sqrt{b}}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC197 (for beginners) | https://onlinemathcontest.com/contests/omc197 | https://onlinemathcontest.com/contests/omc197/tasks/4884 | A | OMC197(A) | 100 | 466 | 476 | [
{
"content": "ãæ¡ä»¶ã«é©ããæ£æŽæ°ã¯ïŒ$61$ 以äžã®çŽ å æ°ãããããªãïŒåææ°ã§ãããšãããšïŒé©ãããã®ã¯æå°ã§ $61^2=3721$ ã§ããããšã«æ³šæããã°ïŒçŽ æ°ã§ãã $\\textbf{3607}$ ãæå°ã§ããããšããããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc197/editorial/4884"
}
] | ã$1$ ä»¥äž $60$ 以äžã®ã©ã®æŽæ°ãšãäºãã«çŽ ã§ãããã㪠$3600$ 以äžã®æ£æŽæ°ã®ãã¡ïŒæå°ã®ãã®ãæ±ããŠãã ããïŒ |
OMC197 (for beginners) | https://onlinemathcontest.com/contests/omc197 | https://onlinemathcontest.com/contests/omc197/tasks/4879 | B | OMC197(B) | 100 | 365 | 428 | [
{
"content": "$N$ ããç·å $BC$ ã«äžãããåç·ã®è¶³ã $H_1$ïŒ$D$ ãã $NC$ ã«ããããåç·ã®è¶³ã $H_2$ ãšããïŒãã®ãšãïŒ\r\n$$NH_1 : H_1C : CN = 2 : 3 : \\sqrt{13}$$\r\nã§ããïŒãŸãïŒäžè§åœ¢ $NH_1C$ ãš $CH_2D$ ã¯çžäŒŒã§ããã®ã§ïŒ\r\n$$CD=12 \\cdot \\frac{\\sqrt{13}}{3} = 4\\sqrt{13}$$\r\nããããïŒæ±ããé¢ç©ã¯ $\\bf{208}$ ãšèšç®ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc197/editorial/4879"
}
] | ãæ£æ¹åœ¢ $ABCD$ ã«ãããŠïŒèŸº $BC$ ã®äžç¹ã $M$ ãšãïŒç·å $AM$ ã®äžç¹ã $N$ ãšããŸãïŒ$D$ ãš çŽç· $NC$ ã®è·é¢ã $12$ ã§ãããšãïŒæ£æ¹åœ¢ $ABCD$ ã®é¢ç©ãæ±ããŠãã ããïŒ |
OMC197 (for beginners) | https://onlinemathcontest.com/contests/omc197 | https://onlinemathcontest.com/contests/omc197/tasks/5227 | C | OMC197(C) | 200 | 434 | 457 | [
{
"content": "ã$i$ è¡ $j$ åç®ã®ãã¹ã $(i,j)$ ãšè¡šãïŒOMCå㯠$(2,2)$ ãš $(8,8)$ ãå¿
ãéãïŒ$(1,1)$ ãã $(2,2)$ ãŸã§ç§»åããæ¹æ³ã¯ $2$ éãïŒ$(2,2)$ ãã $(8,8)$ ãŸã§ç§»åããæ¹æ³ã¯ ${}_6 \\mathrm{ C }_3=20$ éãïŒ$(8,8)$ ãã $(9,9)$ ãŸã§ç§»åããæ¹æ³ã¯ $2$ éãã§ããããïŒç§»åæ¹æ³ã¯ $2\\times20\\times2=\\textbf{80}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc197/editorial/5227"
}
] | ãOMCåã¯**ä¹ä¹ã®è¡š**ã® $1$ ãæžãããŠãããã¹ã«ããŸãïŒOMCåã¯é£ãåããã¹ã«ä»¥äžã®æ¡ä»¶ãæºããããã«ç§»åãïŒæçè·é¢ã§ $81$ ãæžããããã¹ã«ç§»åãããã§ãïŒãã®ãšãïŒç§»åæ¹æ³ã¯äœéããããŸããïŒ
- $1$ ãŸã㯠$81$ ãŸãã¯å¶æ°ãæžãããŠãããã¹ã®ã¿ã移åãã
ããã ãïŒ**ä¹ä¹ã®è¡š**ãšã¯ $9 \times 9$ ã®ãã¹ç®ã§ãã£ãŠïŒ $i$ è¡ $j$ åç®ã®ãã¹ã«ã¯ $i \times j$ ãæžãããŠãããã®ã®ããšãæããã®ãšããŸãïŒ |
OMC197 (for beginners) | https://onlinemathcontest.com/contests/omc197 | https://onlinemathcontest.com/contests/omc197/tasks/4960 | D | OMC197(D) | 200 | 247 | 333 | [
{
"content": "$$x+y+z+w=100, \\quad x,y,z,w\\leq 30$$\r\nãã¿ããæ£æŽæ°ã®çµ $(x,y,z,w)$ ãæ°ããã°ããïŒããã§\r\n$$x^\\prime=30-x, \\quad y^\\prime=30-y, \\quad z^\\prime=30-z, \\quad w^\\prime=30-w$$\r\nãšããã°ïŒ$x^\\prime+y^\\prime+z^\\prime+w^\\prime=20$ ãªãéè² æŽæ°ã®çµ $(x^\\prime,y^\\prime,z^\\prime,w^\\prime)$ ãæ°ããã°ããïŒå€§å°é¢ä¿ããä»åã¯è² ã«ãªãããšã¯ãªãïŒïŒãã㯠${}\\_{23}\\mathrm{C}\\_{3}=\\bf{1771}$ éãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc197/editorial/4960"
},
{
"content": "ã$100$ æ¬ã $4$ 人ã«åããåãæ¹ã®ãã¡, (å°ãªããšã)ç¹å®ã® $k$ $(k=0,1,2,3)$ 人ã $31$ æ¬ä»¥äžã®ããŒã«ãã³ãåãåãæ¹æ³ã¯ $\\binom{103-31k}{3}$ \r\néãã§ã. \r\n$4$ 人ã®äžãã $k$ 人ãéžã¶æ¹æ³ã¯ $\\binom{4}{k}$ éãã§ããã®ã§, å
é€åçãçšããã°æ±ããçãã¯\r\n$$\\begin{aligned}\r\n\\sum\\_{k=0}\\^{3}(-1)\\^{k}\\binom{4}{k}\\binom{103-31k}{3}&=\\binom{103}{3}-4\\binom{72}{3}+6\\binom{41}{3}-4\\binom{10}{3}\\\\\\\\\r\n&=1771\r\n\\end{aligned}$$\r\nãšãªããŸã.",
"text": "å
é€åçãå©çšããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc197/editorial/4960/379"
}
] | ã**åºå¥ã®ãªã** $100$ æ¬ã®ããŒã«ãã³ãïŒOMAåã»OMBåã»OMCåã»OMDåã® $4$ 人ã«åããŸãïŒã©ã®äººãæææ°ã $0$ æ¬ä»¥äž $30$ æ¬ä»¥äžã«ãªãããã«åããæ¹æ³ã¯äœéããããŸããïŒ |
OMC197 (for beginners) | https://onlinemathcontest.com/contests/omc197 | https://onlinemathcontest.com/contests/omc197/tasks/4548 | E | OMC197(E) | 200 | 288 | 388 | [
{
"content": "ãå®éã®OMC åã®äœéã $x$ kgïŒãããäžã€ã®éãã $y$ kg ãšãããšïŒæ¡ä»¶ãã\r\n$$55\\leq x+2y\\leq 65, \\quad 85\\leq x+5y\\leq 95.$$\r\nãããæºããé åãå³ç€ºããã° $\\dfrac{85}{3}\\leq x \\leq \\dfrac{155}{3}$ ããããïŒæ±ããç·å㯠$29+30+\\cdots+51=\\bf{920}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc197/editorial/4548"
},
{
"content": "ãå
¬åŒè§£èª¬ã®äžçåŒã¯å³ç€ºããªããŠã解ããŸãïŒ\r\n$$\\begin{cases}\r\n55 \\leq x+2y \\leq 65\\\\\\\\\r\n85 \\leq x+5y \\leq 95\r\n\\end{cases}$$\r\n$$\\Longleftrightarrow \r\n\\begin{cases}\r\n275-5x \\leq 10y \\leq 325-5x\\\\\\\\\r\n170-2x \\leq 10y \\leq 190-2x\r\n\\end{cases}$$\r\n $x$ ãåºå®ããããšã§ãã® $2$ åŒã¯ $y$ ã«ã€ããŠã®é£ç«äžçåŒãšã¿ãªãããšãã§ããŸãïŒãããŠãã®é£ç«äžçåŒã解ãæã€ããšã¯æ¬¡ãšåå€ã§ãïŒ\r\n$$\\begin{cases}\r\n275-5x \\leq 190-2x\\\\\\\\\r\n170-2x \\leq 325-5x\r\n\\end{cases}$$\r\nãã® $x$ ã«ã€ããŠã®é£ç«äžçåŒã解ãããšã§ $\\dfrac{85}{3}\\leq x\\leq \\dfrac{155}{3}$ ãåŸãããŸãïŒ",
"text": "å³ç€ºããã«äžçåŒã解ã",
"url": "https://onlinemathcontest.com/contests/omc197/editorial/4548/377"
}
] | ãå®éã®éããšè¡šç€ºãããéãã®èª€å·®ãæ倧 $5$ kgã§ãã**ããããäœéèš**ããããŸãïŒäŸãã°ïŒå®éã®éãã $20$ kgã®ãã®ããã®äœéèšã«çœ®ããšïŒ$15$ kgä»¥äž $25$ kg以äžã®éãã衚瀺ãããå¯èœæ§ããããŸãïŒãªãïŒãã®èª€å·®ã¯çœ®ããã®ãå€ãããã³ã«å€åãïŒäžå®ã§ã¯ãããŸããïŒ\
ããã®äœéèšã«ãŸãOMCåãä¹ã£ãç¶æ
ã§ïŒããã«éããçããããããäžã€ãã€èŒããŠãããšïŒä»¥äžã®ããã«ãªããŸããïŒ
- ãããã $2$ åèŒããæç¹ã§è¡šç€ºãããéãã¯ã¡ããã© $60$ kgã§ãã£ã.
- ãããã $5$ åèŒããæç¹ã§è¡šç€ºãããéãã¯ã¡ããã© $90$ kgã§ãã£ã.
ãã®ãšãïŒkgãåäœãšããŠOMCåã®å®éã®äœéïŒäœéèšã«ä¹ã£ããšãã«è¡šç€ºãããéãã§ã¯ãªãïŒãšããŠããããæ£æŽæ°å€ãã¹ãŠã«ã€ããŠïŒãã®ç·åãæ±ããŠãã ããïŒ |
OMC197 (for beginners) | https://onlinemathcontest.com/contests/omc197 | https://onlinemathcontest.com/contests/omc197/tasks/8209 | F | OMC197(F) | 300 | 317 | 348 | [
{
"content": "ãéè² æŽæ° $n$ ã«å¯Ÿã㊠$n$ ã®åäœã®åã $S(n)$ ãšè¡šãïŒ$S(n)\\equiv n\\mod 9$ ã«çæããã°æ¡ä»¶ $C,D$ ãåæã«æºããããããšã¯ãªãïŒãã£ãŠ $N$ ãæ¡ä»¶ $A,B,C$ ãæºããå Žåãšæ¡ä»¶ $A,B,D$ ãæºããå Žåã«åããŠèããã°è¯ãïŒ\\\r\nã$N$ ãæ¡ä»¶ $A,B,C$ ãæºãããšããïŒæ¡ä»¶ $C$ ãã $N\\equiv 2 \\mod 9$ ãå°ãããã®ã§ïŒæ¡ä»¶ $A,B$ ãšåãããŠïŒ\r\n$$\\begin{cases}\r\n1 \\leq N \\leq 1000\\\\\\\\\r\nN\\equiv 0 \\mod 11\\\\\\\\\r\nN\\equiv 2 \\mod 9\r\n\\end{cases}\r\n\\Longleftrightarrow\r\n\\begin{cases}\r\n1 \\leq N \\leq 1000\\\\\\\\\r\nN\\equiv 11 \\mod 99\\\\\\\\\r\n\\end{cases}\r\n\\Longleftrightarrow\r\nN=11+99kã(k=0,1,...,8)\r\n$$\r\nãåŸãïŒ$11+99k=100k+(11-k)$ ãã次ãæãç«ã€ïŒ\r\n$$S(N)=k+S(11-k)=\r\n\\begin{cases}\r\n2ã(k=0,1)\\\\\\\\\r\n11ã(k=2,3,...,9)\r\n\\end{cases}$$\r\nãããã£ãŠ $N=11+99k~(k=2,3,...,9)$ ãæ¡ä»¶ $A,B,C$ ãæºããïŒãããã®ç·å㯠$\\displaystyle\\sum_{k=2}^9 (11+99k)=4444$ïŒ\\\r\nã次㫠$N$ ãæ¡ä»¶ $A,B,D$ ãæºãããšããïŒãã®ãšã\r\n$$\\begin{cases}\r\n1 \\leq N \\leq 1000\\\\\\\\\r\nN\\equiv 0 \\mod 11\\\\\\\\\r\nN\\equiv 0 \\mod 3\r\n\\end{cases}\r\n\\Longleftrightarrow\r\n\\begin{cases}\r\n1 \\leq N \\leq 1000\\\\\\\\\r\nN\\equiv 0 \\mod 33\\\\\\\\\r\n\\end{cases}\r\n\\Longleftrightarrow\r\nN=33kã(k=1,...,30)\r\n$$\r\nãã£ãŠæ¡ä»¶ $A,B,D$ ãæºãã $N$ ã®ç·å㯠$\\displaystyle\\sum_{k=1}^{30} (33k)=15345$ïŒ\\\r\nã以äžããæ±ããæŽæ° $N$ ã®ç·å㯠$4444+15345=\\textbf{19789}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc197/editorial/8209"
}
] | ã次ã®æ¡ä»¶ $A,B,C,D$ ã®ãã¡ã¡ããã© $3$ ã€ãã¿ããïŒïŒã¡ããã© $1$ ã€ã ãã¿ãããªãïŒãããªæ£æŽæ° $N$ ã®ç·åãæ±ããŠãã ããïŒ
- æ¡ä»¶ $A$ ïŒ$N$ 㯠$1000$ 以äžã§ããïŒ
- æ¡ä»¶ $B$ ïŒ$N$ 㯠$11$ ã®åæ°ã§ããïŒ
- æ¡ä»¶ $C$ ïŒ$N$ ãåé²è¡šèšãããšãã®åäœã®å㯠$11$ ã§ããïŒ
- æ¡ä»¶ $D$ ïŒ$N$ 㯠$3$ ã®åæ°ã§ããïŒ |
OMC197 (for beginners) | https://onlinemathcontest.com/contests/omc197 | https://onlinemathcontest.com/contests/omc197/tasks/5661 | G | OMC197(G) | 300 | 86 | 153 | [
{
"content": "ã$4$ ç¹ $P,B,C,Q$ ã¯åäžååšäžã«ããããšãšïŒ$AB=PB$ ãæãç«ã€ããšã«ããïŒ\r\nã$$\\angle{BCQ}=\\angle{BPA}=\\angle{BAP}$$\r\nã§ããããïŒ$Q$ ã¯ç·å $BD$ äžã«ããïŒç¹ã« $\\angle{CBQ}=45^{ \\circ }$ ã§ããïŒãã£ãŠïŒäžç·å®çãšäœåŒŠå®çãã以äžãããããæãç«ã€ïŒ\r\n$$AB^2+BQ^2=2(BP^2+AP^2)$$$$CQ^2=4AP^2=BQ^2+BC^2-2BQ \\times BC \\times \\cos \\angle{CBQ}$$\r\nããããé£ç«ãããŠè§£ãããšã§ $BQ=\\sqrt{126}-\\sqrt{18}$ ãåŸãããïŒç¹ã«, 解çãã¹ãå€ã¯ $\\textbf{144}$ ã§ããïŒ\r\n\r\nã",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc197/editorial/5661"
},
{
"content": "ãå
¬åŒè§£èª¬ãšåæ§ã«ïŒ$\\angle BCQ=45^{\\circ}$ ã瀺ããããšïŒåº§æšã䜿ãããšãå¯èœã§ãïŒ\\\r\nãïŒããæ£ç¢ºã«ã¯ïŒ$\\angle BCQ=45^{\\circ}$ ã瀺ãåãã座æšã®ã¿ã§è§£ãããšãå¯èœã ãšæããŸããïŒããªãã®èšç®éã«ãªãããã§ãïŒïŒ\r\n\r\n---\r\n\r\nãç¹ $B$ ãåç¹ïŒç¹ $A(0,6)$ïŒç¹ $C(6,0)$ ãšãªãããã«åº§æšå¹³é¢ãå®ããïŒãã®ãšãç¹ $Q(2t,2t)$ ãšãããšïŒç¹ $P(t,t+3)$ ã§ããïŒ\\\r\nã$BP=6$ ããæ¹çšåŒã解ããŠïŒ$t=\\dfrac{3 \\sqrt{7}-3}{2}$ ãåŸãïŒããšã¯ $BQ=2 \\sqrt{2} t$ ãçšããã°ããïŒ",
"text": "座æšãçšããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc197/editorial/5661/380"
}
] | ãäžèŸºã®é·ãã $6$ ã§ããæ£æ¹åœ¢ $ABCD$ ã«ã€ããŠïŒãã®å
éšïŒå€åšãé€ãïŒã®ç¹ $P$ ã $AB=PB$ ãã¿ãããŸãïŒ$P$ ãäžå¿ã« $A$ ã察称移åããç¹ã $Q$ ãšãããšïŒ$4$ ç¹ $P,B,C,Q$ ã¯åäžååšäžã«ãããŸããïŒãã®ãšãïŒç·å $BQ$ ã®é·ãã¯ïŒæ£æŽæ° $a,b$ ãçšã㊠$\sqrt{a}-\sqrt{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC197 (for beginners) | https://onlinemathcontest.com/contests/omc197 | https://onlinemathcontest.com/contests/omc197/tasks/6009 | H | OMC197(H) | 300 | 96 | 159 | [
{
"content": "$$x^{200} + x^{199} + 3x^2 - 3 = (x+1)(x^{199} + 3x - 3)$$\r\nã§ããããïŒ$-1$ ã¯è§£ã®äžã€ã§ããïŒãŸãïŒ$x^{199} + 3x - 3 = 0$ ã®è§£ã $a_1,a_2,\\ldots,a_{199}$ ãšããïŒ\\\r\nãããŸãïŒ$A_{199}$ ãæ±ããïŒè§£ãšä¿æ°ã®é¢ä¿ãã $\\displaystyle \\sum_{k=1}^{199}a_k= 0$ ã§ããïŒãã£ãŠïŒ\r\n$$\\sum_{k=1}^{199}a_k^{199} = \\sum_{k=1}^{199}(3-3a_k) = \\sum_{k=1}^{199}3- 3\\sum_{k=1}^{199}a_k= 597$$\r\nã§ããããïŒ$A_{199} = 597 + (-1)^{199} = 596$ ã§ããïŒ\\\r\nã次ã«ïŒ$A_{200}$ ãæ±ããïŒ\r\n$$\\sum_{k = 1}^{199}a_k^{200} = \\sum_{k=1}^{199}(3 - 3a_k^2 - a_k^{199}) = \\sum_{k=1}^{199}3-3\\sum_{k=1}^{199}a_k^2-\\sum_{k=1}^{199}a_k^{199}=-3\\sum_{k=1}^{199}a_k^2$$\r\nã§ããïŒãŸãïŒ\r\n$$\\sum_{k=1}^{199}a_k^2 = \\Bigg(\\sum_{k=1}^{199}a_k\\Bigg)^2 - 2\\sum_{1\\le i\\lt j \\le 199}a_ia_j$$\r\nã§ããïŒããã§ïŒè§£ãšä¿æ°ã®é¢ä¿ãã\r\n$$\\sum_{k=1}^{199}a_k = \\sum_{1\\le i\\lt j \\le 199}a_ia_j = 0$$\r\nã§ããããïŒçµå± $\\displaystyle\\sum_{k=1}^{199}a_k^{200} = 0$ ã§ããïŒãã£ãŠïŒ$A_{200} = 0 + (-1)^{200} = 1$ ã§ããïŒ\\\r\nã以äžããïŒè§£çãã¹ãå€ã¯ $1000\\cdot596+1= \\bf596001$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc197/editorial/6009"
},
{
"content": "ãåé¡æäžã§è¿°ã¹ãããŠãã, é解ãååšããªãããšã®èšŒæã§ã. \r\n以äžã®è£é¡ãçšããŸã. \r\n\r\n---\r\n\r\n**è£é¡.**ã$f(x)$ ãå®æ°ä¿æ°å€é
åŒãšããæ, 以äžã¯åå€ã§ãã.\r\n\r\n1. $f(x)$ 㯠(è€çŽ æ°ã®ç¯å²ã§) éæ ¹ããã€. \r\n2. $f(x)$ ãš $f\\^{\\prime}(x)$ ã¯å
±éã®è€çŽ æ°æ ¹ããã€.\r\n\r\n**蚌æ.**\r\n \r\n$(1.)\\Rightarrow(2.)$: \r\n$f(x)$ ã®éæ ¹ã $\\alpha$ ãšãã. ãã®æ, è€çŽ æ°ä¿æ°å€é
åŒ $g(x)$ ã§ãã£ãŠ, $f(x)=(x-\\alpha)\\^2g(x)$ ãæºãããã®ãååšãã. \r\n$f\\^{\\prime}(x)=2(x-\\alpha)g(x)+(x-\\alpha)\\^2g\\^{\\prime}(x)$ ã§ããã®ã§, $f(\\alpha)=f\\^{\\prime}(\\alpha)=0$ ã§ãã. \r\n\r\n$(2.)\\Rightarrow(1.)$: \r\n$f(x), f\\^{\\prime}(x)$ ã®å
±éæ ¹ã $\\alpha$ ãšãã. \r\n$f(\\alpha)=0$ ãã, è€çŽ æ°ä¿æ°å€é
åŒ $g(x)$ ã§ãã£ãŠ, $f(x)=(x-\\alpha)g(x)$ ãæºãããã®ãååšãã. \r\n$f\\^{\\prime}(x)=g(x)+(x-\\alpha)g\\^{\\prime}(x)$ ã§ãã, $x=\\alpha$ ã代å
¥ããã°, $g(\\alpha)=0$ ãåŸã. \r\nãã£ãŠ, è€çŽ æ°ä¿æ°å€é
åŒ $h(x)$ ã§ãã£ãŠ, $g(x)=(x-\\alpha)h(x)$ ãæºãããã®ãååšãã. \r\n以äžãã, $f(x)=(x-\\alpha)\\^{2}h(x)$ ãšæžããã®ã§, $f(x)$ ã¯éæ ¹ $x=\\alpha$ ããã€. (蚌æçµ)\r\n\r\n---\r\n\r\nãä»åã®å€é
åŒã«ã€ããŠã®è©±ã«ç§»ããŸã. \r\n$x\\^{200}+x\\^{199}+3x\\^{2}-3=(x+1)(x\\^{199}+3x-3)$ ã§ãã, $x=-1$ ã¯æããã«éæ ¹ã§ãªããã, \r\n$f(x):=x\\^{199}+3x-3$ ãéæ ¹ããããªãããšã瀺ãã°ããã§ã. \r\n\r\nè£é¡ãã, $f\\^{\\prime}(x)$ ã®æ ¹ã $f(x)$ ã®æ ¹ã§ãªãããšã瀺ãã°ååã§ã. \r\n$f\\^{\\prime}(x)$ ã®æ ¹ã®äžã€ã $\\alpha$ ãšããŸã. \r\n$f\\^{\\prime}(\\alpha)=199\\alpha\\^{198}+3=0$ ãã, $\\alpha\\^{198}=-\\dfrac{3}{199}\\lt 0$ ã§ãããã, $\\alpha$ ã¯éå®æ°ã§ã. \r\nãã£ãŠ, $f(\\alpha)=\\alpha\\^{199}+3\\alpha-3=-\\dfrac{3}{199}\\alpha+3\\alpha-3=\\dfrac{594}{199}\\alpha-3$ ãéå®æ°ã§ãã, ç¹ã« $0$ ã§ã¯ãããŸãã. \r\n\r\n以äžãã, $f\\^{\\prime}(x)$ ã®æ ¹ã¯ $f(x)$ ã®æ ¹ã«ãªãåŸãªãããšãåãã, åé¡æäžã®å€é
åŒã¯éæ ¹ããããªãããšã瀺ãããŸãã.",
"text": "é解ã®éååšã«ã€ããŠ",
"url": "https://onlinemathcontest.com/contests/omc197/editorial/6009/381"
},
{
"content": "ããã§ã¯ïŒ$A_{199} + A_{200}$ ãæ±ããŠããïŒ\\\r\nãŸãïŒ$A_{1} = â1$ ãã $A_{2} = 1$ ãããã«ãããïŒ\\\r\nãŸãïŒ$x^{200} + x^{199} + 3x^{2} - 3 = 0$ ã®è§£å
šãŠã«ã€ããŠïŒãããã代å
¥ããŠè¶³ãåããããš\r\n\r\n$$A_{200} + A_{199} + 3A_{2} - 600 = 0$$\r\n\r\nããããã®ã§ïŒ$A_{199} + A_{200} = 597$ ãšæ±ãŸãïŒ",
"text": "A_{199}+A_{200}ãæ±ãã",
"url": "https://onlinemathcontest.com/contests/omc197/editorial/6009/383"
},
{
"content": "æ¹éãšããŠ\r\n\r\n$$F(t):=\\sum_{n=0}^{\\infty} A_n t^n$$\r\nãšããçŽæ°ãèãã.ããã¯\r\n\r\n$x^{200}+x^{199}+3x^2-3$ã®æ ¹ã$\\alpha_1,\\ldots,\\alpha_{200}$ãšãããš,\r\n\r\n\r\n$$F(t)=\\sum_{k=1}^{200}\\dfrac{1}{1-\\alpha_k t}$$\r\n\r\nã§ãã.\r\n\r\nãããéåãããš\r\n\r\n$$F(t)=\\dfrac{\\sum_{k=1}^{200}\\prod_{j\\neq k}(1-\\alpha_j t)}{\\prod_{k=1}^{200}(1-\\alpha_k t)}$$\r\n\r\nã§ãã.ããã«ã€ããŠ\r\n\r\nåæ¯ã¯\r\n\r\n$$\\begin{aligned}\\prod_{k=1}^{200}(1-\\alpha_k t)&=t^{200}\\cdot \\prod_{k=1}^{200}\\left(\\dfrac{1}{t}-\\alpha_k\\right)\\\\\\\\&=t^{200}\\cdot\\left(\\dfrac{1}{t^{200}}+\\dfrac{1}{t^{199}}+\\dfrac{3}{t^2}-3\\right)\\\\\\\\&=1+t+3t^{198}-3t^{200}\\end{aligned}$$\r\n\r\näžæ¹ååã¯,\r\n\r\n$$\\dfrac{d}{du}\\prod_{k=1}^{200}(u-\\alpha_k)=\\sum_{k=1}^{200} \\prod_{j\\neq k} (u-\\alpha_j )$$\r\n\r\nãš\r\n\r\n$$\\dfrac{d}{dx}(x^{200}+x^{199}+3x^2-3)=200x^{199}+199x^{198}+6x$$\r\n\r\nãå©çšããããšã§,\r\n\r\n$$\\begin{aligned}\\sum_{k=1}^{200}\\prod_{j\\neq k}(1-\\alpha_j t)&=t^{199}\\sum_{k=1}^{200}\\prod_{j\\neq k}\\left(\\dfrac{1}{t}-\\alpha_j \\right)\\\\\\\\&=t^{199}\\left(\\dfrac{200}{t^{199}}+\\dfrac{199}{t^{198}}+\\dfrac{6}{t}\\right)\\\\\\\\&=200+199t+6t^{198}\\end{aligned}$$\r\n\r\nãã£ãŠïŒ\r\n\r\n$$F(t)=\\dfrac{200+199t+6t^{198}}{1+t+3t^{198}-3t^{200}}$$\r\n\r\nã§ãã.\r\n\r\nãŸã,$1+t+3t^{198}-3t^{200}=(1+t)(1+3t^{198}-3t^{199})$ãã,\r\n\r\n$$\\begin{aligned}F(t)-\\dfrac{1}{1+t}&=\\dfrac{200+199t+6t^{198}-1-3t^{198}+3t^{199}}{(1+t)(1+3t^{198}-3t^{199})}\\\\\\\\&=\\dfrac{199+199t+3t^{198}+3t^{199}}{(1+t)(1+3t^{198}-3t^{199})}\\\\\\\\&=\\dfrac{(1+t)(199+3t^{198})}{(1+t)(1+3t^{198}-3t^{199})}\\\\\\\\&=\\dfrac{199+3t^{198}}{1+3t^{198}-3t^{199}}\\end{aligned}$$\r\n\r\nãã,\r\n\r\n$$F(t)=\\dfrac{1}{1+t}+\\dfrac{199+3t^{198}}{1+3t^{198}-3t^{199}}$$\r\n\r\nã§ãã.\r\n\r\nãã®ãšã,$F(t)-\\dfrac{1}{1+t}$ããã¯ããŒãªã³å±éãããšãã®ä¿æ°ã¯\r\n\r\n$$(199+3t^{198})(1-3t^{198}+3t^{199}+O(t^{396}))=199-594t^{198}+597t^{199}+O(t^{396})$$\r\n\r\nãã,\r\n\r\n$$F(t)=\\dfrac{1}{1+t}+199-594t^{198}+597t^{199}+O(t^{396})$$\r\n\r\nã§ãã.$\\drac{1}{1+t}=\\sum_{n=0}^{\\infty}(-1)^n t^n$ã§ãããã,\r\n\r\n$$A_0=200$$\r\n$$A_n=(-1)^n;(1\\leq n\\leq 197)$$\r\n$$A_{198}=-594+(-1)^{198}=-593$$\r\n$$A_{199}=597+(-1)^{199}=596$$\r\n$$A_{n}=(-1)^n;(200\\leq n \\leq 395)$$\r\n\r\nãšãªã.ç¹ã«,$A_{199}=596,A_{200}=1$ã§ãã.",
"text": "FPS解æ³",
"url": "https://onlinemathcontest.com/contests/omc197/editorial/6009/384"
}
] | ã$x$ ã«é¢ããæ¹çšåŒ
$$x^{200}+x^{199}+3x^2-3=0$$
ã¯çžç°ãªã $200$ åã®è€çŽ æ°è§£ãæã€ã®ã§ïŒããããã® $k$ ä¹ã®ç·åã $A_k$ ãšããŸãïŒ\
ã$1000A_{199}+A_{200}$ ã®å€ãæ±ããŠãã ããïŒ |
OMC196 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc196 | https://onlinemathcontest.com/contests/omc196/tasks/9815 | A | OMC196(A) | 100 | 436 | 446 | [
{
"content": "ã$S$ ã®ãã¹ãŠã®å
ã®åã $s$ ãšããïŒ$S$ ãã $2$ ã€ã®èŠçŽ ãéžãã§ãã®åã $m$ ã§ãã£ããšãïŒéžã°ããªãã£ã $2$ ã€ã®èŠçŽ ã®å㯠$s-m$ ãšãªãïŒããŸïŒ$S$ ãã $2$ ã€ã®èŠçŽ ãéžã¶æ¹æ³ $6$ éãã®ãã¡ $3$ éãã«ã€ããŠïŒéžã°ããèŠçŽ ã®åã $1,4,9$ ã§ããã®ã§ïŒæ®ãã® $3$ éãã®éžã³æ¹ã«ã€ããŠïŒéžã°ããèŠçŽ ã®å㯠$s-1, s-4, s-9$ ãšãªãïŒããã§\r\n$$ s-9 \\lt s-4 \\lt s-1 $$\r\nã§ããããïŒ$s-9= x, \\ s-4 = y, \\ s-1 = 36$ ãåŸãïŒããã«ããïŒ\r\n$$ xy = (36+1-9) (36+1-4) = 28 \\cdot 33 = \\mathbf{924} $$\r\nãåŸãïŒãªãïŒ$S = \\\\{ -2, \\ 3, \\ 6, \\ 30 \\\\}$ ããã㯠$S = \\left\\\\{ -\\dfrac{23}{2}, \\dfrac{25}{2}, \\dfrac{31}{2}, \\dfrac{41}{2} \\right\\\\}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc196/editorial/9815"
}
] | ãçžç°ãªã $4$ ã€ã®å®æ°ãããªãéå $S$ ããããŸãïŒ$S$ ããçžç°ãªãèŠçŽ ã $2$ ã€éžã¶ãšãïŒãã®åãšããŠããããå€ã¯å°ããé ã«
$$ 1, \ 4, \ 9, \ x, \ y, \ 36$$
ãšãªããŸããïŒãã®ãšãïŒ$xy$ ã®å€ãæ±ããŠãã ããïŒ |
OMC196 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc196 | https://onlinemathcontest.com/contests/omc196/tasks/2450 | B | OMC196(B) | 200 | 148 | 254 | [
{
"content": "ãæ£äºåé¢äœã®åé¢ã¯æ£äžè§åœ¢ã§ïŒèŸºã¯å
šéšã§ $30$ æ¬ããããšããïŒå
šãŠã®èŸºã®å¡ãæ¹ã¯ ${}\\_{30}\\mathrm{C}\\_{22}$ éãïŒããé¢ã«å¯ŸããŠãã®é¢ã®èŸºãå
šãŠèµ€ã§å¡ãããŠãããããªèŸºã®å¡ãæ¹ã¯ ${}\\_{27}\\mathrm{C}\\_{22}$ éãããïŒ\r\nãã£ãŠæ±ããæåŸ
å€ã¯æ¬¡ã®ããã«æ±ããããïŒ\r\n$$\\frac{{}\\_{27}\\mathrm{C}\\_{22}\\times 20}{{}\\_{30}\\mathrm{C}\\_{22}}=\\frac{8}{29}$$ \r\nç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf37$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc196/editorial/2450"
}
] | ããã¹ãŠã®èŸºãèµ€ãå¡ãããæ£äºåé¢äœããããŸãïŒãã®æ£äºåé¢äœã®èŸºããç¡äœçºã« $22$ æ¬éžã³éãå¡ããšãïŒå¡ãçµãã£ãåŸã§å
šãŠã®èŸºãèµ€ãå¡ãããŠããé¢ã®æ°ã®æåŸ
å€ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a, b$ ãçšã㊠$\dfrac ab$ ãšè¡šããŸãïŒ$a+b$ ã®å€ãæ±ããŠãã ããïŒ\
ããªãïŒæ£äºåé¢äœã®åé¢ã¯æ£äžè§åœ¢ã§ããïŒèŸºã®æ¬æ°ã¯ $22$ æ¬ä»¥äžã§ãïŒ |
OMC196 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc196 | https://onlinemathcontest.com/contests/omc196/tasks/2251 | C | OMC196(C) | 200 | 332 | 402 | [
{
"content": "ãåè§åœ¢ $ABCD$ ã®å€æ¥åã®äžå¿ã $O$ ãšãããšïŒ$\\angle AOB,\\angle BOC,\\angle COD,\\angle DOA$ ããã¹ãŠ $360^\\circ\\/N$ ã®æŽæ°åã«ãªããããªæŽæ° $N\\geq 4$ ã®æå°å€ãæ±ããã°ããïŒ\\\r\nã$\\angle ABC+\\angle CDA=180^{\\circ}$ ã§ããããïŒ$d=180^{\\circ}\\/44$ ãšãããšäžåŒãã次ãåããïŒ\r\n$$\\angle CAB=20d,\\quad \\angle ABC=21d,\\quad \\angle BCD=22d,\\quad \\angle CDA=23d$$\r\nãããããïŒååšè§ã®å®çãªã©ãçšããŠèšç®ãããšæ¬¡ãåŸãããïŒ\r\n$$\\angle AOB=6d,\\quad \\angle BOC=40d,\\quad \\angle COD=4d,\\quad \\angle DOA=38d$$\r\nãããããã¹ãŠ $360^\\circ\\/N$ ã®æŽæ°åã«ãªããã㪠$N$ ã®æå°å€ã¯ $\\bm{44}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc196/editorial/2251"
}
] | ãåã«å
æ¥ããåè§åœ¢ $ABCD$ ãããïŒä»¥äžã®æ¡ä»¶ãã¿ãããŸãïŒ
$$\angle CAB:\angle ABC:\angle BCD:\angle CDA=20:21:22:23$$
ãã®ãšãïŒ$4$ ç¹ $A,B,C,D$ ããã¹ãŠé ç¹ã«å«ãæ£ $N$ è§åœ¢ãååšãããããªïŒ$4$ 以äžã®æŽæ° $N$ ãšããŠããããæå°ã®å€ãæ±ããŠãã ããïŒ |
OMC196 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc196 | https://onlinemathcontest.com/contests/omc196/tasks/8081 | D | OMC196(D) | 400 | 36 | 107 | [
{
"content": "ã$F,G\\colon S\\to S$ ã以äžã®ããã«å®ããïŒ\r\n$$F(x) = \\begin{cases}\r\nf(x) & (xã¯å¥æ°)\\\\\\\\\r\ng(x) & (xã¯å¶æ°)\r\n\\end{cases},\\quad \r\nG(x) = \\begin{cases}\r\ng(x) & (xã¯å¥æ°)\\\\\\\\\r\nf(x) & (xã¯å¶æ°)\r\n\\end{cases}$$\r\nããŸãïŒä»»æã® $S$ ã®å
$x$ ã«ã€ã㊠$xy$ å¹³é¢äžã®ç¹ $P_x$ ã $P_x = \\big(F(x), G(x)\\big)$ ã§å®ããïŒããã«ïŒå¹³é¢äžã® $2$ ç¹ $P,Q$ ã®ãã³ããã¿ã³è·é¢ïŒ$x$ 座æšã®å·®ã®çµ¶å¯Ÿå€ãš $y$ 座æšã®å·®ã®çµ¶å¯Ÿå€ã®åïŒã $d(P,Q)$ ãšããïŒ\\\r\nããã®ãšãïŒåé¡ã®äºã€ç®ã®æ¡ä»¶ã¯ïŒ\r\n- ä»»æã® $S$ ã®å
$x,y$ ã«ã€ããŠïŒ$x$ ãš $y$ ã®å¶å¥ãç°ãªã $x\\gt y$ ãªãã° $d(P_x,P_y) = a_x - a_y$ ã§ããïŒ\r\n\r\nãšèšãæããããïŒä»ïŒ$x$ ã $0$ ä»¥äž $4$ 以äžã®æŽæ°ãšãããšïŒäžè§äžçåŒãã\r\n$$d(P_{x+1},P_{x}) + d(P_{x+2},P_{x+1}) + d(P_{x+3}, P_{x+2}) \\ge d(P_{x+3},P_{x})$$\r\nã§ãããïŒ$a_0, a_1, \\ldots, a_7$ ã¯åºçŸ©å調å¢å ã§ããããïŒå·ŠèŸºãšå³èŸºã¯ãšãã« $a_{x+3} - a_x$ ã«çããã®ã§ïŒçå·ãæç«ããïŒåŸã£ãŠïŒäžè§äžçåŒã®çå·æç«æ¡ä»¶ããïŒ$F(x), F(x+1), F(x+2), F(x+3)$ ã¯åºçŸ©å調æžå°ãŸãã¯åºçŸ©å調å¢å ã§ããïŒ$G$ ã«ã€ããŠãåæ§ã§ããïŒãã£ãŠïŒ$F,G$ ã¯åºçŸ©å調æžå°ãŸãã¯åºçŸ©å調å¢å ã§ããïŒ\\\r\nãéã«ïŒ$F, G$ ããšãåºçŸ©å調æžå°ãŸãã¯åºçŸ©å調å¢å ã§ãããšãïŒæ¡ä»¶ãã¿ãããã㪠$a_0,a_1,\\ldots, a_7$ ãååšããïŒãŸãïŒ$(f,g)$ ã®çµãš $(F,G)$ ã®çµã¯äžå¯Ÿäžå¯Ÿå¿ããã®ã§ïŒãšãã«åºçŸ©å調å¢å ãŸãã¯åºçŸ©å調æžå°ã§ãããã㪠$(F,G)$ ã®çµã®æ°ãæ±ããã°è¯ãïŒ\\\r\nãåºçŸ©å調å¢å 㪠$F\\colon S\\to S$ ã®æ°ã¯ïŒ$(0,0)$ ãã $(8,7)$ ãŸã§é£ãåãæ Œåç¹ãéã£ãŠæçè·é¢ã§è¡ãæ¹æ³ã®æ°ãšçããïŒ${}\\_{15}\\mathrm{C}\\_{7}$ éãããïŒåºçŸ©å調æžå°ãª $F\\colon S\\to S$ ã®æ°ãããã«çããã®ã§ïŒå®å€é¢æ°ã®ååšã«æ°ãã€ããŠïŒæ±ããçã㯠$(2\\times{}\\_{15}\\mathrm{C}\\_{7} - 8)^2 = \\bf165431044$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc196/editorial/8081"
}
] | ã$S = \\{0,1,\ldots,7\\}$ ãšããŸãïŒ$S$ ã®åå
ã«å¯ŸããŠå®çŸ©ãã $S$ äžã«å€ããšãé¢æ°ã®çµ $(f,g)$ ã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ãæãç«ã€ãã®ã¯ããã€ãããŸããïŒ
- ããåºçŸ©å調å¢å ãªæŽæ°å $a_0, a_1, \ldots, a_7$ ãååšããŠïŒä»»æã® $S$ ã®å
$x,y$ ã«ã€ããŠïŒ$x$ ãš $y$ ã®å¶å¥ãç°ãªããªãã°ä»¥äžãæãç«ã€ïŒ
$$|f(x) - g(y)| + |g(x) - f(y)| = |a_x - a_y|$$ |
OMC196 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc196 | https://onlinemathcontest.com/contests/omc196/tasks/10426 | E | OMC196(E) | 500 | 98 | 253 | [
{
"content": "ã察称æ§ãã $p\\le q\\le r$ ãšããŠèããŠããïŒ\\\r\nã$p$ ãæ³ãšãã $4$ ã®äœæ°ã $a$ ãšããïŒãã§ã«ããŒã®å°å®çãšä»®å®ãã\r\n$$4^{p-1}\\equiv4^{2qr}\\equiv 1\\pmod p$$\r\nã§ããããïŒ$a\\mid\\gcd(p-1, 2qr)$ ã§ããïŒããã§ïŒ$q,r$ ã¯ãããã $p-1$ ãã倧ããçŽ æ°ã§ããããšãã $p-1$ ãšäºãã«çŽ ã§ããã®ã§ïŒ$\\gcd(p-1,2qr) = \\gcd(p-1,2) = 2$ ã§ããïŒãã£ãŠïŒ$4^{2} - 1 = 15$ 㯠$p$ ã§å²ãåãããã $p$ 㯠$3$ ãŸã㯠$5$ ã§ããïŒ$p = 3$ ã§ãããšãããšïŒ\r\n$$4^{qr}+1 \\equiv 1^{qr}+1 = 2 \\pmod 3$$\r\nãšãªãççŸããã®ã§ïŒ$p = 5$ ã§ããïŒ\\\r\nã$q$ ãæ³ãšãã $4$ ã®äœæ°ã $b$ ãšããïŒãã§ã«ããŒã®å°å®çãšä»®å®ãã\r\n$$4^{q-1}\\equiv4^{10r}\\equiv 1\\pmod q$$\r\nã§ããããïŒ$b\\mid\\gcd(q-1, 10r)$ ã§ããïŒããã§ïŒ$r$ 㯠$q-1$ ãã倧ããçŽ æ°ã§ããããšãã $q-1$ ãšäºãã«çŽ ã§ããã®ã§ïŒ$\\gcd(q-1,10r) = \\gcd(q-1,10)\\mid10$ ã§ããïŒãã£ãŠïŒ\r\n$$4^{10} - 1 = (2^{10} - 1)(2^{10} + 1)$$\r\n㯠$q$ ã§å²ãåããïŒãŸãïŒ\r\n$$4^{5r} + 1 = 2^{10r} + 1 = (2^{10} - 1)\\times\\frac{2^{10r} -1}{2^{10} - 1} + 2$$\r\nã $q$ ã®åæ°ã§ããããšããïŒ$q$ 㯠$2^{10} - 1$ ã®çŽæ°ã§ãªãïŒãã£ãŠïŒ$q$ 㯠$2^{10} + 1 = 5^2 \\times41$ ã®çŽ å æ°ã§ãããã $5$ ãŸã㯠$41$ ã§ããïŒ\\\r\nã$r$ ãæ³ãšãã $4$ ã®äœæ°ã $c$ ãšãïŒ$q$ ã®å€ã§å Žååãã㊠$r$ ãæ±ããïŒããã§ïŒæ¬¡ã®è£é¡ãæãç«ã€ããšã«æ°ãã€ããïŒ\r\n\r\n**è£é¡ïŒ**ä»»æã® $-1$ ã§ãªãæŽæ° $x$ ãšå¥çŽ æ° $P$ ã«ã€ããŠïŒ$\\dfrac{x^P + 1}{x + 1}$ ã®çŽ å æ°ã¯ $P$ ã $P$ ã§å²ã£ãŠ $1$ äœãçŽ æ°ã§ããïŒ\r\n<details><summary>蚌æ<\\/summary>\r\nã$x$ ã $-x$ ã«çœ®ãæããŠïŒä»»æã® $1$ ã§ãªãæŽæ° $x$ ã«ã€ã㊠$\\dfrac{x^P - 1}{x - 1}$ ã®çŽ å æ°ã¯ $P$ ã $P$ ã§å²ã£ãŠ $1$ äœãçŽ æ°ã§ããããšã瀺ãïŒ\\\r\nãçŽ æ° $Q$ ã $\\dfrac{x^P - 1}{x - 1}$ ã®çŽæ°ã§ãã£ãŠ $P$ ã§ãªããšããïŒ$Q$ ãæ³ãšãã $x$ ã®äœæ°ã $d$ ãšãããšïŒ\r\n$$d\\mid\\gcd(P,Q-1)\\mid P$$\r\nã§ãããã $d$ 㯠$1$ ã $P$ ã§ããïŒ$d = 1$ ã§ãããšãããš $Q\\mid x - 1$ ã§ããããïŒLTEã®è£é¡ãã $$v_Q(x^P - 1) = v_Q(x - 1) + v_Q(P) = v_Q(x - 1)$$\r\nãšãªãïŒ$Q$ ã $\\dfrac{x^P - 1}{x - 1}$ ã®çŽæ°ã§ããããšã«ççŸããïŒãã£ãŠ $d = P$ ã§ãããïŒãã®ãšã $P \\mid Q - 1$ ã§ãããã $Q$ 㯠$P$ ã§å²ã£ãŠ $1$ äœãïŒãã£ãŠç€ºãããïŒ\r\n<\\/details>\r\n\r\n- $q = 5$ ã§ãããšã\\\r\nã$r\\mid 2^{50} + 1 = (2^{10} + 1)\\times\\dfrac{(2^{10})^5 + 1}{2^{10}+1}$ ã§ããããïŒãŸã $2^{10} + 1 = 5^2 \\times41$ ã®çŽ å æ° $5, 41$ 㯠$r$ ãšããŠé©ããïŒæ¬¡ã«ïŒè£é¡ãã$\\dfrac{(2^{10})^5 + 1}{2^{10}+1}$ ã® $5$ ã§ã $41$ ã§ããªãçŽ å æ°ã®ãã¡ $150$ 以äžã§ãããã®ããããšããã°$$11, ~ 31, ~ 61, ~ 71, ~ 101, ~ 131$$\r\nã®äžã®ããããã§ããïŒããã§ïŒ$5$ ãšäºãã«çŽ ãªæŽæ° $k$ ãçšã㊠$r = 10k + 1$ ãšè¡šããããšãããšïŒ $c\\mid\\gcd(r-1,50)=10$ ã§ããããïŒ$q$ ã®ãšããšåæ§ã®è°è«ãããããšã§ $101$ 以å€ã®å
šãŠã®åè£ã $2^{50} + 1$ ãå²ãåãã $r$ ãšããŠé©ããªããšãããïŒãŸãïŒ$101$ ã«ã€ããŠã¯ïŒ$2^{50} + 1$ ã®çŽæ°ã§ããããšã確èªã§ããã®ã§ $r$ ãšããŠé©ããïŒ\r\n- $q = 41$ ã§ãããšã\\\r\nã$r\\mid 2^{410} + 1 = (2^{10} + 1)\\times\\dfrac{(2^{10})^{41} + 1}{2^{10}+1}$ ã§ããããïŒãŸã $2^{10} + 1 = 5^2 \\times41$ ã®çŽ å æ° $5, 41$ ã®ãã¡ $q$ 以äžã§ãã $41$ 㯠$r$ ãšããŠé©ããïŒæ¬¡ã«ïŒè£é¡ãã$\\dfrac{(2^{10})^{41} + 1}{2^{10}+1}$ ã® $41$ ã§ãªãçŽ å æ°ã®ãã¡ $150$ 以äžã§ãããã®ããããšããã° $83$ ã®ã¿ã§ãããïŒ$83\\mid2^{82\\times5} - 1 = 2^{410} - 1$ ãªã®ã§ïŒ$83$ 㯠$2^{410} + 1$ ã¯å²ãåãã $r$ ãšããŠé©ããªãïŒ\r\n\r\n以äžããïŒ$(p,q, r)$ ã®åè£ãšããŠ\r\n$$(5,5,5), \\quad (5,5,41), \\quad (5,5,101),\\quad (5,41,41)$$\r\nãšãã®äžŠã¹æ¿ããæãããïŒãããã¯å
šãŠæ¡ä»¶ãæºããã®ã§ïŒãããæ±ããå
šãŠã®çµã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{12080}$ ã§ããïŒ\r\nã",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc196/editorial/10426"
}
] | ã$150$ 以äžã®çŽ æ° $p,q,r$ ã«ã€ããŠïŒ
$$\quad\frac{4^{qr} + 1}{p}, \quad\frac{4^{rp} + 1}{q}, \quad\frac{4^{pq} + 1}{r}$$
ããã¹ãŠæŽæ°ã§ãããšãïŒ$pqr$ ãšããŠããããå€ã®ç·åã解çããŠãã ããïŒ |
OMC196 (ãšãªãžãªã³æ¯) | https://onlinemathcontest.com/contests/omc196 | https://onlinemathcontest.com/contests/omc196/tasks/4655 | F | OMC196(F) | 600 | 21 | 41 | [
{
"content": "ãäžè§åœ¢ $QXY$ ã®å€æ¥åã $\\Omega$ ãšããïŒãŸãïŒäžè§åœ¢ $ABC$ ã®åå¿ã $H$ ãšãïŒçŽç· $AH$ ãš $\\omega$ ã®äº€ç¹ã®ãã¡ $A$ ã§ãªãæ¹ã $K$ ãšããïŒ\r\n$$\\angle AXB = \\angle APB + \\angle PBQ = \\angle ACB + \\angle PBQ = 180^\\circ - \\angle ACB = \\angle AHB$$\r\nãã $4$ ç¹ $A, B, H, X$ ã¯åäžååšäžã«ããïŒåæ§ã«ããŠ$A, C, H, Y$ ãåäžååšäžã«ããïŒããã«ïŒ\r\n$$\\begin{aligned}\r\n\\angle BQC &= 360^\\circ - \\angle PBQ - \\angle PCQ - \\angle BPC\\\\\\\\\r\n&= 360^\\circ - (180^\\circ - 2\\angle ACB) - (180^\\circ - 2\\angle ABC) - (180^\\circ - \\angle BAC)\\\\\\\\\r\n&= 2(\\angle ABC + \\angle BCA + \\angle CAB) - 180^\\circ - \\angle BAC\\\\\\\\\r\n&= 180^\\circ - \\angle BAC \\\\\\\\\r\n&= \\angle BHC\r\n\\end{aligned}$$\r\nãã $4$ ç¹ $B, C, H, Q$ ãåäžååšäžã«ããïŒä»¥äžãçšããŠèšç®ãããš\r\n$$\\angle HAX =\\angle HBQ = \\angle HCY = \\angle PAK$$\r\nãåãããïŒ$\\omega$ ã®ååŸãšäžè§åœ¢ $ABH ,BCH, CAH$ ã®å€æ¥åã®ååŸã¯ãã¹ãŠçããããšãã\r\n$$HQ = HX = HY = PK$$\r\nãåããïŒ\r\nåŸã£ãŠ $H$ 㯠$\\Omega$ ã®äžå¿ã§ããã®ã§ïŒãããã®å€ã¯å
šãŠ $10$ ã§ããããšãåããïŒãã£ãŠïŒ$K$ ãäžå¿ãšããååŸ $10$ ã®åãš $\\omega$ ã®äº€ç¹ã $B$ ã«è¿ãé ã« $P_1, P_2$ ãšããã°ïŒ$P$ ã¯ãã®äºã€ã®ããããã§ããïŒ$i = 1,2$ ã«ã€ããŠïŒ$P_i$ ã«å¯ŸããŠå®çŸ©ããã $Q, X, Y$ ããããã $Q_i, X_i, Y_i$ ãšãããšïŒ$X_2$ ã¯çŽç· $AH$ ã«é¢ã㊠$B$ ãšå察ã®åŽã«ããïŒ$Q_1$ 㯠çŽç· $CH$ ã«é¢ã㊠$B$ ãšå察ã®åŽã«ããã®ã§ïŒ\r\n$$\\angle BAX_2 = \\angle BAH + \\angle HAX_2 = \\angle BCH + \\angle HAX_1 = \\angle BCH + \\angle HCQ_1 = \\angle BCQ_1$$\r\nãåããïŒåŸã£ãŠïŒäžè§åœ¢ $ABH$ ã®å€æ¥åååŸãšäžè§åœ¢ $BCH$ ã®å€æ¥åååŸãçããããšãã $BX_2 = BQ_1$ ã§ããïŒãŸãïŒä»»æã® $i = 1,2$ ã«ã€ããŠïŒ\r\n$$\\begin{aligned}\r\n\\angle BX_iP_i = 180^\\circ - \\angle AX_iB = 180^\\circ - \\angle AHB= \\angle ACB = \\angle APB = \\angle X_iP_iB\r\n\\end{aligned}$$\r\nãã $BP_i = BX_i$ ã§ããããïŒ\r\n$$BP_1\\times BP_2 = BX_1 \\times BX_2 = BX_1\\times BQ_1$$\r\nãåããïŒãã㯠$B$ ãã $\\Omega$ ãžã®æ¹ã¹ãã§ããïŒä»¥äžããïŒ$AA^\\prime$ ã $\\omega$ ã®çŽåŸãšãªããã㪠$A^\\prime$ ãåããšïŒ\r\n$$BP_1\\times BP_2 = BH^2 - 10^2 = A^\\prime C^2 - 10^2 = AA^{\\prime2} - AC^2 - 10^2 = \\bf{1916}$$\r\nãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc196/editorial/4655"
},
{
"content": "(æ¹éã瀺ãç®çãªã®ã§ãè«žã
çç¥ããŠããããšã¯ã容赊ãã ãã)\r\n\r\nangle chaseã«ãã, $\\triangle ABC$ãš$\\triangle QYX$ã¯çžäŒŒ. ãã£ãŠå€æ¥åååŸã®æ¯ãèããŠ$BC:YX=9:2$ã§ãã. ãŸã, $BP=BX, CP=CQ$ã ãã, $B,C$ãã$AP$ã«äžãããåç·ã®è¶³ã$M,N$ãšãããš, ãããã¯ãããã$XP, YP$ã®äžç¹ã§, $BC:XY:MN=9:2:1$.\r\n\r\nåŸã£ãŠ, $\\angle CBM=\\theta$ãšãããš, $\\sin\\theta=\\dfrac{1}{9}$ã§, ãŸã$\\cos\\theta=\\dfrac{\\sqrt{80}}{9}$ãšãªã. $\\angle ABC=\\beta$ãšãããšæ£åŒŠå®çãªã©ãã$\\sin\\beta=\\dfrac{78}{90}, \\cos\\beta=\\dfrac{\\sqrt{2016}}{90}$ãšãªãããšãçšãããš, $\\angle ABX=\\beta\\pm\\theta, \\angle BAP=90^\\circ-\\beta\\mp\\theta$ãšãªãããšãã, \r\n\r\n$$BP=2\\cdot45\\sin(90^\\circ-\\beta\\mp\\theta)=90\\cos(\\beta\\pm\\theta)=90\\left(\\frac{\\sqrt{80}}{9}\\cdot\\frac{\\sqrt{2016}}{90}\\mp\\frac{1}{9}\\cdot\\frac{78}{90}\\right)=\\frac{1}{9}(\\sqrt{80\\cdot2016}\\mp78)$$\r\n\r\nãšèšç®ã§ã, æ±ããç·ç©ã¯\r\n\r\n$$\\frac{1}{9}(\\sqrt{80\\cdot2016}-78)\\times\\frac{1}{9}(\\sqrt{80\\cdot2016}+78)=\\mathbf{1916}$$\r\nãšããã.",
"text": "åå¿ãå©çšããã«è§£ãæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc196/editorial/4655/382"
}
] | ã$AB=67, ~ AC=78$ ãªãéè§äžè§åœ¢ $ABC$ ãããïŒãã®å€æ¥åã $\omega$ ãšãããšïŒ$\omega$ ã®ååŸã¯ $45$ ã§ããïŒ$\omega$ ã®åŒ§ $BC$ïŒ$A$ ãå«ãŸãªãæ¹ïŒäžã®ç¹ $P$ ãšïŒäžè§åœ¢ $ABC$ ã®å
éšïŒåšäžãé€ãïŒã®ç¹ $Q$ ã«ã€ããŠïŒ$Q$ ã¯çŽç· $AP$ äžã«ã¯ãªãïŒããã«
$$\angle PBQ + 2\angle ACB = \angle PCQ + 2\angle ABC = 180^\circ$$
ãæãç«ã¡ãŸããïŒããã§ïŒçŽç· $BQ, CQ$ ãšçŽç· $AP$ ã®äº€ç¹ããããã $X, Y$ ãšããŸãïŒäžè§åœ¢ $QXY$ã®å€æ¥åã®ååŸã $10$ ã§ãã£ããšãïŒç·å $BP$ ã®é·ããšããŠããããå€ã®**ç·ç©**ãæ±ããŠãã ããïŒ |
OMC195 (for beginners) | https://onlinemathcontest.com/contests/omc195 | https://onlinemathcontest.com/contests/omc195/tasks/4886 | A | OMC195(A) | 100 | 346 | 358 | [
{
"content": "ã$BI_A,CI_A$ ã¯ãããã $\\angle B,\\angle C$ ã®å€è§ãäºçåããããšã«æ³šæãããšïŒ\r\n$$\\begin{aligned}\r\n\\angle B I_A C &= 180^\\{\\circ} - \\angle BCI_A - \\angle CBI_A \\\\\\\\\r\n&=180^\\{\\circ} - \\dfrac{1}{2}(180^\\{\\circ} -\\angle BCA) - \\dfrac{1}{2}(180^\\{\\circ} -\\angle CBA) \\\\\\\\\r\n&=\\dfrac{1}{2}(\\angle BCA+\\angle CBA) \\\\\\\\\r\n&=90^\\{\\circ} -\\dfrac{1}{2}\\angle BAC \\\\\\\\\r\n&=87^{\\circ}\r\n\\end{aligned}$$\r\nãããã£ãŠïŒæ±ããçã㯠$\\angle BI_AC=\\bf{87}^\\circ$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc195/editorial/4886"
},
{
"content": "ãä»åã¯äœ¿ããªããŠã解ããŸããïŒéèŠãªå®çãªã®ã§æããŠããããšãæšå¥šããŸãïŒ\r\n***\r\nãå
å¿ã $I$ ãšããïŒ$AI$ ãšå $ABC$ ã®äº€ç¹ã $D$ ãšãããšïŒ$B,I,C,I_A$ ã¯å
±åã§ïŒ$D$ ã¯ãã®åã®äžå¿ãªã®ã§ïŒ\r\n$$\\angle{BI_AC}=\\dfrac12(180^\\circ-\\angle{BAC})=87^\\circ$$",
"text": "ããªãªãŠã ã®å®ç",
"url": "https://onlinemathcontest.com/contests/omc195/editorial/4886/378"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠïŒ$A$ ã«å¯Ÿããåå¿ã $I_A$ ãšããŸãïŒ$$\angle BAC = 6 ^\circ$$ ã®ãšãïŒ$\angle BI_AC $ ã®å€§ããã床æ°æ³ã§æ±ããŠäžããïŒ |
OMC195 (for beginners) | https://onlinemathcontest.com/contests/omc195 | https://onlinemathcontest.com/contests/omc195/tasks/4909 | B | OMC195(B) | 100 | 337 | 344 | [
{
"content": "$$\\log_2 \\biggl(1+\\dfrac{1}{k}\\biggl)=\\log_2 \\dfrac{k+1}{k}=\\log_2 (k+1) -\\log_2 k$$\r\nããïŒ\r\n$$5=\\displaystyle \\sum_{k=1}^{n} \\log_2 \\biggl(1+\\dfrac{1}{k}\\biggr)=\\log_2 (n+1)$$\r\nãæãç«ã€ïŒãã£ãŠïŒ$n=2^{5}-1=\\mathbf{31}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc195/editorial/4909"
}
] | $$\displaystyle \sum_{k=1}^{n} \log_2 \biggl(1+\dfrac{1}{k}\biggr)=5$$
ãã¿ããæ£ã®æŽæ° $n$ ãæ±ããŠãã ããïŒ |
OMC195 (for beginners) | https://onlinemathcontest.com/contests/omc195 | https://onlinemathcontest.com/contests/omc195/tasks/4357 | C | OMC195(C) | 200 | 210 | 301 | [
{
"content": "ãéžã°ãã $i=1,2,3,4,5$ ãåé¡ã®æ°åå
㧠$a_i$ çªç®ã«çŸãã $i$ ã§ãã£ããšãããšïŒãã®éžã³æ¹ãåé¡ã®æ¡ä»¶ãæºããããšã¯æ¬¡ãæãç«ã€ããšãšåå€ã§ããïŒ\r\n$$1 \\leq a_1 \\leq a_2 \\leq a_3 \\leq a_4 \\leq a_5 \\leq 100$$\r\nãã®ãããªæ°å $\\lbrace a_i \\rbrace$ ã¯ããŒã« $99$ åãšä»åã $5$ åãäžåã«äžŠã¹ãæ¹æ³ã«å¯Ÿå¿ããããïŒæ±ããéžã³æ¹ã¯ ${}\\_{104}\\mathrm{C}\\_5=\\textbf{91962520}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc195/editorial/4357"
}
] | ã$1,2,3,4,5$ ã®äžŠã³ã $100$ åç¹°ãè¿ããŠåŸãããèš $500$ é
ãããªãæ°åã«ãããŠïŒçžç°ãªã $5$ é
ãéžã¶æ¹æ³ã§ãã£ãŠïŒæ°åã«çŸããé ã« $1,2,3,4,5$ ã§ãããããªãã®ã¯äœéããããŸããïŒ |
OMC195 (for beginners) | https://onlinemathcontest.com/contests/omc195 | https://onlinemathcontest.com/contests/omc195/tasks/4751 | D | OMC195(D) | 200 | 131 | 273 | [
{
"content": "ããŸãïŒäºãã«çŽ ãªæ£æŽæ° $s,t$ ã§ãã£ãŠ\r\n$$\\dfrac{1}{8}\\lt \\dfrac{s}{t}\\lt \\dfrac{1}{7} \\quad \\Bigl(\\iff 7s\\lt t\\lt 8s \\Bigr)$$\r\nãã¿ãããã®ãèããïŒ$s$ ãå°ããæ¹ããïŒçããå Žå㯠$t$ ãå°ããæ¹ããïŒåæããã°ïŒ\r\n$$\\frac{2}{15},\\frac{3}{22},\\frac{3}{23},\\frac{4}{29},\\frac{4}{31},\\frac{5}{36},\\frac{5}{37},\\frac{5}{38},\\frac{5}{39},\\frac{6}{43},\\dfrac{6}{47},\\dfrac{7}{50},\\ldots$$\r\nãšäžŠã¶ïŒãã®ç¯å²ã§ã¯ $s+t$ ã®æé ãåæã«å®çŸãããŠãã$^{(*)}$ããšã«æ³šæããïŒ\\\r\nãããŠïŒããããã« $3$ ãå ããããšã§ $\\dfrac{p}{q}$ ãšããŠé©ãããã®ã察å¿ãããïŒ$t$ ãæé ã§ããããšããïŒ$3$ ãå ããåŸã«ãããŠã $p+q$ ã®æé ãå®çŸãããïŒãã£ãŠïŒæ±ããã¹ãå€ã¯ $(6+43\\times 3)+43=\\mathbf{178}$ ã§ããïŒ\r\n\r\n----\r\n$^{(*)}$ $s \\geq 10$ ã«ãããŠã¯åå $s$ ã®å€ããç®ïŒããªãã¡ $\\dfrac{s}{8s-1},~\\dfrac{s+1}{7s+8}$ ã«ã€ããŠã¯ïŒæ¬¡ãæãç«ã€ã®ã§ïŒåæ°ã®åæé ãš $s+t$ ã®å€§å°ãäžèŽããªãïŒ\r\n$$s+(8s-1) \\geq (s+1)+(7s+8)$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc195/editorial/4751"
}
] | ãäºãã«çŽ ãªæ£æŽæ° $p,q$ ã
$$\dfrac{25}{8}\lt \dfrac{p}{q} \lt \dfrac{22}{7}$$
ãã¿ãããšãïŒ$p+q$ ã®ãšãåŸãå€ã®ãã¡ $10$ çªç®ã«å°ãããã®ãæ±ããŠãã ããïŒ |
OMC195 (for beginners) | https://onlinemathcontest.com/contests/omc195 | https://onlinemathcontest.com/contests/omc195/tasks/3989 | E | OMC195(E) | 300 | 84 | 165 | [
{
"content": "ã蟺 $AC$ ã®äžç¹ã $M$ ãšããïŒäžç¹é£çµå®çããäžè§åœ¢ $ABC$ ãšäžè§åœ¢ $APM$ ã¯çžäŒŒã§ããïŒãã£ãŠïŒ\r\n$$\\angle RMP = \\angle AMP = \\angle ACB = \\angle RQP$$\r\nãã $4$ ç¹ $P,Q,R,M$ ã¯åäžååšäžã«ããïŒãã£ãŠïŒ\r\n$$\\angle AMQ = \\angle RMQ = 180^\\circ - \\angle QPR = 90^\\circ = \\angle ABQ$$\r\nãã $4$ ç¹ $A,B,Q,M$ ã¯åäžååšäžã«ããïŒãã£ãŠïŒæ¹ã¹ãã®å®çãã\r\n$$CB\\times CQ = CA\\times CM = \\frac{1}{2}CA^2 = \\frac{1}{2}(AB^2 + BC^2)=4. $$\r\nãŸã $CB = \\sqrt{7}$ ã§ãããã $CQ = \\dfrac{4}{\\sqrt{7}}$ ã§ããã®ã§ $QB = CB-CQ=\\dfrac{3}{\\sqrt{7}}$ ãåŸãïŒãã£ãŠïŒ\r\n$$\\triangle PQR = \\frac{1}{2}PR\\times PQ = \\frac{1}{2\\sqrt{7}} PQ^2 = \\frac{1}{2\\sqrt{7}} (PB^2 + QB^2) = \\frac{43\\sqrt{7}}{392}.$$\r\nç¹ã«è§£çãã¹ãå€ã¯ $\\bf442$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc195/editorial/3989"
}
] | ãäžè§åœ¢ $ABC$ ã¯ä»¥äžãã¿ãããŸãïŒ
$$ \angle B = 90^\circ,\quad AB = 1,\quad BC = \sqrt{7} $$
蟺 $AB$ ã®äžç¹ã $P$ ãšãïŒèŸº $BC, CA$ äžã«ãããã $ Q, R$ ãïŒäžè§åœ¢ $BCA$ ãšäžè§åœ¢ $PQR$ ãïŒåããå«ããŠïŒçžäŒŒãšãªãããã«åããŸãïŒäžè§åœ¢ $PQR$ ã®é¢ç©ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a, c$ ããã³å¹³æ¹å åãæããªãæ£ã®æŽæ° $b$ ãçšã㊠$\dfrac{a\sqrt{b}}{c}$ ãšè¡šããã®ã§ïŒ$a+b+c$ ã解çããŠãã ããïŒ |
OMC195 (for beginners) | https://onlinemathcontest.com/contests/omc195 | https://onlinemathcontest.com/contests/omc195/tasks/4748 | F | OMC195(F) | 400 | 52 | 82 | [
{
"content": "ã$113$ 㯠$10$ ãšäºãã«çŽ ã§ããããïŒå°æ°ç¬¬ $1$ äœãããã ã¡ã«åŸªç°ç¯ã«å
¥ãïŒããŸïŒåŸªç°ç¯ã®é·ãã $112$ ã§ããããšããïŒçç®ã®èŠé ã§å²ãç®ãè¡ãéçšãèããããšã§ïŒåŸªç°ç¯ã®äžã«ã¯\r\n$$10÷113,\\quad 20÷113,\\quad \\ldots, \\quad ,1120÷113$$\r\nã®åãããããäžåºŠãã€çŸããããšããããïŒããªãã¡åŸªç°ç¯ã®äžã«ã¯ $0,1,2,4,5,7,8,9$ ã $11$ åãã€ïŒ$3,6$ 㯠$12$ åãã€åºçŸããïŒãããã£ãŠåŸªç°ç¯ã® $0$ ãé€ãæ°åã®ç·ç©ã¯ $(9!)^{11}\\cdot 3\\cdot 6=2^{78} \\cdot 3^{46} \\cdot 5^{11} \\cdot 7^{11}$ ã§ããïŒ\\\r\nããããš $227=112\\times 2+3$ ããã³ $\\dfrac{355}{113}=3.141\\cdots$ ããïŒ$P=(2^{78} \\cdot 3^{46} \\cdot 5^{11} \\cdot 7^{11})^2\\cdot 1 \\cdot 4 \\cdot 1=2^{158} \\cdot 3^{92} \\cdot 5^{22} \\cdot 7^{22}$ ã§ããã®ã§ $P$ ã®çŽæ°ã®åæ°ã¯ $\\bf{7822323}$ ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc195/editorial/4748"
}
] | ã$\dfrac{355}{113}$ ãåé²æ³è¡šèšã§è¡šããšãïŒå°æ°ç¬¬ $1$ äœããå°æ°ç¬¬ $227$ äœãŸã§ã«çŸããåäœã®æ°ã«ã€ã㊠$0$ ãé€ãããã®ã®**ç·ç©**ã $P$ ãšããŸãïŒ$P$ ã®æ£ã®çŽæ°ã®åæ°ãæ±ããŠãã ããïŒãã ãïŒ$\dfrac{355}{113}$ ã®åŸªç°ç¯ã®é·ã㯠$112$ ã§ããããšãä¿èšŒãããŸãïŒ
---
ãããã§**埪ç°ç¯**ãšã¯ïŒå°æ°ç¹ä»¥äžã®ããæ¡ããå
ã§åãæ°åã®åãç¡éã«ç¹°ãè¿ãããå°æ°ã«ãããŠïŒç¹°ãè¿ãããæ°åã®åã®äžã§æãé·ããçããã®ãæããŸãïŒäŸãã°ïŒ$\dfrac{1}{6}=0.166\cdots$ ã®åŸªç°ç¯ã¯ $6$ïŒé·ã $1$ïŒïŒ$\dfrac{1}{7}=0.142857142857\cdots$ ã®åŸªç°ç¯ã¯ $142857$ïŒé·ã $6$ïŒã§ãïŒ |
OMC194 | https://onlinemathcontest.com/contests/omc194 | https://onlinemathcontest.com/contests/omc194/tasks/2351 | A | OMC194(A) | 100 | 249 | 286 | [
{
"content": "ã$b_i=a_i+1$ ãšããã°ïŒ$b_1+b_2+\\cdots +b_{6}=20$ ãæºããéè² æŽæ°ã®çµ $(b_1,b_2,\\ldots ,b_{6})$ ã®æ°ãæ±ããããšã«åž°çãããïŒããã¯ïŒ${}\\_{6}\\mathrm{H}\\_{20} = \\bf53130$ éãååšããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc194/editorial/2351"
}
] | ãç·åã $14$ ã§ãããã㪠$-1$ 以äžã®æŽæ°ã®çµ $(a_1,a_2,\ldots ,a_{6})$ ã¯äœéããããŸããïŒ |
OMC194 | https://onlinemathcontest.com/contests/omc194 | https://onlinemathcontest.com/contests/omc194/tasks/2002 | B | OMC194(B) | 300 | 180 | 223 | [
{
"content": "ãæ¡ä»¶ãã $5n$ ããã€çŽ å æ°ã®éå㯠$\\\\{2,5,7\\\\}$ ã§ããããïŒ$n=2^a5^b7^c$ ãšè¡šããïŒãã®ãšãïŒ\r\n$$\\frac{f(5n)}{f(n)}=\\frac{(5n)^{(a+1)(b+2)(c+1)\\/2}}{n^{(a+1)(b+1)(c+1)\\/2}}=5^{(a+1)(b+2)(c+1)\\/2}n^{(a+1)(c+1)\\/2}$$\r\nã§ããïŒããã $140^{90}=2^{180}5^{90}7^{90}$ ã«çããããšããïŒåçŽ å æ°ã®ææ°ãæ¯èŒããŠ\r\n$$a(a+1)(c+1)=360,\\quad (a+1)(b+1)(c+1)=90,\\quad (a+1)c(c+1)=180. $$\r\nãã㯠$(a,b,c)=(8,1,4)$ ãå¯äžã®è§£ã«ãã€ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{3073280}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc194/editorial/2002"
},
{
"content": "ã $n=p_1^{a_1}p_2^{a_2}âŠp_m^{a_m}$ ãšçŽ å æ°å解ããããããšïŒ $f(n)=n^{\\frac{1}{2}(a_1+1)(a_2+1)âŠ(a_m+1)}$ ã§ããããšã瀺ãïŒ\r\n\r\n$$\r\n\\begin{aligned}\r\nf(n)&=f\\left(\\prod_{k=1}^{m}p_k^{a_k}\\right) \\\\\\\\\r\n&=\\prod_{i_1=0}^{a_1}\\prod_{i_2=0}^{a_2}âŠ\\prod_{i_m=0}^{a_m}\\left(\\prod_{k=1}^{m}p_k^{i_k}\\right) \\\\\\\\\r\n&=\\prod_{k=1}^{m}p_k^{\\sum_{i_1=0}^{a_1}\\sum_{i_2=0}^{a_2}âŠ\\sum_{i_m=0}^{a_m}i_k} \\\\\\\\\r\n&=\\prod_{k=1}^{m}p_k^{\\frac{1}{2}(a_k+1)\\prod_{i=1}^{m}(a_i+1)} \\\\\\\\\r\n&=n^{\\frac{1}{2}\\prod_{i=1}^{m}(a_i+1)}\r\n\\end{aligned}\r\n$$\r\n\r\nãç¹ã«æ¬åã§ã¯ïŒ $n=2^a5^b7^c$ ãšçœ®ããšïŒ $f(n)=n^{\\frac{1}{2}(a+1)(b+1)(c+1)}$ ãšãªãïŒ",
"text": "å
¬åŒè§£èª¬ã®è£è¶³",
"url": "https://onlinemathcontest.com/contests/omc194/editorial/2002/372"
}
] | ãæ£ã®æŽæ° $x$ ã«å¯ŸãïŒãã®æ£ã®çŽæ°ã®ç·ç©ã $f(x)$ ã§è¡šããŸãïŒãã®ãšãïŒ
$$\frac{f(5n)}{f(n)}=140^{90}$$
ãã¿ããæ£ã®æŽæ° $n$ ã®ç·åã解çããŠãã ããïŒ |
OMC194 | https://onlinemathcontest.com/contests/omc194 | https://onlinemathcontest.com/contests/omc194/tasks/8117 | C | OMC194(C) | 400 | 125 | 165 | [
{
"content": "ã$K=\\dfrac{k}{10^5}$ ãšããïŒæŒžååŒãã\r\n$$a_{n+2}-a_{n+1}=K(\\lceil a_{n+1} \\rceil -\\lceil a_n \\rceil )$$\r\nã§ããïŒå³èŸºã«ã€ããŠïŒ\r\n$$\\lceil a_{n+1} \\rceil -\\lceil a_n \\rceil =\\lceil K \\lceil a_n \\rceil +1 \\rceil -\\lceil a_n \\rceil = \\lceil K \\lceil a_n \\rceil \\rceil -\\lceil a_n \\rceil +1$$\r\nã§ããïŒ$0\\lt K\\lt 1$ ããã³ $a_n\\gt 0$ ã«ãã $\\lceil a_{n+1} \\rceil -\\lceil a_n \\rceil \\leq 1$ ã§ããïŒããã«ïŒ\r\n$$\\lceil a_{n+2}-a_{n+1} \\rceil -1 \\leq \\lceil a_{n+2} \\rceil -\\lceil a_{n+1} \\rceil \\leq \\lceil a_{n+2}-a_{n+1} \\rceil = \r\n\\lceil K(\\lceil a_{n+1} \\rceil -\\lceil a_n \\rceil ) \\rceil$$\r\nã§ããïŒä»¥äžãæãç«ã€ããšãåããïŒ\r\n- $\\lceil a_{n+1} \\rceil - \\lceil a_n \\rceil =1$ ã®ãšã $\\lceil a_{n+2} \\rceil -\\lceil a_{n+1} \\rceil =0$ ãŸã㯠$1$\r\n- $\\lceil a_{n+1} \\rceil - \\lceil a_n \\rceil =0$ ã®ãšã $\\lceil a_{n+2} \\rceil -\\lceil a_{n+1} \\rceil =0$\r\n- $\\lceil a_{n+1} \\rceil - \\lceil a_n \\rceil \\lt 0$ ã®ãšã $\\lceil a_{n+2} \\rceil -\\lceil a_{n+1} \\rceil \\leq 0$\r\n\r\nããã«ãã $\\\\{\\lceil a_n\\rceil \\\\}$ ã¯åºçŸ©å調å¢å ãŸãã¯åºçŸ©å調æžå°ã§ããïŒããã§ïŒ$\\\\{\\lceil a_n\\rceil \\\\}$ ãåºçŸ©å調æžå°ã®ãšã $\\lceil a_{N+1} \\rceil =\\lceil a_N \\rceil$ ãšãªããã㪠$998$ 以äžã®æ£æŽæ° $N$ ãååšãïŒãã®ãšã $a_{N+1}=a_{N+2}$ ã§ããããæ¡ä»¶ãæºãããªãïŒãããã£ãŠïŒ$\\\\{\\lceil a_n\\rceil \\\\}$ ã¯åºçŸ©å調å¢å ã§ããå¿
èŠãããïŒãã®ãšã\r\n$$\\lceil a_2 \\rceil - \\lceil a_1 \\rceil = \\lceil 500K+1 \\rceil - 500 =1 \\iff \\lceil 500K \\rceil =500$$\r\nããªãã¡ $\\dfrac{499}{500} \\lt K (\\leq 1)$ ãå¿
èŠã§ããïŒä»¥äžã®è°è«ã§ã¯ $K$ ããããæºãããã®ãšããïŒ\\\r\nã次ã«ïŒåã㊠$\\lceil a_{N+1} \\rceil = \\lceil a_N \\rceil$ ãšãªã $N$ ã«ã€ããŠèããïŒæŒžååŒããã³å€©äºé¢æ°ã®å®çŸ©ãã\r\n$$\\lceil a_N \\rceil -1 \\lt K\\lceil a_N \\rceil +1 \\leq \\lceil a_N \\rceil \\iff \\frac{1}{1-K} \\leq \\lceil a_N \\rceil \\lt \\frac{2}{1-K}$$\r\nã§ããïŒ$\\lceil a_1 \\rceil, \\lceil a_2 \\rceil, \\ldots , \\lceil a_N \\rceil$ ã¯å
¬å·® $1$ ã®çå·®æ°åã§ããïŒãŸãäžã®äžçåŒã®åºé㯠$1$ ãã倧ããããïŒãããæºãã $N$ ãå¿
ãååšããïŒãããã $a_1, a_2, \\ldots ,a_{1000}$ ãå
šãŠçžç°ãªãã«ã¯\r\n$$\\lceil a_{998} \\rceil = 1497 \\lt \\frac{1}{1-K} \\iff 1-\\frac{1}{1497} \\lt K = \\frac{k}{10^5}$$\r\nã§ããã°ããïŒ$k=99934,99935,\\ldots ,99999$ ããããæºããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{6597789}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc194/editorial/8117"
},
{
"content": "ã$a_1, \\cdots, a_{1000}$ ãçžç°ãªãããã«ã¯ïŒ$\\lceil a_1 \\rceil \\cdots \\lceil a_{999}\\rceil $ ãçžç°ãªãããšãå¿
èŠæ¡ä»¶ã§ããïŒããã§ïŒæŒžååŒã次ã®ããã«å€åœ¢ããïŒ\\\r\n$$\\lceil a_{n+1} \\rceil = \\left\\lceil \\dfrac{k}{10^5}\\lceil a_n \\rceil+1 \\right\\rceil=\\left\\lceil \\dfrac{k}{10^5}\\lceil a_n \\rceil \\right\\rceil +1 \\leq \\left\\lceil \\lceil a_n \\rceil \\right\\rceil +1= \\lceil a_n \\rceil +1\\ \\cdots(â»)$$ \r\nããã㧠$\\lceil a_2 \\rceil \\leq 500$ ãšä»®å®ãããšïŒæ¬¡ã®ãããããæºããïŒ\\\r\n(i) $\\lceil a_1 \\rceil \\cdots \\lceil a_{501} \\rceil $ ã¯ãããã $500$ 以äžã®èªç¶æ°ã§ããïŒé³©ã®å·£åçããïŒ$\\lceil a_x \\rceil = \\lceil a_y \\rceil $ ãšãªããã®ãååšããïŒ\\\r\n(ii) $\\lceil a_3 \\rceil \\cdots \\lceil a_{501} \\rceil $ ã®ããããã $500$ ãã倧ããèªç¶æ°ã§ããïŒãã®ãšãïŒåŒ $(â»)$ ããïŒ$\\lceil a_x \\rceil = 500 $ ãšãªããã®ãååšããïŒ\\\r\nã©ã¡ãã®æ¡ä»¶ãæºãããŠãïŒ$a_1, \\cdots, a_{1000}$ ãçžç°ãªããšããæ¡ä»¶ã«åããããïŒ$\\lceil a_2 \\rceil \\gt 500$ ã§ãªããã°ãªããªãïŒããªãã¡ $\\lceil a_2 \\rceil = 501$ïŒ\r\n\r\nã次ã«ïŒ$\\lceil a_n \\rceil \\lt \\lceil a_{n+1} \\rceil$ ãšä»®å®ããïŒãã®ãšã挞ååŒãã $a_{n+1} \\lt a_{n+2}$ ã§ããïŒäžæ¹ïŒåŒ $(â»)$ ããïŒ\r\n$$\\lceil a_{n+1} \\rceil \\leq \\lceil a_{n+2} \\rceil \\leq \\lceil a_{n+1} \\rceil+1$$\r\nãšãªãïŒåŸã£ãŠïŒ$a_1, \\cdots, a_{1000}$ ãçžç°ãªãããã®å¿
èŠååæ¡ä»¶ã¯ïŒ$n=1, \\cdots,999$ ã®ç¯å²ã§ $\\lceil a_n \\rceil=n+499$ ãæºããããšã§ããïŒ\\\r\nãããã§ïŒæ¬¡ã®é£ç«äžçåŒãèããïŒ$\\lceil a_N \\rceil \\lt \\lceil a_{N+1} \\rceil $ïŒ$a_{N+1} = \\dfrac{k}{10^5}\\lceil a_N \\rceil+1$ïŒãã®äžçåŒã $1 \\leq N \\leq 998$ ã§æãç«ã€ãã㪠$k$ ãæ±ããã°ããïŒ\\\r\nã$\\lceil a_N \\rceil \\lt \\lceil a_{N+1} \\rceil \\iff \\lceil a_N \\rceil \\lt a_{N+1}$ ãçšããã°ïŒæ¬¡ã®è§£ãåŸãïŒ\r\n$$k \\gt \\dfrac{\\lceil a_N \\rceil -1}{\\lceil a_N \\rceil}à 10^5$$\r\nã$a_N$ ã倧ãããªãã»ã©å³èŸºã倧ãããªãã®ã§ïŒ$N=998$ ã代å
¥ã㊠$k \\geq 99934$ ãåŸãïŒ",
"text": "a_2=501 ãæ±ããå¥ã®æ¹æ³ïŒé³©ã®å·£åçïŒ",
"url": "https://onlinemathcontest.com/contests/omc194/editorial/8117/370"
}
] | ã$k$ ã $1$ ä»¥äž $10^5$ æªæºã®æŽæ°ãšãïŒæ°å $\\{ a_n \\}$ ã以äžã®æŒžååŒã§å®ããŸãïŒ
$$a_1=500, \quad a_{n+1}=\frac{k}{10^5} \lceil a_n \rceil +1 \quad (n=1,2,\ldots)$$
ãã®ãšãïŒ$a_1,a_2,\ldots ,a_{1000}$ ãçžç°ãªããã㪠$k$ ã®ç·åã解çããŠãã ããïŒãã ãïŒ$\lceil x \rceil$ 㧠$x$ 以äžã®æå°ã®æŽæ°ãè¡šããŸãïŒ |
OMC194 | https://onlinemathcontest.com/contests/omc194 | https://onlinemathcontest.com/contests/omc194/tasks/1839 | D | OMC194(D) | 400 | 32 | 71 | [
{
"content": "ãäžè§åœ¢ã®å蟺ã®é·ãã $a,b,c$ ãšãïŒé¢ç©ïŒåšé·ïŒå
æ¥åã®ååŸã $S,2s,r$ïŒåæ¥åã®åååŸã $r_a,r_b,r_c$ ãšããïŒãã®ãšãïŒ\r\n$$S=sr=(s-a)r_a=(s-b)r_b=(s-c)r_c$$\r\nãæãç«ã€ã®ã§ïŒ$a+b+c=2s$ ã«çæããããšã§ä»¥äžã®æç«ãããã (L'Huilierã®å®ç)ïŒ\r\n$$\\displaystyle \\frac{1}{r_a}+\\frac{1}{r_b}+\\frac{1}{r_c}=\\frac{1}{r}$$\r\näžæ¹ã§ïŒHeronã®å
¬åŒãã以äžãæç«ããïŒ\r\n$$S^2=s(s-a)(s-b)(s-c)=rr_ar_br_c$$\r\nãã£ãŠïŒçžå ã»çžä¹å¹³åã®äžçåŒãã\r\n$$ \\frac{1}{3r}=\\dfrac{1}{3}\\left(\\frac{1}{r_a}+\\frac{1}{r_b}+\\frac{1}{r_c}\\right)\\geq\\sqrt[3]{\\frac{1}{r_ar_br_c}}=\\sqrt[3]{\\frac{r}{S^2}}$$\r\nãæãç«ã€ïŒãããã£ãŠïŒ$S^2\\geq 27r^4$ ã§ãããã $S\\leq 20$ ãã $r=1$ ã«éããïŒL'Huilierã®å®çããïŒåæ¥åã®ååŸã®çµãšããŠããåŸããã®ã¯\r\n$$(3,3,3),~ (2,4,4),~ (2,3,6)$$\r\nã® $3$ ã€ã§ããïŒãã®ãšã $S^2=27,32,36$ ã¯ããããæ¡ä»¶ãã¿ããã®ã§ïŒæ±ãã $2s=\\dfrac{2S}{r}$ ã®å¹³æ¹å㯠$\\textbf{380}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc194/editorial/1839"
}
] | ã以äžã®æ¡ä»¶ããšãã«ã¿ããäžè§åœ¢ãã¹ãŠã«ã€ããŠïŒãã®åšé·ã®å¹³æ¹åãæ±ããŠãã ããïŒ
- é¢ç©ã $20$ 以äžã§ããïŒ
- å
æ¥åããã³ $3$ ã€ã®åæ¥åã®ååŸããã¹ãŠæŽæ°å€ã§ããïŒ
ãã ãïŒå転ã察称移åã«ãã£ãŠäžèŽãããã®ã¯åäžèŠããŸãïŒ |
OMC194 | https://onlinemathcontest.com/contests/omc194 | https://onlinemathcontest.com/contests/omc194/tasks/6880 | E | OMC194(E) | 500 | 4 | 24 | [
{
"content": "ã$N = 10^5$ ãšããïŒ\\\r\nã$b_n = 3n + 2 - a_n$ ãšãããšïŒåé¡ã®æ¡ä»¶ã¯ä»¥äžã®ããã«æžãæããããïŒ\r\n$$0\\leq b_n\\leq n+1,\\quad b_n\\leq b_{n+1}$$\r\nãã ãïŒäŸå€ãšã㊠$b_1 = 3$ ãšãªãåŸãããšã«æ³šæããïŒ\r\n- $b_1\\lt 3$ ã®å Žå\\\r\nã座æšå¹³é¢äžã§ïŒ$(1,0)$ ãã $(N+1,N+2)$ ãžé£ãåãæ Œåç¹ãéã£ãŠè¡ãæççµè·¯ã®ãã¡ïŒé å $y \\le x+1$ å
ã®ç¹ã®ã¿ãéããã®ãäžã€éžã³ïŒ$i = 1,2,\\ldots,N$ ã«ã€ããŠïŒãã®çµè·¯ã®äžã§æãæåã« $x$ 座æšã $i + 1$ ã«ãªã£ãç¹ã® $y$ 座æšã $b_i$ ãšãããšïŒåŸãããæ°å $\\\\{b_n\\\\}$ ã¯äžã®æ¡ä»¶ãæºããïŒãŸãïŒäžã®æ¡ä»¶ãæºãã $\\\\{b_n\\\\}$ ã«ã€ããŠïŒ\r\n$$(1,0),\\quad (1,b_1),\\quad (2,b_1),\\quad (2,b_2),\\quad (3,b_2),\\quad \\ldots,\\quad (N+1,b_{N}),\\quad (N+1,N+2)$$\r\nãéããã㪠$(1,0)$ ãã $(N+1,N+2)$ ãžã®æççµè·¯ã¯ïŒåžžã«é å $y\\le x+1$ å
ãéãïŒåŸã£ãŠïŒ$\\\\{b_n\\\\}$ ã®æ°ãšãã®ãããªçµè·¯ã®æ°ã¯çããïŒãã®ãããªçµè·¯ã®æ°ã¯ïŒ$(-1,0)$ ãã $(N+1,N+2)$ ãŸã§é å $y\\le x+1$ å
ãéã£ãŠè¡ãæççµè·¯ã®ãã¡ïŒ$(0,1)$ ãéããªãçµè·¯ã®æ°ãšäžèŽããã®ã§ïŒCatalanæ° $C_n = \\dfrac{2n!}{(n+1)!\\ n!}$ ãçšã㊠$C_{N+2} - C_{N+1}$ ãšè¡šããïŒ\r\n\r\n- $b_1 = 3$ ã®å Žå\\\r\nã$b_1\\le b_2 \\le 3$ ãã $b_2 = 3$ ã§ããããšã«æ³šæãããšïŒäžã®å Žåãšåæ§ã«ããŠïŒ$(2,3)$ ãã $(N+1,N+2)$ ãžé å $y\\le x+1$ å
ãéã£ãŠããæççµè·¯ã®æ°ãæ±ããã°ããïŒãã㯠$C_{N-1}$ ã§ããïŒ\r\n\r\nã以äžããïŒ\r\n$$X = C_{N+2} - C_{N+1} + C_{N-1} = \\frac{(2N-2)!(N+1)(49N^2 + 5N - 6)}{(N-1)!(N+3)!}$$\r\nã§ããããïŒ$11$ æ¡ã®çŽ æ°ã¯ $49N^2 + 5N - 6$ ã®çŽæ°ã§ããïŒ\r\n$49N^2 + 5N - 6 = 2\\times3\\times81666749999$ ãšçŽ å æ°å解ãããã®ã§ïŒ$\\bf81666749999$ ãæ±ããçãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc194/editorial/6880"
}
] | ãæ£ã®æŽæ°ã®çµ $(a_1, a_2, \ldots, a_{10^5})$ ã§ãã£ãŠïŒä»»æã® $1$ ä»¥äž $10^5 - 1$ 以äžã®æŽæ° $n$ ã«ã€ããŠä»¥äžãæç«ãããã®ã®åæ°ã $X$ ãšããŸãïŒ
$$2n\le a\_{n+1}-3\le a_n\le 3n+2$$
$X$ ãå²ãåãåé²æ³ã§ $11$ æ¡ã®çŽ æ°ããã äžã€ååšããã®ã§ïŒããã解çããŠãã ããïŒ |
OMC194 | https://onlinemathcontest.com/contests/omc194 | https://onlinemathcontest.com/contests/omc194/tasks/6667 | F | OMC194(F) | 500 | 22 | 68 | [
{
"content": "ã$P = 2752752752753$ ãšããïŒ$1001^{11011011011011} = (7 \\cdot 11 \\cdot 13)^{4P-1}$ ã®æ£ã®çŽæ° $d$ ã®ãã¡ $f(d)$ ã $4$ ã§å²ã£ãŠ $0, 1, 2, 3$ äœããã®ã®ç·åããããã $A, B, C, D$ ãšããïŒããã§è€çŽ æ° $z$ ã\r\n$$z = (1 + 7i + \\cdots + (7i)^{4P - 1})(1 + 11i + \\cdots + (11i)^{4P - 1})(1 + 13i + \\cdots + (13i)^{4P - 1})$$\r\n\r\nãšå®ããã°ïŒ\r\n$$z = (A - C) + (B - D)i$$\r\n\r\nãæãç«ã€ïŒ\\\r\nãå $p \\in \\\\{7, 11, 13\\\\}$ ã«å¯ŸãïŒ\r\n$$1 + pi + \\cdots + (pi)^{4P - 1} = (1 + pi) \\cdot \\dfrac{1 - p^{4P}}{1 + p^2}$$\r\nã§ããïŒFermatã®å°å®çãçšããããšã§ïŒ\r\n$$\\dfrac{1 - p^{4P}}{1 + p^2} \\equiv \\dfrac{1 - p^4}{1 + p^2} = 1 - p^2 \\pmod{P}$$\r\nã§ããããïŒ\r\n$$\r\n\\begin{aligned}\r\nA - C &\\equiv \\mathrm{Re}((1 + 7i)(1 + 11i)(1 + 13i)) \\times (1 - 7^2)(1 - 11^2)(1 - 13^2) \\\\\\\\\r\n&= (-310) \\times (-48) \\times (-120) \\times (-168) \\\\\\\\\r\n&= 299980800 \\pmod{P} \\\\\\\\\r\nB - D &\\equiv \\mathrm{Im}((1 + 7i)(1 + 11i)(1 + 13i)) \\times (1 - 7^2)(1 - 11^2)(1 - 13^2) \\\\\\\\\r\n&= (-970) \\times (-48) \\times (-120) \\times (-168) \\\\\\\\\r\n&= 938649600 \\pmod{P}\r\n\\end{aligned}\r\n$$\r\nãæãç«ã€ïŒ\\\r\nãäžæ¹ã§ïŒå $p \\in \\\\{7, 11, 13\\\\}$ ã«å¯ŸãïŒåã³Fermatã®å°å®çãé©çšãããããšã§\r\n$$1 + p + \\cdots + p^{4P - 1} = \\dfrac{p^{4P} - 1}{p - 1} \\equiv \\dfrac{p^4 - 1}{p - 1} = (p + 1)(p^2 + 1) \\pmod{P}$$\r\n\r\nãåŸãããã®ã§ïŒ$(7 \\cdot 11 \\cdot 13)^{4P-1}$ ã®æ£ã®çŽæ°ã®ç·å $A + B + C + D$ ã«ã€ããŠ\r\n$$\r\n\\begin{aligned}\r\nA + B + C + D &\\equiv (7 + 1)(7^2 + 1)(11 + 1)(11^2 + 1)(13 + 1)(13^2 + 1) \\\\\\\\\r\n&= 1393728000 \\pmod{P}\r\n\\end{aligned}\r\n$$\r\nãæãç«ã€ïŒä»¥äžããïŒ\r\n$$\r\n\\begin{aligned}\r\nS &= B + C \\\\\\\\\r\n&= \\dfrac{(A + B + C + D) - (A - C) + (B - D)}{2} \\\\\\\\\r\n&\\equiv \\dfrac{1393728000 - 299980800 + 938649600}{2} = \\mathbf{1016198400} \\pmod{P}\r\n\\end{aligned}\r\n$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc194/editorial/6667"
},
{
"content": "ã $p=2752752752753$ ãšãïŒç¹ã«æãã®ãªãå ŽåïŒåååŒã®æ³ã¯å
šãŠ $p$ ãšããïŒ\\\r\nã $x$ ã®å€é
åŒ $f(x)$ ã«ã€ããŠïŒæ¬¡æ°ã $4$ ã§å²ã£ãäœãã $0,1,2,3$ ãšãªãé
ã®ä¿æ°ã®ç·åããããã $A,B,C,D$ ãšããïŒãã®ãšãïŒä»¥äžã®çåŒãæãç«ã€ïŒïŒ $i$ ã¯èæ°åäœïŒ\r\n\r\n$$A=\\dfrac{1}{4}(1^0\\times f(1)+i^0\\times f(i)+(-1)^0\\times f(-1)+(-i)^0\\times f(-i))$$\r\n$$B=\\dfrac{1}{4}(1^3\\times f(1)+i^3\\times f(i)+(-1)^3\\times f(-1)+(-i)^3\\times f(-i))$$\r\n$$C=\\dfrac{1}{4}(1^2\\times f(1)+i^2\\times f(i)+(-1)^2\\times f(-1)+(-i)^2\\times f(-i))$$\r\n$$D=\\dfrac{1}{4}(1^1\\times f(1)+i^1\\times f(i)+(-1)^1\\times f(-1)+(-i)^1\\times f(-i))$$\r\n\r\nãæ¬åã§ã¯ïŒ $f(x)=\\dfrac{(7x)^{4p}-1}{7x-1}\\times\\dfrac{(11x)^{4p}-1}{11x-1}\\times\\dfrac{(13x)^{4p}-1}{13x-1}$ ãšãããšãã® $S=B+C$ ãçããã°ããïŒ\\\r\nãããã¯ïŒ $g(x)=(x^2+x^3)f(x)$ ãšãããšïŒ $S=\\dfrac{1}{4}(g(1)+g(i)+g(-1)+g(-i))$ ã§ããïŒ\\\r\nããŸãïŒ $p$ 㯠$4$ ã§å²ã£ãŠ $1$ äœãçŽ æ°ããïŒ $n^2\\equiv -1 (\\bmod p)$ ãªãæŽæ° $n$ ãååšããããïŒããããFermatã®å°å®çããïŒ\r\n\r\n$$\r\n\\begin{aligned}\r\ng(1)&= 2\\times\\dfrac{7^{4p}-1}{7-1}\\times\\dfrac{11^{4p}-1}{11-1}\\times\\dfrac{13^{4p}-1}{13-1} \\\\\\\\\r\n&\\equiv 2\\times\\dfrac{7^4-1}{7-1}\\times\\dfrac{11^4-1}{11-1}\\times\\dfrac{13^4-1}{13-1} \\\\\\\\\r\n&\\equiv 2787456000\r\n\\end{aligned}\r\n$$\r\n\r\n$$\r\n\\begin{aligned}\r\ng(i)&= (-1-i)\\times\\dfrac{(7i)^{4p}-1}{7i-1}\\times\\dfrac{(11i)^{4p}-1}{11i-1}\\times\\dfrac{(13i)^{4p}-1}{13i-1} \\\\\\\\\r\n&\\equiv (-1-i)\\times\\dfrac{(7i)^4-1}{7i-1}\\times\\dfrac{(11i)^4-1}{11i-1}\\times\\dfrac{(13i)^4-1}{13i-1} \\\\\\\\\r\n&= (-1-i)\\times 48(-1-7i)\\times 120(-1-11i)\\times 168(-1-13i) \\\\\\\\\r\n&= 967680(1+i)(1+7i)(1+11i)(1+13i) \\\\\\\\\r\n&= 967680(660-1280i)\r\n\\end{aligned}\r\n$$\r\n\r\n$$\r\n\\begin{aligned}\r\ng(-1)&= 0\\times\\dfrac{(-7)^{4p}-1}{-7-1}\\times\\dfrac{(-11)^{4p}-1}{-11-1}\\times\\dfrac{(-13)^{4p}-1}{-13-1} \\\\\\\\\r\n&= 0\r\n\\end{aligned}\r\n$$\r\n\r\n$$\r\n\\begin{aligned}\r\ng(-i)&= \\overline{g(i)} \\\\\\\\\r\n&\\equiv 967680(660+1280i)\r\n\\end{aligned}\r\n$$\r\n\r\nããã£ãŠïŒ\r\n\r\n$$\r\n\\begin{aligned}\r\nS&= \\dfrac{1}{4}(g(1)+g(i)+g(-1)+g(-i)) \\\\\\\\\r\n&\\equiv \\dfrac{1}{4}(2787456000+967680(660-1280i)+0+967680(660+1280i)) \\\\\\\\\r\n&= \\mathbf{1016198400}\r\n\\end{aligned}\r\n$$",
"text": "å€é
åŒïŒåœ¢åŒçåªçŽæ°ïŒãçšãã解æ³",
"url": "https://onlinemathcontest.com/contests/omc194/editorial/6667/369"
},
{
"content": "ã$P=2752752752753$ ãšããïŒ$11011011011011=4P-1$ ã§ããïŒ\\\r\nã$N$ ã®æ£ã®çŽæ° $d$ ã§ãã£ãŠïŒ$f(d)$ ã $4$ ã§å²ã£ãäœãã $1$ ãŸã㯠$2$ ãšãªããã®ã®ç·åã $g(N)$ ã§è¡šãïŒ$S=g(1001^{4P-1})$ ã§ããïŒïŒãã®ãšãïŒ$S=g(1001^{4P-1}) \\equiv g(1001^3) \\mod P$ ã§ããããšã瀺ãïŒ\\\r\n$f(7^{(4k+a)} \\ 11^{(4l+b)} \\ 13^{(4m+c)}) \\equiv f(7^a \\ 11^b \\ 13^c) \\mod 4$ ã§ããããšã«æ³šç®ãããšïŒæ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\begin{aligned}\r\nS & = g(1001^3)(1+7^4+ \\cdots + 7^{4(P-1)}) (1+11^4+ \\cdots + 11^{4(P-1)}) (1+13^4+ \\cdots + 13^{4(P-1)}) \\\\\\\\\r\n& = g(1001^3) \\dfrac{7^{4P}-1}{7^4-1}\\cdot \\dfrac{11^{4P}-1}{11^4-1}\\cdot \\dfrac{13^{4P}-1}{13^4-1} \\\\\\\\\r\n& \\equiv g(1001^3)\r\n\\end{aligned}$$\r\næåŸã®åååŒã§ã¯ïŒFermat ã®å°å®çãçšããïŒ\\\r\nããã£ãŠä»¥äžïŒ$g(1001^3)$ ã®å€ãæ±ããããšãç®æšãšãªãïŒïŒãªãïŒ$1001^3$ ã®çŽæ°ã®ç·åã¯ïŒé«ã
$1001^3Ã\\frac{7}{6}Ã\\frac{11}{10}Ã\\frac{13}{12} \\lt 2Ã1001^3 \\lt 10^{10} \\lt P$ ããïŒ$g(1001^3)$ ãæ±ããã¹ã解ã§ããïŒïŒ\\\r\nã$1001^3$ ã®æ£ã®çŽæ°ã¯ $64$ åãªã®ã§ïŒããšã¯ïŒ$64$ å以äžã®æŽæ°ã®åãæ±ããã°ããããšã«ãªãïŒå€å°ã®æéãããã°èšç®å¯èœã§ããïŒ\r\n\r\nãããã§ã¯ïŒ$f(d)$ ã®å€ã«ãã£ãŠåããŠèããïŒ\\\r\n(i) $f(d)=1$ ã®ãšãïŒ$7+11+13=31$\\\r\n(ii) $f(d)=2$ ã®ãšãïŒ$7^2+11^2+13^2+7 \\cdot 11+11 \\cdot 13 +13 \\cdot 7=650$\\\r\n(iii) $f(d)=5$ ã®ãšãïŒæ¬¡ã®ããããã®åŒããèããã®ãããïŒ\\\r\n$7 \\cdot 11 \\cdot 13(7^2+11^2+13^2+7 \\cdot 11+11 \\cdot 13 +13 \\cdot 7)+7^2 \\ 11^2 (7+11)+11^2 \\ 13^2 (11+13)+13^2 \\ 7^2 (13+7)=1413768$\\\r\n$(7^2 \\ 11^2+11^2 \\ 13^2+13^2 \\ 7^2)(7+11+13)+7 \\cdot 11 \\cdot 13 (7^2+11^2+13^2)=1413768$\\\r\n(iv) $f(d)=6$ ã®ãšãïŒæ¬¡ã®ããããã®åŒããèããã®ãããïŒ\\\r\n$7^3 \\ 11^3 +11^3 \\ 13^3 + 13^3 \\ 7^3 + 7 \\cdot 11 \\cdot 13 (7^2 \\ 11+7^2 \\ 13 +11^2 \\ 13 + 11^2 \\ 7+ 13^2 \\ 7+13^2 \\ 11)+7^2 \\ 11^2 \\ 13^2=11780950$\\\r\n$(7^2 \\ 11^2+11^2 \\ 13^2+13^2 \\ 7^2)( 7 \\cdot 11+11 \\cdot 13 +13 \\cdot 7)+7^2 \\ 11^2 \\ 13^2=11780950$\\\r\n(v) $f(d)=9$ ã®ãšãïŒ$7^3 \\ 11^3 \\ 13^3=1003003001$\\\r\nãã£ãŠïŒä»¥äžã®åãèšç®ããŠïŒ$\\mathbf{1016198400}$ ã解çã§ããïŒ",
"text": "ããã°ã£ãŠèšç®ããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc194/editorial/6667/375"
}
] | ãæ£æŽæ° $n$ ã«å¯ŸãïŒ$n$ ãçŽ æ°ã§å²ãåãæ倧ã®åæ°ã $f(n)$ ãšæžãããšã«ããŸãïŒããšãã°ïŒ$f(1) = 0$ïŒ$f(18000) = f(2^4 \cdot 3^2 \cdot 5 ^3) = 4 + 2 + 3 = 9$ ãªã©ãæãç«ã¡ãŸãïŒ\
ã$1001^{11011011011011}$ ã®æ£ã®çŽæ° $d$ ã§ãã£ãŠïŒ$f(d)$ ã $4$ ã§å²ã£ãäœãã $1$ ãŸã㯠$2$ ãšãªããã®ã®ç·åã $S$ ãšããŸãïŒ$S$ ãçŽ æ° $2752752752753$ ã§å²ã£ãäœãã解çããŠãã ããïŒ |
OMC193 (for beginners) | https://onlinemathcontest.com/contests/omc193 | https://onlinemathcontest.com/contests/omc193/tasks/4217 | A | OMC193(A) | 100 | 210 | 309 | [
{
"content": "ã以äžã®å Žååãããæ±ããçã㯠$\\bf{17390}$ ã§ããïŒ\r\n\r\n- $m\\le 4$ ã®å Žå\\\r\né ã«ç¢ºãããããšã§ $m =1,3$ ã® $2$ åãæ¡ä»¶ãæºããããšãåããïŒ\r\n\r\n- $m \\ge 5$ ã®å Žå\\\r\n$T(m)$ 㯠$10$ ã®åæ°ã§ããããïŒ$2S(m)=m(m+1)$ ã $20$ ã®åæ°ã«ãªããã㪠$m$ ã®æ°ãæ±ããã°è¯ãïŒãã㯠$m\\equiv 0,4,15,19\\mod{20}$ ãšåå€ïŒãããã£ãŠ $5 \\leq m\\leq 86939(=4347\\cdot 20-1)$ ã®ç¯å²ã«ã¯ $4347\\cdot 4-2$ åïŒ$86940 \\leq m\\leq 86952$ ã®ç¯å²ã« $2$ åããã®ã§æ¡ä»¶ãæºãã $m$ 㯠$17388$ åããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc193/editorial/4217"
}
] | ãæ£ã®æŽæ° $n$ ã«å¯Ÿã,
$$S(n)=1+2+\cdots+n,\quad T(n)=1\times2\times\cdots\times n$$
ãšããŸã. $86952$ 以äžã®æ£ã®æŽæ° $m$ ã§ãã£ãŠ $S(m)-T(m)$ ã $10$ ã§å²ãåãããã®ã¯ããã€ãããŸãã. |
OMC193 (for beginners) | https://onlinemathcontest.com/contests/omc193 | https://onlinemathcontest.com/contests/omc193/tasks/3521 | B | OMC193(B) | 100 | 258 | 317 | [
{
"content": "ã$ \\log_{a}{b}+\\log_{a}{c}=\\log_{a}{bc} $ ã«çæãããšïŒæ¡ä»¶ã¯ $bc$ ã $a$ ã®æ£ã®æŽæ°ä¹ã§ããããšãšåå€ã§ããïŒãããæºããçµ $(a,b,c)$ ã¯æ¬¡ã® $23$ åã§ããïŒ \r\n$$\\begin{aligned}\r\n&(2,1,2),(2,2,1),(2,1,4),(2,2,2),(2,4,1),(2,2,4),(2,4,2),(2,4,4),\\\\\\\\\r\n&(3,1,3),(3,3,1),(3,3,3),\\\\\\\\\r\n&(4,1,4),(4,2,2),(4,4,1),(4,4,4),\\\\\\\\\r\n&(5,1,5),(5,5,1),(5,5,5),\\\\\\\\\r\n&(6,1,6),(6,2,3),(6,3,2),(6,6,1),(6,6,6)\r\n\\end{aligned}$$\r\nãã£ãŠæ±ããã確ç㯠$\\dfrac{23}{6^3}$ ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{239}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc193/editorial/3521"
}
] | ãäžè¬çãªå
é¢äœã®ãµã€ã³ãã $3$ åæ¯ãïŒåºãç®ãé ã« $a,b,c$ ãšãããšãïŒ$a\geq 2$ ã§ããïŒãã€
$$ \log_{a}b+\log_{a}c $$
ãæ£ã®æŽæ°å€ãšãªããããªç¢ºçãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $ X,Y $ ãçšã㊠$ \dfrac{X}{Y} $ ãšè¡šãããã®ã§ïŒ$ X+Y $ ã解çããŠãã ãã. |
OMC193 (for beginners) | https://onlinemathcontest.com/contests/omc193 | https://onlinemathcontest.com/contests/omc193/tasks/2861 | C | OMC193(C) | 200 | 193 | 240 | [
{
"content": "ãäžèŸºã®é·ãã $28$ ã®æ£äžè§åœ¢ $DEF$ ã«ãããŠïŒãããã蟺 $DE,EF,FD$ äžã«ããç¹ $X,Y,Z$ ã\r\n$$DX=14,\\quad EY=16,\\quad FZ=16$$\r\nãã¿ãããšãïŒäžè§åœ¢ $PQR$ ã¯äžè§åœ¢ $XYZ$ ãšååã§ããïŒãã£ãŠïŒãã®é¢ç©ã¯\r\n$$\\dfrac{\\sqrt{3}}{4}\\times\\lbrace28\\times28-(12\\times14+14\\times16+12\\times16) \\rbrace =50\\sqrt{3}=\\sqrt{\\textbf{7500}}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc193/editorial/2861"
},
{
"content": "ãäœåŒŠå®çããïŒ\r\n $$PQ = \\sqrt{14^2 + 16^2 - 2 \\cdot 14 \\cdot 16 \\cdot \\frac{1}{2}} = \\sqrt{228} \\\\\\\\\r\nPR = \\sqrt{14^2 + 12^2 - 2 \\cdot 14 \\cdot 12 \\cdot \\frac{1}{2}} = \\sqrt{172} \\\\\\\\\r\nQR = \\sqrt{16^2 + 12^2 - 2 \\cdot 16 \\cdot 12 \\cdot \\frac{1}{2}} = \\sqrt{208}$$ \r\nã§ããïŒ\r\n\r\nãããã³ã®å
¬åŒäºçš®([åç
§](https:\\/\\/onlinemathcontest.com\\/contests\\/omc189\\/editorial\\/4875\\/344))ããïŒæ±ããã¹ãå€ã¯ïŒäžè§åœ¢ $PQR$ ã®é¢ç©ã\r\n $$\\frac{\\sqrt{2(228 \\cdot 172 + 172 \\cdot 208 + 208 \\cdot 228) - (228^2 + 172^2 + 208 ^2)}}{4} = \\frac{\\sqrt{120000}}{4} = \\sqrt{7500}$$ \r\nãšãªãããšãã $\\textbf{7500}$ ã§ããïŒ",
"text": "èšç®ã§æ±ããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc193/editorial/2861/368"
},
{
"content": "ãäœåŒŠå®çããïŒ\r\n- $PQ^2 = 14^2 + 16^2 - 2 \\cdot 14 \\cdot 16 \\cdot \\cos 60^{\\circ} = 228$\r\n- $PR^2 = 14^2 + 12^2 - 2 \\cdot 14 \\cdot 12 \\cdot \\cos 60^{\\circ} = 172$\r\n\r\nãšãªãïŒããã§ïŒ$\\overrightarrow{OA}, \\overrightarrow{OB}, \\overrightarrow{OC}$ ãšåãåãã®åäœãã¯ãã«ããããã $\\overrightarrow{\\vphantom{b}a}, \\overrightarrow{b}, \\overrightarrow{\\vphantom{b}c}$ ãšãããšïŒ\r\n$$\\overrightarrow{\\vphantom{b}a} \\cdot \\overrightarrow{b} = \\overrightarrow{b} \\cdot \\overrightarrow{\\vphantom{b}c} = \\overrightarrow{\\vphantom{b}c} \\cdot \\overrightarrow{\\vphantom{b}a} = 1 \\cdot 1 \\cdot \\cos 60^{\\circ} = \\dfrac{1}{2}$$\r\nãæç«ããïŒãã®ãšãïŒ\r\n$$ \\overrightarrow{PQ} \\cdot \\overrightarrow{PR} = (16\\overrightarrow{b} - 14\\overrightarrow{\\vphantom{b}a}) \\cdot (12\\overrightarrow{\\vphantom{b}c} - 14\\overrightarrow{\\vphantom{b}a}) = 96$$\r\nãšãªãããïŒäžè§åœ¢ $PQR$ ã®é¢ç©ã® $2$ ä¹ã¯\r\n$$\\dfrac{1}{4} \\Bigl\\\\{ |\\overrightarrow{PQ}|^2 |\\overrightarrow{PR}|^2 - (\\overrightarrow{PQ} \\cdot \\overrightarrow{PR})^2 \\Bigr\\\\} = \\dfrac{1}{4} (228 \\cdot 172 - 96^2) = \\mathbf{7500}$$\r\nãšæ±ãŸãïŒ",
"text": "ãã¯ãã«ã§æ±ããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc193/editorial/2861/371"
}
] | ãäžèŸºã®é·ãã $20$ ã®æ£åé¢äœ $O-ABC$ ã«ãããŠïŒãããã蟺 $OA,OB,OC$ äžã«ããç¹ $P,Q,R$ ã
$$OP=14,\quad OQ=16,\quad OR=12$$
ãã¿ãããŸããïŒãã®ãšãïŒäžè§åœ¢ $PQR$ ã®é¢ç©ã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMC193 (for beginners) | https://onlinemathcontest.com/contests/omc193 | https://onlinemathcontest.com/contests/omc193/tasks/6525 | D | OMC193(D) | 300 | 121 | 185 | [
{
"content": "ãå·Šãã $i$ åç®ã®ç³ãè¯ãç³ãšãªããããªäžŠã¹æ¹ã®åæ°ã $f(i)$ ãšããïŒãã®ãšãïŒæ±ããå€ã¯ $f(1)+f(2)+\\cdots+f(12)$ ã«çããïŒ\\\r\nã$i$ ãå¥æ°ã®ãšãã¯æããã« $f(i)=0$ïŒ$i$ ãå¶æ°ã®ãšã㯠$f(i)={}\\_{i}\\mathrm{C}\\_{i\\/2}\\times\\_{12-i}\\mathrm{C}\\_{6-i\\/2}$ ãšãªãïŒãã£ãŠïŒæ±ããçãã¯\r\n$$\\sum_{k=1}^6 {}\\_{2k} \\mathrm{C}\\_kÃ\\_{12-2k}\\mathrm{C}\\_{6-k}=\\mathbf{3172}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc193/editorial/6525"
}
] | ãé»ç³ãšçœç³ããããã $6$ åãã€ããïŒãããã暪äžåã«äžŠã¹ãŸãïŒãã®ãšãïŒæ¬¡ãæºããç³ã**è¯ãç³**ãšãã³ãŸãïŒ
- ãã®ç³ããã³ãã®ç³ããå·Šã«ããç³å
šãŠã«ã€ããŠïŒé»ç³ã®åæ°ãšçœç³ã®åæ°ãçããïŒ
${}_{12} \mathrm{C}_6$ éãã®äžŠã¹æ¹å
šãŠã«ã€ããŠïŒè¯ãç³ã®åæ°ã®ç·åãæ±ããŠäžããïŒ |
OMC193 (for beginners) | https://onlinemathcontest.com/contests/omc193 | https://onlinemathcontest.com/contests/omc193/tasks/4752 | E | OMC193(E) | 400 | 54 | 112 | [
{
"content": "ã$\\displaystyle a_n = \\frac{180(n-2)}{n}$ ã§ããã®ã§æ¬¡ãæãç«ã€ïŒ\r\n$$\\displaystyle P_n = \\sqrt{\\frac{180\\cdot 1}{3}\\cdot\\frac{180\\cdot 2}{4}\\cdots\\frac{180\\cdot (n-3)}{n-1}\\cdot\\frac{180\\cdot (n-2)}{n}}=\\sqrt{\\frac{2\\cdot 180^{n-2}}{n(n-1)}}$$\r\n\r\nããŸã㯠$n$ ã¯å¶æ°ã§ãããšããïŒ$2 \\leq k \\leq 250$ ã§ããæŽæ° $k$ ãçšã㊠$n = 2k$ ãšããïŒãããšïŒ\r\n$$P_{2k} = \\frac{{180}^{k - 1}}{\\sqrt{k(2k-1)}}$$\r\nãšè¡šããïŒãããæçæ°ãšãªãå¿
èŠååæ¡ä»¶ã¯ $k(2k-1)$ ãå¹³æ¹æ°ãšãªãããšã§ããïŒ$k$ ãš $2k-1$ ã¯äºãã«çŽ ã§ããã®ã§ïŒãã® $2$ ã€ã¯ããããå¹³æ¹æ°ã§ããïŒãããã£ãŠ $2m^2-1$ ãå¹³æ¹æ°ãšãªããã㪠$2$ 以äžã®æŽæ° $m$ ãæ±ããåé¡ã«åž°çããïŒ$k=m^2\\leq 250$ ã®ç¯å²ã§ã¯ $m=5$ ã®ã¿ãæ¡ä»¶ãæºããïŒãã®ãšã $n=50$ ã§ããïŒ\\\r\nã次㫠$n$ ã¯å¥æ°ã§ãããšããïŒ$1 \\leq k \\leq 249$ ã§ããæŽæ° $k$ ãçšã㊠$n = 2k + 1$ ãšããïŒãããšïŒ\r\n$$P_{2k+1} = 6 \\cdot {180}^{k-1} \\cdot \\sqrt{\\frac{5}{k(2k+1)}}$$\r\nãšè¡šããïŒãããæçæ°ãšãªãå¿
èŠååæ¡ä»¶ã¯ $k(2k+1)$ ãå¹³æ¹æ°ã® $5$ åãšãªãããšã§ããïŒ$k$ ãš $2k+1$ ã¯äºãã«çŽ ã§ããã®ã§ïŒã©ã¡ãããå¹³æ¹æ°ã§ããïŒããäžæ¹ãå¹³æ¹æ°ã® $5$ åãšãªãïŒ $k$ ãå¹³æ¹æ°ã ãšãããš $k\\equiv 0,1,4\\mod 5$ ãã $2k+1\\equiv 1,3,4\\mod 5$ ã§ããïŒ$2k+1$ ã¯å¹³æ¹æ°ã® $5$ åã«ã¯ãªãåŸãªãïŒãããã£ãŠ $k$ ã¯å¹³æ¹æ°ã® $5$ åã§ããã®ã§ïŒ$10m^2+1$ ãå¹³æ¹æ°ãšãªããããªæ£ã®æŽæ° $m$ ãæ±ããåé¡ã«åž°çããïŒ$k=5m^2\\leq 249$ ã®ç¯å²ã§ã¯ $m=6$ ã®ã¿ãæ¡ä»¶ãæºããïŒãã®ãšã $n=361$ ã§ããïŒ\r\n\r\nã以äžããïŒè§£çãã¹ã㯠$50+361=\\mathbf{411}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc193/editorial/4752"
}
] | ã$3$ 以äžã®æŽæ° $n$ ã«å¯ŸãïŒæ£ $n$ è§åœ¢ã®äžã€ã®å
è§ã®å€§ããã床æ°æ³ã§è¡šããå€ã $a_n$ ãšããŸãïŒããšãã° $a_3, a_4, a_5$ ã¯ãããã $60, 90, 108$ ãšãªããŸãïŒãŸãïŒ$3$ 以äžã®æŽæ° $n$ ã«å¯Ÿã $P_n$ ã次ã®ããã«å®çŸ©ããŸãïŒ
$$P_n = \sqrt{a_3 a_4 \cdots a_n}$$
ã$P_n$ ãæçæ°ãšãªããã㪠$3$ ä»¥äž $500$ 以äžã®æ£ã®æŽæ° $n$ ã®ç·åã解çããŠãã ããïŒ |
OMC193 (for beginners) | https://onlinemathcontest.com/contests/omc193 | https://onlinemathcontest.com/contests/omc193/tasks/6328 | F | OMC193(F) | 400 | 25 | 45 | [
{
"content": "ã$0, 2 ,3, 5, 7, 11$ ã®ç®ãåºã確çããããã $\\dfrac{n_0}{5555}, \\dfrac{n_2}{5555}, \\dfrac{n_3}{5555}, \\dfrac{n_5}{5555}, \\dfrac{n_7}{5555}, \\dfrac{n_{11}}{5555}$ ãšè¡šãïŒ\\\r\n$i,j\\in\\\\{2,3,5,7,11\\\\}$ ãšããŠïŒ\r\n$$S=\\sum_{i}\\Big(\\frac{i n_i}{5555}\\Big)^2,ãT=\\sum_{i\\neq j}\\frac{i n_i}{5555}\\cdot\\frac{j n_j}{5555}$$\r\nãªã®ã§ä»¥äžãæãç«ã€ïŒ\r\n$$5555^2 (4S - T) =4 \\sum_{i}(in_i)^2-\\sum_{i\\neq j}(in_i)\\cdot(j n_j)=\\sum_{i\\gt j}(in_i-jn_j)^2\\geq 0$$\r\nãããã£ãŠ $\\dfrac{T}{S} \\leq 4$ ã§ããïŒçå·æç«ã¯ïŒ\r\n$$2n_2 = 3n_3 = 5n_5 = 7n_7 = 11n_{11}$$\r\nã®ãšãïŒã€ãŸãïŒ\r\n$$n_2 : n_3 : n_5 : n_7 : n_{11} = 1155 : 770 : 462 : 330 : 210$$\r\nã®ãšããªã®ã§ïŒ$n_2 + n_3 + n_5 + n_7 + n_{11} \\lt 5555$ ã«æ³šæããã°\r\n$$(n_0, n_2, n_3, n_5, n_7, n_{11}) = (2628, 1155, 770, 462, 330, 210)$$\r\nã®ãšãã®ã¿ $\\dfrac{T}{S} = 4$ ã«ãªãããšãåããïŒç¹ã« $n = \\mathbf{2628}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc193/editorial/6328"
},
{
"content": "ã$S+T$ ã綺éºã«ãªãããšã«çç®ããŠãRadonã®äžçåŒãå©çšããæ¹éã§ãïŒ(Radonã®äžçåŒã«ã€ããŠã¯OMC162(C)ã®ãŠãŒã¶ãŒè§£èª¬ãåç
§) \r\n $$\\dfrac{T}{S}=\\dfrac{S+T}{S}-1=\\dfrac{{(2n_2+\\cdots+11n_{11})}^2}{2^2{n_2}^2+\\cdots+11^2{n_{11}}^2}-1\\leq\\dfrac{{(2n_2)}^2}{2^2{n_2}^2}+\\cdots+\\dfrac{{(11n_{11})}^2}{11^2{n_{11}}^2}-1=4$$ã§ããïŒçå·æç«æ¡ä»¶ã¯ $2n_2:2^2{n_2}^2=\\cdots=11n_{11}:11^2{n_{11}}^2$ ã€ãŸã $n_2:\\cdots:n_{11}=\\dfrac{1}{2}:\\cdots:\\dfrac{1}{11}$ ã§ããïŒ \r\nãããšã¯å
¬åŒè§£èª¬ãšåæ§ã«ããŠçå·ãæãç«ã€ $n_0,n_2,\\ldots,n_{11}$ ãæ±ããã°ããïŒ",
"text": "Radonã®äžçåŒ",
"url": "https://onlinemathcontest.com/contests/omc193/editorial/6328/374"
}
] | ãå
é¢äœã®ãµã€ã³ããããïŒåé¢ã«ã¯ $0, 2, 3, 5, 7, 11$ ã®æ°åãæžãããŠããŸãïŒOMCåã¯ãµã€ã³ããæ¯ã£ããšãã®ããããã®ç®ãåºã確çã以äžã®ããã«èª¿æŽããããšãã§ããŸãïŒ
- $n_0 + n_2 + n_3 + n_5 + n_7 + n_{11} = 5555$ ã§ãããããªæ£æŽæ°ã®çµ $(n_0, n_2, n_3, n_5, n_7, n_{11})$ ãéžã³ïŒ$0, 2 ,3, 5, 7, 11$ ã®ç®ãåºã確çããããã $\dfrac{n_0}{5555}, \dfrac{n_2}{5555}, \dfrac{n_3}{5555}, \dfrac{n_5}{5555}, \dfrac{n_7}{5555}, \dfrac{n_{11}}{5555}$ ã«ããããšãã§ããïŒ
ãããã§ïŒãã®ãµã€ã³ãã $2$ åæ¯ã£ããšãã®åºãç®ã«ããç¹æ°ã®ä»ãæ¹ãä»¥äž $2$ éãå®ããŸãïŒãã ã $1, 2$ åç®ã«åºãç®ã®æ°åããããã $a, b$ ãšããŸãïŒ
- **æ¡ç¹æ¹æ³ ç².**ã$a = b$ ã®ãšã㯠$a^2$ ãç¹æ°ãšãïŒããã§ãªããšã㯠$0$ ãç¹æ°ãšããïŒ
- **æ¡ç¹æ¹æ³ ä¹.**ã$a \neq b$ ã®ãšã㯠$ab$ ãç¹æ°ãšãïŒããã§ãªããšã㯠$0$ ãç¹æ°ãšããïŒ
ããµã€ã³ãã $2$ åæ¯ã£ããšãã®ïŒæ¡ç¹æ¹æ³ç²ã»ä¹ã«ããç¹æ°ã®æåŸ
å€ããããã $S, T$ ãšãïŒOMCåãããããã®ç®ã調æŽããããšã«ãã£ãŠ $\dfrac{T}{S}$ ããšãåŸãæ倧ã®å€ã $M$ ãšããŸãïŒ$\dfrac{T}{S} = M$ ãšãªãããã«èª¿æŽããããµã€ã³ããæ¯ã£ããšãã« $0$ ã®ç®ãåºã確çã¯ïŒæ£æŽæ° $n$ ã«ãã£ãŠ $\dfrac{n}{5555}$ ãšäžæã«è¡šãããšãã§ããã®ã§ïŒ$n$ ã®å€ã解çããŠãã ããïŒ |
OMC192 (for experts) | https://onlinemathcontest.com/contests/omc192 | https://onlinemathcontest.com/contests/omc192/tasks/7141 | A | OMC192(A) | 200 | 200 | 220 | [
{
"content": "ã察称æ§ãã $x^2+2yz,y^2+2zx,z^2+2xy$ ããããã®ç·åã¯çããã®ã§ïŒæ¡ä»¶ãæºããããã« $x,y,z$ ãåããšãã®\r\n$$(x^2+2yz)+(y^2+2zx)+(z^2+2xy) = (x+y+z)^2=40000$$\r\nã®ç·åã $3$ ã§å²ã£ãå€ãæ±ããçããšãªãïŒæ¡ä»¶ãæºãã $x,y,z$ ã®çµã®æ°ã¯ ${}\\_{202}\\mathrm{C}\\_{2}=20301$ ã§ããã®ã§ïŒæ±ããçãã¯\r\n$$\\frac{20301Ã40000}3=\\mathbf{270680000}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc192/editorial/7141"
}
] | ã$x+y+z=200$ ãã¿ããéè² æŽæ°ã®çµ $(x,y,z)$ ãã¹ãŠã«å¯ŸããŠïŒ$x^2+2yz$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC192 (for experts) | https://onlinemathcontest.com/contests/omc192 | https://onlinemathcontest.com/contests/omc192/tasks/6978 | B | OMC192(B) | 500 | 165 | 188 | [
{
"content": "ã$16$ æ° $a_0, a_1, âŠ, a_7, b_0, b_1, âŠ, b_7$ ã®ãã¡ $4$ ã€ã«ãŸã $6, 7$ ãå²ãåœãŠãæ¹æ³ã¯ $4$ éããããïŒãã®äžã§å¯äž $\r\na_7 \\leq 5$ ãæºãããã®ã¯ä»¥äžã®å Žåã§ããïŒ\r\n$$a_0 = b_7 = 7ïŒa_6 = b_0 = 6$$\r\n\r\n$A$ ãæå°ã®ç¶æ³ã調ã¹ãäžã§ã¯ïŒãã®å Žåãä»®å®ãæ¡ä»¶ãæºããæ°ã®å²ãåœãŠãèŠã€ããããã°ååã§ããã®ã§ïŒãŸãã¯ãããä»®å®ãããïŒ\\\r\nãããã§ïŒä»¥äž $2$ ã€ã®äºå®ãåŸãããïŒ\r\n- $a_n b_n = 0$ ãªã $n$ ã¯ã¡ããã© $1$ ã€ã§ããïŒ\r\n- $a_m = b_n$ ã〠$a_n = b_m$ ãªã $m, n\\ (m \\neq n)$ ã¯ååšããªãïŒ \r\n\r\nãã®ããšãã $a_0 b_0, a_1 b_1, âŠ, a_7 b_7$ ã®äžã«éè€ããããšããã°ïŒãã®å€ã¯ $1 \\times 6 = 2 \\times 3 = 6$ ãŸã㯠$2 \\times 6 = 3 \\times 4 = 12$ ã§ããããšãåããïŒç¹ã« $a_6 b_6$ 㯠$6, 12$ ã®ãããããšãªããããåŸãªãã®ã§ïŒãããã $b_6$ ã®ãšãåŸãå€ã¯ $1, 2$ ã®ããããã«çµãããïŒãããš $a_7 = b_2 = 5$ ãåŸãïŒãŸãïŒå€ã $4$ ãšãªãå€æ°ã®çµã¿åãã㯠$a_1, b_5$ ãŸã㯠$a_5, b_1$ ã«éãããïŒ\\\r\nããã㧠$a_5 = b_1 = 4$ ã§ãããšãããšïŒ$a_4 = b_6 = 2$ïŒ$a_3 = b_3 = 0$ ãé 次åŸãïŒãã®æç¹ã§å€ã確å®ããŠããªãå€æ°ã¯ $a_1, a_2, b_4, b_5$ ã® $4$ ã€ã§ãããïŒãã®äžã® $2$ ã€ã« $1$ ãå²ãåœãŠãã®ã¯äžå¯èœã§ããïŒãã£ãŠããã¯äžé©ã§ããïŒ\\\r\nãäžæ¹ã§ $a_1 = b_5 = 4$ ã§ãããšãããšïŒ$a_4 = b_1 = 3$ïŒ$a_5 = b_6 = 1$ ãé 次åŸãïŒããã« $a_3 = b_3 = 0$ïŒ$a_2 = b_4 = 2$ ã確å®ããïŒãã㯠$a_4 b_4 = a_6 b_6 = 6$ ã確ãã«æºãããŠããïŒæ¡ä»¶ãæºãã $16$ æ°ã確å®ããããšã«ãªãïŒãã®ãšã $A = \\mathbf{56130247}$ ã§ããïŒãããæ±ããæå°å€ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc192/editorial/6978"
}
] | ã$8$ æ° $a_0, a_1, âŠ, a_7$ ããã³ $8$ æ° $b_0, b_1, âŠ, b_7$ ã¯ãããã $0, 1, âŠ, 7$ ã®çœ®æã§ããïŒä»¥äžã® $2$ æ¡ä»¶ããšãã«ã¿ãããŠããŸãïŒ
- $a_i = b_j$ ãªãã° $a_i = |i - j|$ ãæãç«ã€ïŒ
- $0 \leq n_1 \lt n_2 \leq 7$ ãªãæŽæ° $n_1, n_2$ ã§ãã£ãŠïŒ$a_{n_1} b_{n_1} = a_{n_2} b_{n_2}$ ãã¿ãããã®ãååšããïŒ
ãã®ãšãïŒæ¬¡ã®ããã«å®ãŸã $A$ ã®ãšãããæå°ã®å€ãæ±ããŠãã ããïŒ
$$A = \sum_{n=0}^7 10^n a_n$$ |
OMC192 (for experts) | https://onlinemathcontest.com/contests/omc192 | https://onlinemathcontest.com/contests/omc192/tasks/6235 | C | OMC192(C) | 500 | 131 | 147 | [
{
"content": "ã$S = p + q + r + s + t + u + v + w$ ãšããïŒäžããããçåŒãå€åœ¢ããããšã§ïŒ\r\n$$\\frac{p^2 - 145}{t} = \\frac{q^2 - 145}{u} = \\frac{r^2 - 145}{v} = \\frac{s^2 - 145}{w}$$\r\nãåŸãããïŒ$p \\leq 11$ ã®ãšã㯠$\\dfrac{p^2 - 145}{t} \\lt \\dfrac{q^2 - 145}{u}$ ãšãªãã®ã§ $p \\geq 13$ ãå¿
èŠã§ããïŒã€ãŸãäžãããã $8$ ã€ã®çŽ æ°ã¯ãã¹ãŠ $13$ 以äžã§ããïŒ\\\r\nãäžè¬ã« $2$ ã§ã $3$ ã§ãå²ãåããªãæŽæ° $n$ ã¯ãã¹ãŠïŒ$n^2$ ã $24$ ã§å²ããšäœãã $1$ ãšãªãããšã確ãããããïŒãã®ããšããïŒ$13$ 以äžã®çŽ æ°ããæ£æŽæ°ãžã®é¢æ° $F$ ã以äžã®ããã«å®ããããšãã§ããïŒ\r\n$$F(x) = \\frac{x^2 - 145}{24}$$\r\n\r\nã$F(p), F(q), F(r), F(s)$ ã®æ倧å
¬çŽæ°ã $g$ ãšãããšãïŒ$F(p) : F(q) : F(r) : F(s) = t : u : v : w$ ãã\r\n$$F(p) = gt, \\quad F(q) = gu, \\quad F(r) = gv, \\quad F(s) = gw$$\r\nã§ããããšãåããïŒãŸãïŒ$13$ 以äžã®çŽ æ°ããçžç°ãªã $5$ ã€ãéžãã ãšãïŒãããã®æ倧å€ãšæå°å€ã®å·®ã®çµ¶å¯Ÿå€ã¯ $12$ 以äžã§ããããšã確ãããããã®ã§ïŒ$t \\geq p + 12$ ãæãç«ã¡ïŒãããã£ãŠ $F(p) \\geq g(p + 12)$ ãåŸãããïŒ\\\r\nã$g = 1$ ã®ãšãïŒäžçåŒ $F(p) \\geq p + 12$ ãæºãã $p$ ã®ç¯å²ã¯ $p \\geq 37$ ã§ããïŒ$F(p), F(q), F(r), F(s)$ ã¯ããããçŽ æ°ãšãªãå¿
èŠãããïŒãã㧠$37$ 以äžã®çŽ æ° $x$ ã§ãã£ãŠ $F(x)$ ãçŽ æ°ãšãªããã®ãå°ããé ã«åæãããš $43, 59, 61, 67, ...$ ã§ããïŒ\r\n$$F(43) = 71,\\quad F(59) = 139,\\quad F(61) = 149,\\quad F(67) = 181$$\r\nãæãç«ã€ïŒãã£ãŠ\r\n$$(p, q, r, s, t, u, v, w) = (43, 59, 61, 67, 71, 139, 149, 181)$$\r\n\r\nã¯ïŒ$g = 1$ ã§æ¡ä»¶ãæºããçµã®ãã¡ $S$ ãæå°ãšãªããã®ã§ããïŒãã®ãšã $S = 770$ ã§ããïŒ\\\r\nã$g = 2$ ã®ãšãïŒäžçåŒ $F(p) \\geq 2(p + 12)$ ãæºãã $p$ ã®ç¯å²ã¯ $p \\geq 61$ ã§ããïŒ$F(p)$ ã¯çŽ æ°ã® $2$ åãšãªãå¿
èŠããããïŒ$F(x)$ ãçŽ æ°ã® $2$ åãšãªããã㪠$61$ 以äžã®çŽ æ° $x$ ã®ãã¡æãå°ããã®ã¯ $x = 79$ ã§ããïŒ$F(79) = 2 \\times 127$ ãæãç«ã€ïŒãããã£ãŠãã®å Žåã§ã¯ $p \\geq 79, t \\geq 127$ ãå¿
èŠãšãªãã®ã§ïŒ\r\n$$S \\geq 79 + 83 + 89 + 97 + 127 + 131 + 137 + 139 \\gt 770$$\r\n\r\nã§ããïŒ$g \\geq 3$ ã®ãšãã«ã€ããŠã¯ $F(p) \\geq 3(p + 12)$ ã§ãããã $p \\geq 89$ ãå¿
èŠãšãªãããïŒ\r\n$$S \\geq 89 + 97 + 101 + 103 + 107 + 109 + 113 + 127 \\gt 770$$\r\n\r\nãåŸãããïŒ\\\r\nã以äžããïŒ$S$ ã®æå°å€ã¯ $\\mathbf{770}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc192/editorial/6235"
}
] | ã$8$ ã€ã®çŽ æ°ã®çµ $(p, q, r, s, t, u, v, w)$ ã以äžã®æ¡ä»¶
$$\begin{cases}
p \lt q \lt r \lt s \lt t \lt u \lt v \lt w\\\\
p^2 u - q^2 t = 145 (u - t)\\\\
p^2 v - r^2 t = 145 (v - t)\\\\
p^2 w - s^2 t = 145 (w - t)
\end{cases}$$
ããã¹ãŠã¿ãããšãïŒ
$$p + q + r + s + t + u + v + w$$
ã®ãšãããæå°ã®å€ã解çããŠãã ããïŒ |
OMC192 (for experts) | https://onlinemathcontest.com/contests/omc192 | https://onlinemathcontest.com/contests/omc192/tasks/7188 | D | OMC192(D) | 600 | 55 | 92 | [
{
"content": "ã$BO_1 = CO_1 = DO_1$ ãšçŽç· $O_1O_2$ ãé¢ $BCD$ ãšåçŽã§ããããšããïŒ$BO_2 = CO_2 = DO_2$ ãåããïŒããã $d$ ãšããã°ïŒ$B,C,D$ ããåé¢äœ $APQR$ ã®å€æ¥çãžã®æ¹ã¹ããèãããš\r\n$$d^2 - AO_2^2 = BP\\times AB = CQ\\times AC = DR\\times AD$$\r\nãåããïŒãããã®å€ã¯å
šãŠ $BP\\times AB = 60$ ã«çããã®ã§ïŒ$CQ = \\dfrac{15}{4},DR = \\dfrac{20}{7}$ ãåŸãïŒãã£ãŠïŒåžžã«\r\n$$\\frac{V_2}{V_1}\r\n= \\frac{AP\\times AQ \\times AR}{AB\\times AC\\times AD}\r\n= \\frac{AP(AC-CQ)(AD-DR)}{AB\\times AC\\times AD}\r\n= \\frac{1397}{2880}$$\r\nã§ãããšåããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf{4277}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc192/editorial/7188"
}
] | ãåé¢äœ $ABCD$ ããã³ç·å $AB$ äžã®ç¹ $P$ ã¯
$$AB=15,\quad AC=16,\quad AD=21,\quad AP=11$$
ãã¿ãããŸãïŒç·å $AC,AD$ äžïŒç«¯ç¹ãé€ãïŒã«ããããç¹ $Q,R$ ããšãïŒåé¢äœ $ABCD, APQR$ ã®å€å¿ããããã $O_1, O_2$ ãšãããšããïŒçŽç· $O_1O_2$ ã¯é¢ $BCD$ ã«åçŽã§ããïŒåé¢äœ $ABCD$ ã®äœç©ã $V_1$ïŒåé¢äœ $APQR$ ã®äœç©ã $V_2$ ãšãããšãïŒ$\dfrac {V_2} {V_1}$ ã®å€ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac ab$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ
<details> <summary> åé¢äœã®å€å¿ãšã¯ <\/summary>
ãééåãªïŒ$4$ é ç¹ãåäžå¹³é¢äžã«ãªãïŒåé¢äœã«ã¯ïŒãã® $4$ é ç¹ããã¹ãŠéããããªçé¢ãäžæã«ååšããŸãïŒãã®çã®äžå¿ãåé¢äœã®**å€å¿**ãšãããŸãïŒ
<\/details> |
OMC192 (for experts) | https://onlinemathcontest.com/contests/omc192 | https://onlinemathcontest.com/contests/omc192/tasks/7146 | E | OMC192(E) | 700 | 8 | 31 | [
{
"content": "ã$2$ ã€ã®è€çŽ æ° $s, t$ ã§ãã£ãŠ\r\n$$s + t = 2bïŒs^2 + t^2 = 2a$$\r\nãæºãããã®ãèãããšïŒ\r\n$$st = \\frac{(s + t)^2 - (s^2 + t^2)}{2} = 2b^2 - a$$\r\nãæãç«ã€ã®ã§ïŒåé¡ã«ããæ¹çšåŒã¯\r\n$$x^4 + (s + t)x^3 + (s + t + st)x^2 + (s^2 + t^2)x + st = 0$$\r\nãšè¡šãããšãã§ãïŒãããå æ°å解ãããš\r\n$$(x^2 + sx + t)(x^2 + tx + s) = 0 \\tag{1}$$\r\nãšãªãïŒãã㧠$2$ ã€ã® $2$ 次åŒ\r\n$$f(x) = x^2 + sx + tïŒg(x) = x^2 + tx + s$$\r\nãå®ãïŒ$f(x), g(x)$ ã®å€å¥åŒããããã $D_f, D_g$ ãšãããïŒ\\\r\nã$|b| \\gt \\sqrt{a}$ ã®ãšã㯠$s, t$ ããšãã«èæ°ã§ããããšã確ãããããã®ã§ïŒ$f(x), g(x)$ ã¯ããããå®æ ¹ãããã ã $1$ åãããããïŒäžé©ã§ããïŒãŸãïŒ$|b| = \\sqrt{a}$ ã®ãšã㯠$s = t$ ãªã®ã§ $f(x)$ ãš $g(x)$ ã¯åäžã®åŒãšãªãïŒãã®å Žåãäžé©ã§ããïŒä»¥åŸ $|b| \\lt \\sqrt{a}$ ãšããïŒãã®ãšã $s, t$ ã¯çžç°ãªãå®æ°ã§ããïŒ\\\r\nãæ¹çšåŒ $(1)$ ãã¡ããã© $3$ ã€ã®å®æ°è§£ããã€ã«ã¯ä»¥äž $2$ ã€ã®ãã¡ã©ã¡ãããæºãããªããã°ãªããªãïŒ\r\n- **æ¡ä»¶ 1.** $f(x), g(x)$ ã¯å
±éã®å®æ ¹ããã€ïŒ\r\n- **æ¡ä»¶ 2.** $D_f, D_g$ ã®ãã¡äžæ¹ã¯ $0$ ã§ããïŒ\r\n\r\n$f(x) = g(x)$ ãªãå®æ° $x$ 㯠$x = 1$ ã«éãã®ã§ïŒæ¡ä»¶ 1.ãæºããã«ã¯ $s + t = -1$ïŒã€ãŸã $b = -\\dfrac{1}{2}$ ãå¿
èŠã§ããïŒæ¡ä»¶ 2.ãæºããå ŽåïŒå€æ° $s, t$ ã®å¯Ÿç§°æ§ãã $D_f = 0$ ã®å Žåã®ã¿ãèããã°ããïŒãã®ãšã\r\n$$D_f = s^2 - 4t = -t^2 - 4t + 2a = 0$$\r\nã§ããããšãš $|t| \\leq \\sqrt{s^2 + t^2} = \\sqrt{2a}$ ãã $t = \\sqrt{2a + 4} - 2$ ãåŸãããïŒãããã£ãŠ $\\alpha = \\sqrt{2a + 4} - 2$ ãšããïŒ$\\alpha^2 + \\beta^2 = 2a$ ãªãæ£ã®å®æ° $\\beta$ ãå®ããã°ïŒæ¡ä»¶ 2.ãæºããã«ã¯ $b = \\dfrac{\\alpha \\pm \\beta}{2}$ ãå¿
èŠã§ããããšããããïŒ\\\r\nããããã®ããšããïŒ$f(x)g(x)$ ãå®æ ¹ã $3$ ã€ãã€ãã㪠$b$ ã®å€ãšãªãåŸãã®ã¯\r\n$$- \\frac{1}{2}ïŒ\\frac{\\alpha + \\beta}{2}ïŒ\\frac{\\alpha -\\beta}{2}$$\r\nã® $3$ éãã§ããïŒãããã£ãŠãã®ãã㪠$b$ ã $3$ ã€ååšãããªãã°ãã®ç©ã¯\r\n$$\r\n\\begin{aligned}\r\n-\\frac{1}{2} \\times \\frac{\\alpha + \\beta}{2} \\times \\frac{\\alpha - \\beta}{2} &= - \\frac{\\alpha^2 - \\beta^2}{8} = - \\frac{\\alpha^2 - a}{4} \\\\\\\\\r\n&= - \\frac{a + 8 - 4\\sqrt{2a + 4}}{4} \\\\\\\\\r\n&= - \\frac{(\\sqrt{a + 2} - 2\\sqrt{2})^2 - 2}{4}\r\n\\end{aligned}\r\n$$\r\nãšè¡šãããïŒããã $-1200$ ãšãªããšãïŒ\r\n$$(\\sqrt{a + 2} - 2\\sqrt{2})^2 = 4802$$\r\nãã\r\n$$\\sqrt{a + 2} = 2\\sqrt{2} + 49\\sqrt{2} = 51\\sqrt{2}$$\r\nãåŸããïŒããã«\r\n$$a = 51^2 \\times 2 - 2 = \\mathbf{5200}$$\r\nã§ããïŒéã« $a = 5200$ ãæ¡ä»¶ãæºããããšã¯ïŒæ¬¡ã®ããã«ç¢ºãããããïŒ\r\n---\r\nã$a = 5200$ ã®ãšã㯠$\\alpha = 100, \\beta = 20$ ã§ããïŒ$b = - \\dfrac{1}{2}, 40, 60$ ã®ããããã®å Žå㧠$f(x)g(x)$ ã調ã¹ããšä»¥äžã®ããã«ãªãïŒãããã®å Žåã確ãã«å®æ ¹ã $3$ ã€ãã€ããšããããïŒ\r\n- $b = -\\dfrac{1}{2}$ ã®ãšãã¯\r\n$$f(x)g(x) = (x-1)^2(x^2 + x - \\frac{10399}{2})$$\r\n- $b = 40$ ã®ãšãã¯\r\n$$f(x)g(x) = (x - 10)^2(x^2 + 100x - 20)$$\r\n- $b = 60$ ã®ãšãã¯\r\n$$f(x)g(x) = (x + 10)^2(x^2 + 100x + 20)$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc192/editorial/7146"
},
{
"content": "ãå
¬åŒè§£èª¬ã® $s,t$ ã®èšå®ãåçªã«èŠãããããããªããïŒåŒã $a,b$ ã§æŽçããŠå¹³æ¹å®æãæèãããšèŠéããç«ã¡ãããïŒããªãã¡\\\r\n$$x^4+2bx^3+(2b^2+2b-a)x^2+2ax+2b^2-a=0$$\r\n$$\\rArr a(x-1)^2=(x^2+bx+b)^2+b^2(x-1)^2$$\r\n$$\\rArr (x^2+bx+b)^2=(a-b^2)(x-1)^2$$\r\n$$\\rArr \\big(x^2+(b+\\sqrt{a-b^2})x+b-\\sqrt{a-b^2}\\big)\\big(x^2+(b-\\sqrt{a-b^2})x+b+\\sqrt{a-b^2}\\big)=0$$\r\nãšãªãã®ã§ïŒ$x^2+(b+\\sqrt{a-b^2})x+b-\\sqrt{a-b^2}=0$ ãš $x^2+(b-\\sqrt{a-b^2})x+b+\\sqrt{a-b^2}=0$ ãå
±é解ãäžã€æã€ïŒãããã¯ã©ã¡ããäžæ¹ã ãé解ãæã€å Žåãæ€èšããã°è¯ãïŒä»¥éã¯å
¬åŒè§£èª¬ã®éãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc192/editorial/7146/367"
}
] | ã$a$ ãæ£ã®å®æ°ãšããŸãïŒããŸïŒæ¬¡ã®æ¡ä»¶ãã¿ããå®æ° $b$ ãã¡ããã© $3$ ã€ååšããŸããïŒ
- 以äžãæãç«ã€å®æ° $x$ ãã¡ããã© $3$ ã€ååšããïŒ
$$x^4 + 2bx^3 + (2b^2 + 2b - a)x^2 + 2ax + 2b^2 - a = 0$$
ããã«ãã®ãã㪠$b$ ã®å€ $3$ ã€ã®ç©ã¯ $-1200$ ã«ãªããŸããïŒãã®ãšãïŒ$a$ ã®å€ãæ±ããŠãã ããïŒ |
OMC192 (for experts) | https://onlinemathcontest.com/contests/omc192 | https://onlinemathcontest.com/contests/omc192/tasks/6935 | F | OMC192(F) | 700 | 11 | 28 | [
{
"content": "ã$\\omega_2$ ãšèŸº $AB, AC$ ã®äº€ç¹ã®ãã¡ $A$ ã§ãªãæ¹ãããããã $P,Q$ ãšãïŒ$\\angle BAC$ ã®äºçåç·ã $\\alpha$ ãšããïŒäžå¿ãç¹ $A$ïŒååŸã $\\sqrt{AB\\times AQ} = \\sqrt{AC\\times AP}$ ãšããå転ãè¡ã£ãåŸã«çŽç· $\\alpha$ ã«é¢ããŠå¯Ÿç§°ç§»åãããæäœãè¡ããšïŒçŽç· $BC$ ãš $\\omega_2$ïŒçŽç· $PQ$ ãš $\\Omega$ ããããã移ãåãïŒåŸã£ãŠïŒ$\\omega_1$ ã«äžèšæäœãè¡ãªã£ãŠåŸãããåã¯åè§åœ¢ $BCQP$ ã«å
æ¥ããïŒãã£ãŠïŒ$BC+PQ=PB+QC$ ãã \r\n$$AP+AQ+PQ=AB+AC-BC$$\r\nãåŸãïŒãŸãïŒäžè§åœ¢ $ABC$ ãšäžè§åœ¢ $APQ$ ã®çžäŒŒæ¯ã¯ $12345:6789$ ã§ããããïŒ\r\n$$\\dfrac{AB+AC}{BC} =\\dfrac{12345+6789}{12345-6789}=\\dfrac{3189}{926}$$\r\nãšãªãïŒããã§ïŒ\r\n$$2FM=|BF-CF|=\\frac {|BF^2-CF^2|} {BF+CF} =\\frac {|AB^2-AC^2|} {BC} =|AB-AC| \\cdot \\frac {AB+AC} {BC} $$\r\nã§ããïŒ$|AB-AC|=|BD-CE|=100$ ãã $FM=\\dfrac{79725}{463}$ ãšãªãïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{80188}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc192/editorial/6935"
},
{
"content": "ãè§ $A$ å
ã®åæ¥åãš $BC$ ã®æ¥ç¹ã $P$ ãšãïŒ $PQ$ ãè§ $A$ å
ã®åæ¥åã®çŽåŸãšãªãç¹ $Q$ ãåãïŒ\\\r\nã $\\Omega$ ïŒ $\\omega_2$ ïŒè§ $A$ å
ã®åæ¥åã®ååŸããããã $R,r,r_A$ ãšããïŒ\\\r\nãäžå¿ãç¹ $A$ ïŒååŸã $\\sqrt{AB\\times AC}$ ãšããå転ãè¡ã£ãåŸïŒ $â BAC$ ã®äºçåç·ã«é¢ããŠå¯Ÿç§°ç§»åããæäœãè¡ããšïŒ $\\Omega$ ã¯çŽç· $BC$ ã«ïŒ $\\omega_2$ ã¯è§ $A$ å
ã®åæ¥åã® $Q$ ã§ã®æ¥ç·ã«ç§»ãïŒãããã£ãŠïŒ $r:R=AF:AF+2r_A$ ïŒïŒè©³ããã¯SchwarzeKatze9ããã®èšäºãåèã«ãªããŸãïŒ https:\\/\\/mathlog.info\\/articles\\/3944 ïŒ\\\r\nã $|BD-CE|$ ã $R,A,B-C$ ã§è¡šããšïŒ\r\n\r\n$$\r\n\\begin{aligned}\r\n|BD-CE|&=|AC-AB| \\\\\\\\\r\n&=|2R\\sin B-2R\\sin C| \\\\\\\\\r\n&=2R\\left|2\\cos \\dfrac{B+C}{2}\\sin \\dfrac{B-C}{2}\\right| \\\\\\\\\r\n&=4R\\sin \\dfrac{A}{2}\\sin \\dfrac{|B-C|}{2}\r\n\\end{aligned}\r\n$$ \r\n\r\nãããªãã¡ $\\sin \\dfrac{A}{2}\\sin \\dfrac{|B-C|}{2}=\\dfrac{|BD-CE|}{4R}$ ïŒ\r\n\r\nããŸã $r:R=AF:AF+2r_A$ ããïŒ\r\n\r\n$$\r\n\\begin{aligned}\r\n\\dfrac{R}{r}&=\\dfrac{AF+2r_A}{AF} \\\\\\\\\r\n&=1+\\dfrac{2\\times4R\\sin \\dfrac{A}{2}\\cos \\dfrac{B}{2}\\cos \\dfrac{C}{2}}{2R\\sin B\\sin C} \\\\\\\\\r\n&=1+\\dfrac{\\sin \\dfrac{A}{2}}{\\sin \\dfrac{B}{2}\\sin \\dfrac{C}{2}} \\\\\\\\\r\n&=1+\\dfrac{2\\sin \\dfrac{A}{2}}{\\cos \\dfrac{B-C}{2}-\\sin \\dfrac{A}{2}}\r\n\\end{aligned}\r\n$$\r\n\r\nãããªãã¡ $\\dfrac{\\cos \\dfrac{B-C}{2}}{\\sin \\dfrac{A}{2}}=\\dfrac{R+r}{R-r}$ ïŒ\r\n\r\nããã£ãŠïŒ\r\n\r\n$$\r\n\\begin{aligned}\r\nFM&=\\dfrac{1}{2}|CF-BF| \\\\\\\\\r\n&=\\dfrac{1}{2}|2R\\sin B\\cos C-2R\\sin C\\cos B| \\\\\\\\\r\n&=R\\sin |B-C| \\\\\\\\\r\n&=2R\\times \\sin \\dfrac{A}{2}\\sin \\dfrac{|B-C|}{2}\\times\\dfrac{\\cos \\dfrac{B-C}{2}}{\\sin \\dfrac{A}{2}} \\\\\\\\\r\n&=2R\\times \\dfrac{|BD-CE|}{4R}\\times \\dfrac{R+r}{R-r} \\\\\\\\\r\n&=\\dfrac{79725}{463}\r\n\\end{aligned}\r\n$$\r\n\r\nãããçããã¹ãå€ã¯ $\\mathbf{80188}$ ïŒ",
"text": "äžè§é¢æ°ã䜿ã£ã解æ³",
"url": "https://onlinemathcontest.com/contests/omc192/editorial/6935/373"
}
] | ãéè§äžè§åœ¢ $ABC$ ã®å€æ¥å $\Omega$ ã«å
æ¥ãïŒèŸº $AB$ ã«ç¹ $D$ ã§ïŒèŸº $AC$ ã«ç¹ $E$ ã§æ¥ããåã $\omega_1$ ãšããŸãïŒãŸãïŒç¹ $A$ 㧠$\Omega$ ã«å
æ¥ãïŒå $\omega_1$ ãšå€æ¥ããåã $\omega_2$ ãšããŸãïŒããã«ïŒ$A$ ãã蟺 $BC$ ã«äžãããåç·ã®è¶³ã $F$ ãšãïŒèŸº $BC$ ã®äžç¹ã $M$ ãšããŸãïŒããŸïŒ$\Omega$ ã®ååŸã $12345$ïŒ$\omega_2$ ã®ååŸã $6789$ïŒç·å $BD$ ãšç·å $CE$ ã®é·ãã®å·®ïŒã®çµ¶å¯Ÿå€ïŒã $100$ ã®ãšãïŒç·å $FM$ ã®é·ãã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac ab$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC191 (for beginners) | https://onlinemathcontest.com/contests/omc191 | https://onlinemathcontest.com/contests/omc191/tasks/4771 | A | OMC191(A) | 100 | 368 | 372 | [
{
"content": "ãåäœã®å€ãäºãã«ç°ãªããã㪠$4$ æ¡ã®æ£æŽæ°ã«ãããŠïŒåäœã®åã¯é«ã
$30$ ã§ããïŒãããã£ãŠïŒæ¡ä»¶ãã¿ããæ°ã«ãããŠïŒäžã®äœãšåã®äœã®åã¯æ倧㧠$9$ïŒ$15$ 以äžã§æ倧ã®å¹³æ¹æ°ïŒã§ããïŒåã®äœãã倧ããæ°ãå
¥ããããšã§ïŒæ倧å€ã¯ $\\mathbf{9810}$ ã§ãããšãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc191/editorial/4771"
}
] | ã以äžã®æ¡ä»¶ãã¿ããïŒåé²æ³è¡šèšã§ïŒ$4$ æ¡ã®æ£æŽæ°ã®ãã¡ïŒæ倧ã®ãã®ãæ±ããŠãã ããïŒ
- äžã®äœïŒåã®äœïŒçŸã®äœïŒåã®äœã®æ°ã¯äºãã«ç°ãªãïŒ
- äžã®äœãšåã®äœã®æ°ã®åãšåã®äœãšçŸã®äœã®æ°ã®åã¯çããïŒ
- äžã®äœãšåã®äœã®æ°ã®åã¯å¹³æ¹æ°ã§ããïŒ |
OMC191 (for beginners) | https://onlinemathcontest.com/contests/omc191 | https://onlinemathcontest.com/contests/omc191/tasks/3534 | B | OMC191(B) | 100 | 343 | 361 | [
{
"content": "$$a^3-b^3-c^3+d^3=a^3-(a+1)^3-(a+2)^3+(a+3)^3=6(2a+3)$$\r\nã«æ³šæããã°ïŒæ±ããåæ°ã¯ $6\\times 5,6\\times 7,\\ldots,6\\times 1665$ ã® $\\textbf{831}$ åã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc191/editorial/3534"
}
] | $$3534=293^3-294^3-295^3+296^3$$
ã§ãïŒãã®ããã«ïŒ**é£ç¶ãã** $4$ ã€ã®æ£æŽæ° $a\lt b\lt c\lt d$ ãçšããŠ
$$a^3-b^3-c^3+d^3$$
ãšè¡šããæ°ã®ãã¡ïŒ$10000$ 以äžã§ãããã®ã¯ $3534$ ãå«ããŠããã€ãããŸããïŒ |
OMC191 (for beginners) | https://onlinemathcontest.com/contests/omc191 | https://onlinemathcontest.com/contests/omc191/tasks/3947 | C | OMC191(C) | 200 | 261 | 300 | [
{
"content": "ãæ¡ä»¶ãã $\\displaystyle\\lim_{x \\to -1} f(x) = 0$ ããã³ $\\displaystyle\\lim_{x \\to 4}f(x)=0$ ãå¿
èŠã§ããããïŒ\r\n$$f(x)=\\alpha(x+1)(x-4)(x-\\beta)$$\r\nãšè¡šãïŒãã®ãšãäºã€ã®æ¡ä»¶ã¯\r\n$$\\displaystyle\\lim_{x \\to -1}\\alpha(x-4)(x-\\beta)=\\frac{1}{2}, \\qquad \\displaystyle\\lim_{x \\to 4}\\alpha(x+1)(x-\\beta)=-3$$\r\nãšãªãïŒããã解ã㊠$ \\alpha = -1\\/10 , \\beta = -2 $ ããããããïŒ \r\n$$\\begin{aligned}\\displaystyle\r\nf(x) & = -\\frac{1}{10}(x+1)(x+2)(x-4) \\\\\\\\\r\n& = -\\frac{1}{10}(x^3-x^2-10x-8) \\\\\\\\\r\n& = -\\frac{1}{10}x^3+\\frac{1}{10}x^2+x+\\frac{4}{5}.\r\n\\end{aligned}$$\r\nä¿æ°ã®ç·å㯠$\\dfrac{9}{5}$ ãšãªãïŒè§£çãã¹ãå€ã¯ $\\mathbf{14}$ ã§ããïŒ\\\r\nããªã $f(x)$ ã®ä¿æ°ã®ç·åã $f(1)$ ã«çããããšãå©çšããã°å±éããã«æžãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc191/editorial/3947"
}
] | ãå®æ°ä¿æ° $3$ 次å€é
åŒ $f(x)$ ã«ã€ããŠïŒ
$$\displaystyle \lim_{x \to -1} \frac{f(x)}{x+1} = \frac{1}{2}, \qquad \displaystyle \lim_{x \to 4} \frac{f(x)}{x-4} = -3 $$
ãæãç«ã€ãšãïŒ$f(x)$ ã®å次æ°ã®ä¿æ°ã®ç·åãæ±ããŠãã ããïŒå®æ°é
ãä¿æ°ã«å«ããŸãïŒïŒãã ãïŒè§£çãã¹ãå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ $a+b$ ã解çããŠãã ããïŒ |
OMC191 (for beginners) | https://onlinemathcontest.com/contests/omc191 | https://onlinemathcontest.com/contests/omc191/tasks/3086 | D | OMC191(D) | 300 | 162 | 241 | [
{
"content": "ã$p, q, r$ ã®å€§å°é¢ä¿ãç¡èŠããã°ïŒ$p+q+r+89=pq$ ããã³ $p+q+r+89=pqr$ ã«ã€ããŠèããã°ããïŒ\\\r\nãåè
ã®å ŽåïŒ$(p-1)(q-1)=r+90$ ãšå€åœ¢ã§ãïŒ$p, q, r$ ã®å¶å¥ãèããã° $r=2$ ããããïŒãããã£ãŠ\r\n$$(p-1)(q-1)=92$$\r\nãæºãã $p, q$ ãæ¢çŽ¢ããã°ïŒå
ã®å€§å°é¢ä¿ã§ $(p, q, r)=(2, 3, 47)$ãåŸãïŒ\\\r\nãåŸè
ã®å ŽåïŒ$p, q, r$ ã®ãã¡ããããäºã€ã¯å¶æ°ãšãããããïŒå
ã®å€§å°é¢ä¿ã§ $(p, q, r)=(2, 2, 31)$ ãåŸãïŒ\\\r\nã以äžããïŒæ±ããç·ç©ã¯ $(2+3+47)\\times (2+2+31)=\\textbf{1820}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc191/editorial/3086"
}
] | ã$p\leq q\leq r$ ãªãçŽ æ°ã®çµ $(p, q, r)$ ã§ãã£ãŠïŒä»¥äžã®å€
$$\dfrac{pqr}{p+q+r+89}$$
ãæŽæ°ãšãªããã®ãã¹ãŠã«ã€ããŠïŒ$p+q+r$ ã®**ç·ç©**ãæ±ããŠãã ããïŒ |
OMC191 (for beginners) | https://onlinemathcontest.com/contests/omc191 | https://onlinemathcontest.com/contests/omc191/tasks/7421 | E | OMC191(E) | 400 | 41 | 122 | [
{
"content": "ãä»»æã®é£ãåã $2$ ãã¹ã«ã€ããŠïŒ$A$ åã¯ãã®éã®èŸºãã¡ããã© $1$ æ¹åã«ãã暪åããïŒå
šãŠã®èŸºã¯äžæ¹éè¡ã§ããïŒéã« $28$ æ¬ã®èŸºã®ã©ã®ãããªäžæ¹éè¡ã®ãã¿ãŒã³ã«å¯ŸããŠãããã«å¯Ÿå¿ãã\"é\"ã»\"é\"ã®åæç¶æ
ãååšããããïŒ$A$ åã移åããããšã«å
šãŠã®èŸºã®\"é\"ã»\"é\"ç¶æ
ãå
¥ãæ¿ããããšã¯å
šãŠã®èŸºãäžæ¹éè¡ã§ããããšãšåå€ã§ããïŒãããã£ãŠïŒ$A$ åãæåããçµè·¯ãååšããäžæ¹éè¡ã®ãã¿ãŒã³ãæ±ããã°è¯ãïŒ\\\r\nãäžçªå·Šã®åã®äžäž $2$ ãã¹ã«ã€ããŠã¯ïŒäžããäžãžç§»åïŒäžããäžãžç§»åã®ã©ã¡ãã $2$ éãã§ããïŒå·Šãã $2$ åç®ãå³ãã $2$ åç®ã® $8$ åã«ã€ããŠïŒ\r\n- äžäžã®ãã¹éã®ç§»åããªãäžæ¹éè¡ãäžããäžåã\r\n- äžäžã®ãã¹éã®ç§»åããªãäžæ¹éè¡ãäžããäžåã\r\n- äžäžã®ãã¹éã®ç§»åããã\r\n\r\nã®ãããããããããå®ããããšã§æåããçµè·¯ãæã€äžæ¹éè¡ã®ãã¿ãŒã³ã網çŸ
ãããã®ã§ïŒæ±ãããã¿ãŒã³ã®æ°ã¯ $2Ã3^8=$ $\\mathbf {13122}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc191/editorial/7421"
}
] | ãäžäžã« $2$ ãã¹ïŒå·Šå³ã« $10$ ãã¹äžŠãã èš $20$ åã®ãã¹ãããïŒé£ãåããã¹ãå
±æãã $28$ æ¬ã®å
šãŠã®èŸºã«ã€ããŠ"é"ãŸãã¯"é"ã®ã©ã¡ããã®ç¶æ
ãäžããããŠããŸãïŒ\
ãããŸãäžçªå·Šäžã®ãã¹ã« $A$ åãããïŒæ¬¡ã®æé ãç¹°ãè¿ããŠç§»åããŠãããŸãïŒ
- $A$ åããããã¹ã®èŸºã®äžã§"é"ç¶æ
ã®èŸºãå
±æããé£ã®ãã¹ãäžã€éžã³ïŒããã«ç§»åããïŒ
- $A$ åã $1$ ãã¹ç§»åããããšã«å
šãŠã®èŸºã®"é"ç¶æ
ãš"é"ç¶æ
ãå
¥ãæ¿ããïŒ
ããã®æé ãããŸãç¹°ãè¿ãïŒ$A$ åãäžçªå·Šäžã®ãã¹ããäžçªå³äžã®ãã¹ãéã£ãŠäžçªå·Šäžã®ãã¹ã«æ»ãããšãåºæ¥ãã°**æå**ïŒã©ã®ããã«æé ãç¹°ãè¿ããŠã $A$ åãäžçªå·Šäžã®ãã¹ããäžçªå³äžã®ãã¹ãéã£ãŠäžçªå·Šäžã®ãã¹ã«æ»ãããšãã§ããªãå Žåã¯**倱æ**ãšãªããŸãïŒ\
ããã®æïŒ$A$ åãæåãããããª"é"ã»"é"ã®åæç¶æ
ãšããŠããåŸããã¿ãŒã³ã¯äœçµãããæ±ããŠãã ããïŒãªãïŒ$A$ åã¯åããã¹ãäœåºŠéã£ãŠãè¯ãïŒéããªããã¹ããã£ãŠãè¯ããã®ãšããŸãïŒ |
OMC191 (for beginners) | https://onlinemathcontest.com/contests/omc191 | https://onlinemathcontest.com/contests/omc191/tasks/3176 | F | OMC191(F) | 400 | 17 | 46 | [
{
"content": "$$(AB+BC+CA) : BC = \\triangle ABC:\\triangle IBC = 2AR : PR = 14 : 5$$\r\nã§ããïŒãŸãïŒèŸº $AB$ ãš $\\omega$ ã®æ¥ç¹ã $E$ ãšãããšïŒæ¹ã¹ãã®å®çãªã©ãã次ãåŸãïŒ\r\n$$AE:DR=\\sqrt{AP\\cdot AQ}:\\sqrt{PR\\cdot QR}=\\sqrt{254 \\times 875} : \\sqrt{14 \\times 635} = 5 : 1$$\r\nããã§ïŒæåäºå®ãšã㊠$BD=CR$ ãæãç«ã€ã®ã§ïŒ\r\n$$AB=AE+BD,\\quad BC=2BD+DR,\\quad AC=AE+DR+BD$$\r\nãæãç«ã€ïŒä»¥äžããèšç®ããã° $AB:AC=43:47$ ãåŸãããããïŒè§£çãã¹ãå€ã¯ $\\bf{90}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc191/editorial/3176"
},
{
"content": "ãäžè§æ¯ãçšããŠïŒé¬Œã®ãããªèšç®ãããæ¹æ³ã§ãïŒ\r\n\r\n---\r\n\r\nã$AP=254,PQ=621,QR=14$ ãšããïŒ\\\r\nã$ \\triangle PDR$ ã«æ³šç®ããã°ïŒ$PD=3 \\sqrt{43815}$ïŒãã®å€ãèŠãæç¹ã§ïŒæ®éã¯ãã®æ¹éãæ念ãã¹ãã§ãïŒïŒ\\\r\nã蟺 $AB$ ãšå
æ¥åã®æ¥ç¹ã $E$ ãšãããšïŒ$ \\triangle AEI$ã¯çŽè§äžè§åœ¢ã§ããïŒæ¹ã¹ãã®å®çãã $AI=5 \\sqrt{8890}$ïŒããã« $EI=PD\\/2$ ãçšããã°ïŒ$\\tan \\angle IAE=\\dfrac{3\\sqrt{69}}{10\\sqrt{14}}$ïŒä»¥äžïŒ$\\angle IAE=\\theta$ ãšããïŒïŒ\\\r\nã次ã«ïŒç¹ $A$ ãã蟺 $BC$ ã«åããŠåç·ãäžããïŒãã®åç·äžã«ïŒ$\\angle AFI=90^{\\circ}$ ãšãªãããã«ç¹ $F$ ããšãïŒé©åœãªçžäŒŒãªã©ãçšããã°ïŒ$AF=\\dfrac{9}{10} PD$ïŒ$FI=\\dfrac{2}{5}DR$ ãªã©ãšãããïŒããããçšããŠïŒ$\\tan \\angle IAF=\\dfrac{4\\sqrt{14}}{27\\sqrt{69}}$ïŒïŒä»¥äžïŒ$\\angle IAF=\\phi$ ãšããïŒ\\\r\nãããŸæ±ããã¹ãæ¯ã¯ïŒ$AB:AC=\\cos \\angle CAF:\\cos\\angle BAF=\\cos(\\theta+\\phi):\\cos(\\theta-\\phi)$ ã§ããïŒ\\\r\nãå æ³å®çãçšããã°ïŒ\r\nã$$\\cos(\\theta \\pm \\phi)=\\dfrac{10 \\sqrt{14}}{\\sqrt{2021}}\\cdot\\dfrac{27\\sqrt{69}}{5 \\sqrt{2021}} \\mp \\dfrac{3 \\sqrt{69}}{\\sqrt{2021}}\\cdot\\dfrac{4\\sqrt{14}}{5 \\sqrt{2021}}$$\r\nãšãªãïŒããšã¯ç°¡åãªèšç®ã§ $AB:AC$ ãæ±ããããïŒ",
"text": "äžè§æ¯ãçšããæ¹æ³ïŒéæšå¥šïŒ",
"url": "https://onlinemathcontest.com/contests/omc191/editorial/3176/355"
},
{
"content": "ãããã§ã¯ïŒå
¬åŒè§£èª¬ã«äœ¿ãããŠããæåäºå®ã®çŽ¹ä»ãããŠãããŸãïŒ\r\n\r\n**æåäºå®ïŒ** $BD = CR$ ã§ããïŒ\r\n\r\nãã®æ§å³ã¯ïŒé«é£æ床Gã§ã䜿ãããããšãããã®ã§ïŒGãåŸæã«ããã人ã¯èšŒæãå«ããŠèŠããŠããããšããå§ãããŸãïŒããããå
ã¯ïŒèšŒæã«äœ¿ãè£é¡ãšæåäºå®ãåççã«ç€ºããŠãããŸãïŒ\r\n\r\n**è£é¡1ïŒ**äžè§åœ¢ $ABC$ ã® $\\angle{A}$ å
ã®åå¿ã $I_{A}$ïŒåæ¥åã $\\omega_{A}$ ãšãããšïŒ$\\omega$ ãš $\\omega_{A}$ ã®çžäŒŒã®äžå¿ã¯ $A$ ã§ããïŒ\r\n<details><summary>蚌æ<\\/summary>\r\n$A , I , I_{A}$ ã¯åäžçŽç·äžã§ãã€ïŒ$\\omega$ ãš $\\omega_{A}$ ã¯ããããçŽç· $AB , AC$ ã«æ¥ããŠããããšããåŸãïŒ\r\n<\\/details>\r\n\r\n**è£é¡2ïŒ**$I_{A}$ ããçŽç· $BC$ ã«äžãããåç·ã®è¶³ã $Râ$ ãšãããšïŒ$R = Râ$ ã§ããïŒ\r\n<details><summary>蚌æ<\\/summary>\r\nè£é¡1ããïŒ$A , P , Râ$ ãåäžçŽç·äžã«ããããšããåŸãïŒ\r\n<\\/details>\r\n\r\n**æåäºå®ïŒ**$BD = CR$ ã§ããïŒ\r\n<details><summary>蚌æ<\\/summary>\r\nè£é¡2ããïŒ$R$ ã¯$I_{A}$ ããçŽç· $BC$ ã«äžãããåç·ã®è¶³ã§ããïŒãŸãïŒ$I$ ããçŽç· $AB , AC$ ã«äžãããåç·ã®è¶³ããããã $E , F$ ãšãïŒ$I_{A}$ ããçŽç· $AB , AC$ ã«äžãããåç·ã®è¶³ããããã $S , T$ ãšãããšïŒ\r\n\r\n$$AE = AF , AS = AT , BD = BE , BR = BS , CD = CF , CR = CT$$\r\n\r\nãã $FT = BC$ ããããã®ã§ïŒãããã $BD = CR$ ãåŸãïŒ\r\n<\\/details>",
"text": "æåäºå®ã®èšŒæ ver1",
"url": "https://onlinemathcontest.com/contests/omc191/editorial/3176/364"
},
{
"content": "å
å¿ãç»å Žããå³ã§ã¯è§åºŠã®æ
å ±ãå€ãã®ã§ïŒé·ãèšç®ãããŸãããããšããããããŸãïŒ\\\r\né·ãèšç®ã¯ïŒ**é¢ç©ã®æ¯**ïŒ**æ£åŒŠå®ç**ïŒ**äžè§æ¯**ãäž»ãªéå
·ãšããŠç€ºãããåŒãåŸãïŒå¹Ÿäœåéã®è§£æ³ã®äžã€ãšæã£ãŠãããã°ããã§ãïŒ\r\n\r\n----\r\n**Well-known fact**\\\r\nãäžè§åœ¢ $ABC$ ã«ãããŠå
å¿ã $I$ ïŒå
æ¥åãšèŸº $BC,CA,AB$ ã®äº€ç¹ããããã $D,E,F$ ãšããïŒç·å $DP$ ãå
æ¥åã®çŽåŸãšãªãããã«åãïŒ$AP$ ãš $BC$ ã®äº€ç¹ã $R$ ãšãããšæ¬¡ãæãç«ã€ïŒ\r\n$$BR=CD$$\r\n\r\n----\r\n**蚌æ**\\\r\n$$AE=AF=a,ãBF=BD=b,ãCD=CE=c$$\r\nãšãïŒå
æ¥åã®ååŸã $r$ ãšããïŒç€ºãã¹ã㯠$BR:RC=c:b$ ã§ããïŒ\r\n$$\\begin{aligned}\r\nBR:RC&=|\\triangle ABR|:|\\triangle ACR|\\\\\\\\\r\n&=|\\triangle ABP|:|\\triangle ACP|\\\\\\\\\r\n&=\\frac{a+b}{a}\\cdot|\\triangle AFP|:\\frac{a+c}{a}\\cdot|\\triangle AEP|\\\\\\\\\r\n&=(a+b)\\cdot d(P,AB):(a+c)\\cdot d(P,AC)\\\\\\\\\r\n&=(a+b)(2r-d(D,AB)):(a+c)(2r-d(D,AC))ã(\\because I \\text{ is the midpoint of } DP)\\\\\\\\\r\n&=(a+b)\\sin^2\\frac{B}{2}:(a+c)\\sin^2\\frac{C}{2}\\\\\\\\\r\n&(\\because 2r-d(D,AB)=2r-b\\sin B=2r-2b\\tan\\frac{B}{2}\\cos^2\\frac{B}{2}=2r-2r\\cos^2\\frac{B}{2}=2r\\sin^2\\frac{B}{2})\r\n\\end{aligned}$$\r\nããã§æ£åŒŠå®çãã次ãæãç«ã€ïŒ\r\n$$\\sin\\dfrac{B}{2}:\\sin\\dfrac{C}{2}=\\frac{\\sin B}{\\cos\\frac{B}{2}}:\\frac{\\sin C}{\\cos\\frac{C}{2}}=\\frac{a+c}{\\cos\\frac{B}{2}}:\\frac{a+b}{\\cos\\frac{C}{2}}$$\r\nãããã£ãŠ\r\n$$\\begin{aligned}\r\n(a+b)\\sin^2\\frac{B}{2}:(a+c)\\sin^2\\frac{C}{2}&=(a+b)\\sin\\frac{B}{2}\\cdot\\frac{a+c}{\\cos\\frac{B}{2}}:(a+c)\\sin\\frac{C}{2}\\frac{a+b}{\\cos\\frac{C}{2}}\\\\\\\\\r\n&=\\tan\\frac{B}{2}:\\tan\\frac{B}{2}\\\\\\\\\r\n&=\\frac{r}{b}:\\frac{r}{c}\\\\\\\\\r\n&=c:b\r\n\\end{aligned}$$\r\n以äžããææã®åŒïŒ $BR:RC=c:b$ ãåŸãïŒ$\\square$",
"text": "æåäºå®ã®èšŒæ ver2",
"url": "https://onlinemathcontest.com/contests/omc191/editorial/3176/365"
},
{
"content": "ã座æšèšç®ã§ãïŒäžå¿ïŒè§£ããŸãïŒ\r\n\r\n---\r\n\r\nã$xy$ å¹³é¢äžã§åç¹ã次ã®ããã«ããïŒãã®ãšã $\\omega$ ã¯äžå¿ $(0,0)$ ååŸ $1$ ã®åã§ïŒ$B,C$ ã¯çŽç· $y=-1$ äžã«ããïŒ\r\n$$I(0,0),\\quad D(0,-1),\\quad P(0,1)$$\r\nãŸã $B$ ã® $x$ 座æšã¯æ£ïŒ$C$ ã® $x$ 座æšã¯è² ã§ãããšããïŒãã®ãšã $AB\\lt AC$ ãã $A$ ã® $x$ 座æšã¯æ£ïŒ\r\n\r\nã$A(p,q)\\ (p,q\\gt 0)$ ãšããïŒçŽç· $AI$ ãš $y=-1$ ã®äº€ç¹ã $S$ ãšãããš $S(-\\frac{p}{q},-1)$ ã§ïŒ$AB:AC=BS:CS$ ã§ããïŒ\r\nãã㧠$u=\\frac{p}{p^2+q^2},v=\\frac{q\\sqrt{p^2+q^2-1}}{p^2+q^2}$ ãšãããš $u,v\\gt 0$ ã§ããïŒ$B,C$ ã® $x$ åº§æš $x_B,x_C$ ã¯\r\n$$x_B=\\frac{q+1}{q(u+v)}-\\frac{p}{q},\\quad x_C=\\frac{q+1}{q(u-v)}-\\frac{p}{q}$$\r\nãšãªãïŒ\r\n\r\n<details>\r\n\r\nãçŽç· $AB$ 㯠$\\omega$ ã®æ¥ç·ãªã®ã§ïŒãã®æ¹çšåŒã¯ $a^2+b^2=1:(1)$ ãšãªãå®æ° $a,b$ ãçšã $ax+by=1$ ãšãããïŒ\r\nãã㯠$A(p,q)$ ãéããã $ap+bq=1:(2)$ïŒãŸã $x_B=\\frac{b+1}{a}=\\frac{1-ap+q}{aq}=\\frac{1+q}{aq}-\\frac{p}{q}$ ã§ããïŒ\\\r\nã$(1),(2)$ ãã $b$ ãæ¶å»ãããš $(p^2+q^2)a^2-2pa+1-q^2=0$ ãšãªãïŒ$a$ ã«ã€ããŠè§£ããš\r\n$$a=\\frac{p\\pm\\sqrt{p^2-(1-q^2)(p^2+q^2)}}{p^2+q^2}=u\\pm v$$\r\nãšãªãïŒç¬Šå·ã確èªããã° $a=u+v$ ã®æ¹ãé©ããããšããããïŒ$x_B=\\frac{1+q}{q(u+v)}-\\frac{p}{q}$ ãåŸãïŒ$x_C$ ã«ã€ããŠãåæ§ïŒ\r\n\r\n<\\/details>\r\n\r\nãããã $BS:CS=\\frac{q+1}{q(u+v)}:\\frac{q+1}{q(v-u)}=(v-u):(v+u)$ ã§ããïŒ\r\n\r\nããã㧠$\\angle DPQ=\\theta$ ãšããã° $PQ:PR=\\cos\\theta:\\frac{1}{\\cos\\theta}=621:635$ ãã $\\cos^2\\theta=\\frac{621}{635}$ ã§ããïŒãã®ãšã \r\n$$p^2=\\left(\\frac{254}{635}\\cdot DR\\right)^2\r\n=\\left(\\frac{2}{5}\\right)^2PD^2\\tan^2\\theta\r\n=\\left(\\frac{2}{5}\\right)^2PD^2\\left(\\frac{1}{\\cos^2\\theta}-1\\right)\r\n=\\left(\\frac{2}{5}\\right)^2\\cdot 4\\cdot\\frac{14}{621},$$\r\n$$q^2=\\left(1+\\frac{254}{635}\\cdot DP\\right)^2\r\n=\\left(1+\\frac{2}{5}\\cdot 2\\right)^2\r\n=\\left(\\frac{9}{5}\\right)^2,$$\r\n$$p^2+q^2-1=\\frac{2^2\\cdot4\\cdot 14+9^2\\cdot 621-5^2\\cdot 621}{5^2\\cdot 621}=\\frac{1400}{621}$$\r\n\r\nãã $u^2:v^2=p^2:q^2(p^2+q^2-1)=2^2:45^2$ ãåŸãïŒ$u,v\\gt 0$ ãã $u:v=2:45$ ã§ïŒãã®ãšã $BS:CS=43:47$ïŒ",
"text": "座æšèšç®",
"url": "https://onlinemathcontest.com/contests/omc191/editorial/3176/366"
}
] | ã$AB \lt AC$ ã§ããäžè§åœ¢ $ABC$ ã®å
å¿ããã³å
æ¥åã $I,\omega$ ãšãïŒ$\omega$ ãšèŸº $BC$ ã®æ¥ç¹ã $D$ ãšããŸãïŒ
ããã«çŽç· $DI$ ãš $\omega$ ã®äº€ç¹ã®ãã¡ $D$ ã§ãªãæ¹ã $P$ïŒçŽç· $AP$ ãš $\omega$ ã®äº€ç¹ã®ãã¡ $P$ ã§ãªãæ¹ã $Q$ïŒçŽç· $AP$ ãšèŸº $BC$ ã®äº€ç¹ã $R$ ãšããŸãïŒ
次ãæãç«ã€ãšã $AB:AC=a:b$ ãã¿ããäºãã«çŽ ãªæ£æŽæ° $a , b$ ãäžæã«ååšããã®ã§ïŒ$a + b$ ãæ±ããŠãã ããïŒ
$$AP : PQ : QR = 254 : 621 : 14 $$ |
OMC190 | https://onlinemathcontest.com/contests/omc190 | https://onlinemathcontest.com/contests/omc190/tasks/2318 | A | OMC190(A) | 200 | 249 | 300 | [
{
"content": "ã$0$ ä»¥äž $999$ 以äžã®æŽæ° $N$ ã«ãã£ãŠ $0.abc=N\\/1000$ ãšè¡šããïŒãã®ãšãïŒä»¥äžãæãç«ã€ïŒ\r\n\r\n- $N\\/1000$ ãäºé²æ³ã§æéå°æ°ã§ãã $\\iff$ $N$ ã $125$ ã§å²ãåãã\r\n- $N\\/1000$ ãäºé²æ³ã§æéå°æ°ã§ãã $\\iff$ $N$ ã $8$ ã§å²ãåãã\r\n\r\nãããã£ãŠïŒæ±ããç·å㯠$\\displaystyle\\sum_{N=0}^{999} \\frac{N}{1000}-\\sum_{N=0}^{8-1}\\frac{125N}{1000}-\\sum_{N=0}^{125-1}\\frac{8N}{1000}=\\textbf{434}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc190/editorial/2318"
}
] | ã$0$ ä»¥äž $9$ 以äžã®æŽæ° $a,b,c$ ãçšããŠåé²æ³ã§ $0.abc$ ã®åœ¢ã§è¡šãããæéå°æ°ã®ãã¡ïŒäºé²æ³ã§è¡šããŠãäºé²æ³ã§è¡šããŠãããããæéå°æ°ã«ãªãããªããã®ã®ç·åãïŒåé²æ³è¡šèšã§è§£çããŠãã ããïŒãã ãïŒè¡šèš $0.abc$ ã«ãããŠïŒ$0.100$ ãªã©ã®ããã«æ«å°Ÿã« $0$ ãç¶ããŠããããã®ãšããŸãïŒ |
OMC190 | https://onlinemathcontest.com/contests/omc190 | https://onlinemathcontest.com/contests/omc190/tasks/4774 | B | OMC190(B) | 200 | 139 | 175 | [
{
"content": "$$f\\left(\\dfrac{1}x\\right)=\\left(\\dfrac{1}x\\right)^8+a_1\\left(\\dfrac{1}x\\right)^7+a_2\\left(\\dfrac{1}x\\right)^6+\\cdots +a_7\\left(\\dfrac{1}x\\right)+a_8=\\dfrac{1}{x^8}g(x)$$\r\nãæãç«ã€ããïŒ$g(6)=6^8Ãf\\left(\\dfrac{1}{6}\\right)=0$ ãã $f\\left(\\dfrac{1}6\\right)=0$ ã§ããïŒåæ§ã«ã㊠$$f(2)=f(3)=f(4)=f(5)=f\\left(\\dfrac16\\right)= f\\left(\\dfrac17\\right)= f\\left(\\dfrac18\\right)= f\\left(\\dfrac19\\right)=0$$ ãåŸãïŒãã£ãŠïŒæé«æ¬¡ã®ä¿æ°ã $1$ ã§ããããšãšå æ°å®çãã\r\n$$f(x)=(x-2)(x-3)(x-4)(x-5)\\left(x-\\dfrac16\\right)\\left(x-\\dfrac17\\right)\\left(x-\\dfrac18\\right)\\left(x-\\dfrac19\\right)$$\r\nã§ããããïŒ\r\n$a_1+a_2+\\cdots+a_8=f(1)-1=\\dfrac{37}3$ ãã解çãã¹ãå€ã¯ $\\bf{40}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc190/editorial/4774"
}
] | ãå®æ° $a_1,a_2,\ldots,a_8$ ã«å¯ŸããŠå®ãŸãå®æ°ä¿æ°å€é
åŒ
$$\begin{aligned}
f(x)&=x^8+a_1x^7+a_2x^6+\cdots +a_7x+a_8,\\\\
g(x)&=a_8x^8+a_7x^7+ \cdots +a_2x^2+a_1x+1
\end{aligned}$$
ã«ã€ããŠïŒæ¬¡ãæãç«ã¡ãŸããïŒ
$$\begin{aligned}
&f(2)=f(3)=f(4)=f(5)=0, \\\\
&g(6)=g(7)=g(8)=g(9)=0
\end{aligned}$$
ããã®ãšãïŒ$a_1+a_2+\cdots +a_8$ ã®å€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ããïŒ |
OMC190 | https://onlinemathcontest.com/contests/omc190 | https://onlinemathcontest.com/contests/omc190/tasks/2404 | C | OMC190(C) | 300 | 214 | 268 | [
{
"content": "ã$a$ ãš $a+1$ ã¯äºãã«çŽ ã§ããããïŒ$\\gcd(a+1,b)$ ãš $\\gcd(a,b+1)$ ã¯äºãã«çŽ ã§ããïŒãããã£ãŠïŒæ¡ä»¶ã¯\r\n$$\\gcd(a+1,b)\\times\\gcd(a,b+1)=36$$\r\nã§ïŒäž¡æ°ã®çµã¿åãããšããŠããåŸããã®ã¯ $(1,36),(4,9),(9,4),(36,1)$ ã§ããïŒ\\\r\nã$(1,36)$ ãšãªã $(a,b)$ ã¯ä»¥äžã® $3$ ã€ã§ããïŒå¯Ÿç§°æ§ãã $(36,1)$ ãåæ§ã§ããïŒ\r\n$$(36,35),(36,71),(72,35)$$\r\nã$(4,9)$ ãšãªã $(a,b)$ ã¯ä»¥äžã® $5$ ã€ã§ããïŒå¯Ÿç§°æ§ãã $(9,4)$ ãåæ§ã§ããïŒ\r\n$$(27,8),(27,44),(63,44),(99,8),(99,44)$$\r\nãã㧠$a+1$ ãš $a$ ããããã $4,9$ ã®åæ°ãšãªã $a$ 㯠$27,63,99$ ã§ããããšãªã©ãå©çšãããšæ©ãã ããïŒ\\\r\nã以äžããïŒæ±ããå Žåã®æ°ã¯ $\\textbf{16}$ éãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc190/editorial/2404"
}
] | ã以äžã®åŒãã¿ãã $1$ ä»¥äž $100$ 以äžã®æŽæ°ã®çµ $(a,b)$ ã¯ããã€ãããŸããïŒ
$$\mathrm{lcm}\bigl(\gcd(a+1,b),\gcd(a,b+1)\bigr)=36$$
ããã ãïŒ$\textrm{lcm},\gcd$ ã§ããããæå°å
¬åæ°ïŒæ倧å
¬çŽæ°ãè¡šããŸã. |
OMC190 | https://onlinemathcontest.com/contests/omc190 | https://onlinemathcontest.com/contests/omc190/tasks/8459 | D | OMC190(D) | 400 | 94 | 132 | [
{
"content": "ãé ç¹ã $8$ ã€æã¡ïŒ$i=1,2,\\ldots,8$ ã«ã€ããŠé ç¹ $i$ ããé ç¹ $p_i$ ã«èŸºã匵ã£ãã°ã©ããèããïŒãŸãïŒããããã®é ç¹ãäœçš®é¡ãã®è²ã§å¡ãïŒãã ããã®ãšãïŒå¯Ÿå¿ããã²ãããåãç®±ã«å
¥ã£ãŠãããªãåãè²ã§å¡ãïŒç°ãªãç®±ã«å
¥ã£ãŠãããªãç°ãªãè²ã§å¡ãïŒãã®ããã«å¡ãåããããšã§ïŒå
ã®åé¡ã¯ã°ã©ããæé©åœ©è²ããåé¡ã«åž°çãããïŒæ¬¡ã®è£é¡ã瀺ããïŒ\r\n\r\n---\r\n\r\n**è£é¡.**ã$n$ ã $2$ 以äžã®æŽæ°ãšãïŒ$G_n$ ã $n$ é ç¹ $v_1,v_2,\\ldots,v_n$ ãããªã $v_1âv_2â \\cdots âv_nâv_1$ ã®ããã«èŸºã匵ã£ãã°ã©ããšããïŒãã®ãšãïŒ$G_n$ ãæé©åœ©è²ããããã«å¿
èŠãªè²æ°ã¯ïŒ$n$ ãå¥æ°ã®ãšã $3$ è²ïŒå¶æ°ã®ãšã $2$ è²ã§ããïŒ\r\n\r\n**蚌æ.**ã\\\r\nã$n$ ãå¶æ°ã®ãšãïŒæããã« $1$ è²ã§ã¯äžå¯èœãªãã $2$ è²ä»¥äžã§ããïŒéã«ïŒ$2$ è²ã亀äºã«å¡ãããšã§å¯èœã§ããïŒ\\\r\nã$n$ ãå¥æ°ã®ãšãïŒæããã« $1$ è²ã§ã¯äžå¯èœã§ããïŒ$2$ è²ã§ã¯ã©ã¡ããäžæ¹ã®è²ã $\\dfrac{n+1}{2}$ å以äžå¿
èŠãªããïŒã©ããã§åãè²ãé£ãåã£ãŠããŸãäžå¯èœã§ããïŒéã«ïŒãã $1$ é ç¹ã $1$ è²ã§å¡ãïŒæ®ãã®é ç¹ãå¥ã® $2$ è²ã§äº€äºã«å¡ãããšã§ $3$ è²ã§å¯èœã§ããïŒ\r\n\r\n---\r\n\r\nãããŠïŒå
ã®ã°ã©ãã¯ããã€ãã®éè·¯ã«åãããïŒãã®åãæ¹ã¯æ¬¡ã® $7$ ã€ã«éãããïŒ\r\n$$G_8,G_6+G_2,G_5+G_3,G_4+G_4$$\r\n$$G_4+G_2+G_2,G_3+G_3+G_2,G_2+G_2+G_2+G_2$$\r\nãå¿
èŠãªç®±ã®åæ°ã¯ïŒ$G_{å¥æ°}$ ãå°ãªããšã $1$ ã€å«ãŸããã° $3$ åïŒå«ãŸããªããã° $2$ åã§ããããïŒ$G_3+G_3+G_2,G_5+G_3$ ã®å Žåã®ã¿ã $3$ åãšãªãïŒãããã¯ãããã\r\n$$({}_8 \\mathrm C_2Ã{}_6 \\mathrm C_3÷2)Ã(3-1)!Ã(3-1)!Ã(2-1)!=1120$$\r\n$${}_8 \\mathrm C_3Ã(5-1)!Ã(3-1)!=2688$$\r\néãååšããããïŒæ±ããçã㯠$2Ã14833+(1120+2688)=\\mathbf{33474}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc190/editorial/8459"
},
{
"content": "ãBonusïŒäžè¬ã«ã²ããã $N$ å¹ããå Žåã®çã $f(N)$ ãïŒããçšåºŠç°¡åãªåœ¢ã§è¡šãïŒ\r\n\r\n---\r\n\r\nããŸã $(1,\\dots,n)$ ã®äžŠã³æ¿ã $(P_1,\\dots,P_n)$ 㧠$P_i\\neq i$ ãæºãããã®ã®åæ°ãæ±ãããïŒ\r\nãã®ãããªäžŠã³æ¿ãã¯**æªä¹±é å**ãšåŒã°ãïŒãã®åæ°ã $g(n)$ ãšããã°æ¬¡ãæãç«ã€ïŒ\r\n$$g(n)=\\sum_{k=0}^{n}\\binom{n}{k}(-1)^k(n-k)!$$\r\n\r\n<details>\r\n<summary>蚌æ<\\/summary>\r\nãå
é€åçãçšããïŒ\\\r\nã$1\\leq i\\leq n$ ã«å¯ŸããŠïŒ$(1,\\dots,n)$ ã®äžŠã³æ¿ã $(P_1,\\dots,P_n)$ 㧠$P_i=i$ ãæºãããã®å
šäœã®éåã $A_i$ ãšå®ããïŒ\r\nãã®ãšã $I\\subset\\\\{1,\\dots,n\\\\},I\\neq\\emptyset$ ã«å¯Ÿã $\\left|\\bigcap_{i\\in I}A_i\\right|=(n-|I|)!$ ã§ããããšã¯å®¹æã«ãããããïŒå
é€åçãã\r\n$$\\begin{aligned}\r\n|A_1\\cup\\cdots\\cup A_n|\r\n&=\\sum_{I\\subset\\\\{1,\\dots,n\\\\},I\\neq\\emptyset}(-1)^{|I|-1}\\left|\\bigcap_{i\\in I}A_i\\right|\\\\\\\\\r\n&=\\sum_{I\\subset\\\\{1,\\dots,n\\\\},I\\neq\\emptyset}(-1)^{|I|-1}(n-|I|)!\\\\\\\\\r\n&=\\sum_{k=1}^{n}\\binom{n}{k}(-1)^{k-1}(n-k)!\\\\\\\\\r\n\\end{aligned}$$\r\n\r\nãšãªãïŒ$A_1\\cup\\cdots\\cup A_n$ 㯠$(1,\\dots,n)$ ã®äžŠã³æ¿ã $(P_1,\\dots,P_n)$ ã§ãã£ãŠïŒãã $i$ 㧠$P_i=i$ ãã¿ãããã®å
šäœã®éåãªã®ã§ïŒæ±ããå€ $g(n)$ 㯠$g(n)=n!-|A_1\\cup\\cdots\\cup A_n|$ ãšããŠåŸãããïŒ\r\n\r\n<\\/details>\r\n\r\nãå®éã« $n=8$ ãšããŠèšç®ããŠã¿ãã° $g(8)=14833$ ãæãç«ã¡ïŒåé¡ã§äžããããå€ãšäžèŽããããšã確èªã§ããïŒ\r\n\r\nãå
ã®åé¡ã«æ»ããïŒå
¬åŒè§£èª¬ã®è£é¡ã®éšåãŸã§ã¯å
¬åŒè§£èª¬ãšåæ§ã§ããïŒå
¬åŒè§£èª¬ã®ããã«é åããäœãããã°ã©ãã**æ£ããã°ã©ã**ãšåŒã¶ããšã«ããïŒãã®ãšãïŒæ£ããã°ã©ãã¯ããã€ãã®ã«ãŒããããªãæåã°ã©ãã§ããïŒè£é¡ãèžãŸããã°ïŒ$f(N)=3g(N)-($ å¶æ°é·ã®éè·¯ããå«ãŸãªã $N$ é ç¹ã®æ£ããã°ã©ãã®åæ° $)$ ã§ããïŒ\\\r\nãå¶æ°é·ã®éè·¯ããå«ãŸãªã $N$ é ç¹ã®æ£ããã°ã©ãã®åæ°ãæ±ãããïŒçµè«ããè¿°ã¹ãã°ïŒãã㯠$N$ ãå¥æ°ã®ãšã $0$ïŒ$N$ ãå¶æ°ã®ãšã $((N-1)!!)^2$ ã§ããïŒ $!!$ ã¯äºééä¹ïŒïŒ\r\n\r\n<details>\r\n<summary>解æ³1ïŒçµã¿åããè«çã«è§£ã<\\/summary>\r\nã$N$ ãå¥æ°ã®ãšã $0$ ãªã®ã¯æããã§ããïŒä»¥äž $N$ ã¯å¶æ°ã§ãããšãïŒå¶æ°é·ã®éè·¯ããå«ãŸãªã $N$ é ç¹ã®æ£ããã°ã©ãã**è¯ãã°ã©ã**ãšåŒã¶ããšã«ããïŒ\\\r\nãåè¯ãã°ã©ãã«ã€ããŠïŒæ¬¡ã®æäœAã«ãã£ãŠ $N$ é ç¹ã $N\\/2$ åã®ãã¢ã«åããåãæ¹ïŒä»¥äž**æ£ããåãæ¹**ãšããïŒãåŸãããïŒãã ãïŒãã¢å
ã®é åºïŒãã¢éã®é åºã¯ããããåºå¥ããªãïŒ\r\n\r\n- **æäœA**ïŒåéè·¯ã«ãããŠé ç¹çªå·ãæå°ã®é ç¹ãã $2$ åãã€ã«åºåãïŒäŸïŒ$4\\to 2\\to 1\\to 3\\to 4$ ã $(1,3),(2,4)$ ã«ããïŒïŒ\r\n\r\nããã«ãã£ãŠïŒåè¯ãã°ã©ãããæ£ããåãæ¹ã $1$ ã€ãã€åŸãããïŒéã«ïŒåæ£ããåãæ¹ã«å¯Ÿã次ã®æäœãèããïŒ\r\n\r\n- **æäœB**ïŒããã¢å
ã®é ç¹çªå·ã®æå°å€ããå°ããé ã«ãã¢ã䞊ã³æ¿ãïŒåãã¢ã«å«ãŸããé ç¹ãé ã«ã°ã©ãã«è¿œå ããŠããïŒãããŸã§ã« $k$ ãã¢è¿œå æžã¿ã§ãããšãïŒæ¬¡ã®ã㢠$(u,v)\\ (u\\lt v)$ ã¯æ¬¡ã®ãããããæºããããã«è¿œå ããïŒ\r\n - æ°ããé£çµæåãšããŠé·ã $2$ ã®éè·¯ $u\\to v\\overset{\\star}\\to u$ ãè¿œå ããïŒãã®è¿œå ã®ä»æ¹ã¯äžæïŒ\r\n - ãã§ã«ãã蟺ã®ãã¡ $\\star$ ã®ã€ãã蟺ïŒ$k$ æ¬ããïŒã®ããããäžã€ãéžã¶ïŒãã®èŸºã $x\\overset{\\star}\\to y$ ãšãããšãïŒãã®èŸºãåé€ããäžã§ $x\\overset{\\star}\\to u\\to v\\overset{\\star}\\to y$ ãŸã㯠$x\\overset{\\star}\\to v\\to u\\overset{\\star}\\to y$ ãšãªããã蟺ãè¿œå ããïŒãã®è¿œå ã®ä»æ¹ã¯ $2k$ éãïŒ\r\n\r\nãã®ãšãïŒæ¬¡ã®ãããªããšã確èªã§ããïŒ\r\n\r\n- ä»»æã®æ£ããåãæ¹ã«å¯ŸãïŒã©ã®ããã«æäœBãè¡ã£ãŠãåŸãããã°ã©ãã¯è¯ãã°ã©ãã§ããïŒãã®ã°ã©ãã«æäœAãè¡ããšå
ã®æ£ããåãæ¹ãåŸãããïŒãŸãæäœBå
ã§ã®æäœã®æ¹æ³ã¯ $1\\cdot 3\\cdot\\cdots\\cdot(N-1)=(N-1)!!$ éããããïŒæçµçã«ã§ããã°ã©ãã¯å
šãŠçžç°ãªãïŒ\r\n- ä»»æã®è¯ãã°ã©ãã«å¯ŸãïŒããã«æäœAãè¡ã£ãŠåŸãããæ£ããåãæ¹ã«ã€ããŠïŒæäœBãé©åã«è¡ãã°å
ã®è¯ãã°ã©ãã埩å
ã§ããïŒ\r\n\r\nåŸã£ãŠïŒæäœAã»æäœBã«ãã£ãŠæ£ããåãæ¹ $1$ ã€ã«å¯Ÿãè¯ãã°ã©ãã $(N-1)!!$ å察å¿ããïŒæ£ããåãæ¹ïŒããªãã¡ $N$ é ç¹ã $N\\/2$ åã®ãã¢ã«åããåãæ¹ã¯ $(N-1)!!$ éãããããïŒè¯ãã°ã©ã㯠$((N-1)!!)^2$ åååšããïŒ\r\n\r\n<\\/details>\r\n<details>\r\n<summary>解æ³2ïŒåœ¢åŒçåªçŽæ°ãçšãã<\\/summary>\r\n\r\nã$k\\geq 1$ ã«å¯ŸããŠïŒé·ã $2k$ ã®éè·¯ã $b_k$ åå«ãŸãã $N$ é ç¹ã®æ£ããã°ã©ãã®åæ°ã¯æ¬¡ã®ããã«è¡šããïŒ\r\n$$\\frac{N!}{\\prod_{k\\geq 1}b_k!((2k)!)^{b_k}}\\cdot\\prod_{k\\geq 1}\\left((2k-1)!\\right)^{b_k}=N!\\prod_{k\\geq 1}\\frac{1}{b_k!}\\left(\\frac{1}{2k}\\right)^{b_k}$$\r\n\r\nãåŸã£ãŠïŒå¶æ°é·ã®éè·¯ããå«ãŸãªã $N$ é ç¹ã®æ£ããã°ã©ãã®åæ°ã¯æ¬¡ã®åœ¢åŒçåªçŽæ°ã® $x^N$ ã®ä¿æ°ã«çããïŒ\r\n$$N!\\prod_{k\\geq 1}\\left(\\sum_{i\\geq 0}\\frac{1}{i!}\\left(\\frac{x^{2k}}{2k}\\right)^{i}\\right)$$\r\n\r\nãããã§ïŒäžåŒã¯æ¬¡ã®ããã«å€åœ¢ããŠããããšãã§ããïŒ\r\n$$\\begin{aligned}\r\nN!\\prod_{k\\geq 1}\\left(\\sum_{i\\geq 0}\\frac{1}{i!}\\left(\\frac{x^{2k}}{2k}\\right)^{i}\\right)\r\n&=N!\\prod_{k\\geq 1}\\exp\\left(\\frac{x^{2k}}{2k}\\right)\\\\\\\\\r\n&=N!\\exp\\left(\\sum_{k\\geq 1}\\frac{x^{2k}}{2k}\\right)\\\\\\\\\r\n&=N!\\exp\\left(\\frac{1}{2}\\sum_{n\\geq 1}\\frac{x^n+(-x)^n}{n}\\right)\\\\\\\\\r\n&=N!\\exp\\left(-\\frac{\\log(1-x)+\\log(1+x)}{2}\\right)\\\\\\\\\r\n&=N!\\left((1-x)(1+x)\\right)^{-1\\/2}\\\\\\\\\r\n&=N!(1-x^2)^{-1\\/2}\r\n\\end{aligned}$$\r\n\r\nãæçµçãªåŒã® $x^N$ ã®ä¿æ°ã¯ $N$ ãå¥æ°ã®ãšã $0$ïŒå¶æ°ã®ãšã $N!\\cdot\\dfrac{(N-1)!!}{N!!}=((N-1)!!)^2$ ã§ããïŒ\r\n\r\n<\\/details>\r\n\r\nãæ±ããå€ $f(N)$ ã¯\r\n$$f(N)=3\\sum_{k=0}^{N}\\binom{N}{k}(-1)^k(N-k)!-\\begin{cases}\r\n0&(N:\\text{odd})\\\\\\\\\r\n((N-1)!!)^2&(N:\\text{even})\r\n\\end{cases}$$\r\nãšãªãïŒ$N=8$ ãšããã° $f(8)=3\\cdot 14833-(7!!)^2=33474$ ãšãªãïŒå
ã®åé¡ã®çããšç¢ºãã«äžèŽããïŒ",
"text": "ã²ããã®å¹æ°ãäžè¬å",
"url": "https://onlinemathcontest.com/contests/omc190/editorial/8459/352"
}
] | ãOMCåã¯ã²ãããç®±ã«å
¥ããŠåããä»äºãããŠããŸãïŒã²ããã¯å
šéšã§ $8$ å¹ããïŒããããã²ãã $1,2,\ldots,8$ ãšåŒã°ããŠããŸãïŒããŸïŒOMCåã¯ç€Ÿé·ãã $(1,2,\ldots,8)$ ã®äžŠã³æ¿ã $(p_1,p_2,\ldots,p_8)$ ã§ãã£ãŠïŒä»»æã® $1\le i \le 8$ ã«ã€ã㊠$i\neq p_i$ ãªããã®ãäŒãããïŒããã«æ¬¡ã®æ瀺ãåããŸããïŒ
- $i=1,2,\ldots,8$ ã«ã€ããŠïŒã²ãã $i$ ãšã²ãã $p_i$ ã¯å¥ã®ç®±ã«å
¥ããããšïŒ
ãã ãïŒOMCåã¯ç®±ãååã«ããããæã£ãŠãããã®ãšããŸãïŒ\
ã䞊ã¹æ¿ã $(p_1,p_2,\ldots,p_8)$ ãšããŠãããããã®ã¯å
šéšã§ $14833$ åãããŸããïŒããããã«ã€ããŠå¿
èŠãªç®±ã®åæ°ã®æå°å€ãæ±ãïŒãããã®ç·åãæ±ããŠäžããïŒ |
OMC190 | https://onlinemathcontest.com/contests/omc190 | https://onlinemathcontest.com/contests/omc190/tasks/4054 | E | OMC190(E) | 400 | 22 | 52 | [
{
"content": "ãçŽç· $BC$ ãšçŽç· $DE, DF$ ãšã®äº€ç¹ããããã $Q, R$ ãšããïŒãã®ãšãïŒ$\\angle ADE = \\angle ABF \\lt \\angle ABC$ ãã $Q$ ã¯èŸº $BC$ ã® $B$ åŽã®å»¶é·ç·äžã«ããïŒ$P$ 㯠$C$ ãå«ãŸãªã匧 $AB$ äžã«ããïŒãããã£ãŠïŒ\r\n$$\\angle AFD = \\angle PAD = \\angle PCB \\lt \\angle ACB$$\r\nããïŒ$R$ ã¯èŸº$BC$ ã® $C$ åŽã®å»¶é·ç·äžã«ããã®ã§ïŒ\r\n$\\angle APB=\\angle FCR$ ã§ããïŒãŸãïŒæ¥åŒŠå®çãã \r\n$$\\angle BAP=\\angle AFD=\\angle CFR$$\r\nã§ããããšããäžè§åœ¢ $ABP$ ãšäžè§åœ¢ $FRC$ ã¯çžäŒŒã§ããïŒãã£ãŠ $\\angle DBP = \\angle FRB$ ãåŸãïŒãŸãïŒmiquelç¹ã®æ§è³ªãã $P$ ã¯äžè§åœ¢ $BDQ$ ã®å€æ¥åäžã«ããã®ã§ïŒ\r\n$$\\angle FBR = \\angle DQR = \\angle DPB$$\r\nã§ããïŒãããã£ãŠïŒäžè§åœ¢ $BDP$ ãšäžè§åœ¢ $RFB$ ãçžäŒŒã§ããããïŒ\r\n$$BR:CR=BP : BP\\times\\frac{BD}{BP}\\times\\frac{BP}{AB} = AB : BD = 21 : 11$$\r\nãåŸãïŒãã£ãŠïŒã¡ãã©ãŠã¹ã®å®çãã\r\n$$\\dfrac{AF}{FC}=\\frac{AD}{DB}\\times\\frac{BR}{RC}=\\frac{10}{11}\\times\\frac{10+11}{11}=\\frac{210}{121}$$\r\nã§ããïŒä»¥äžããïŒ\r\n$$CF = \\frac{CF}{AF+CF}AC = \\frac{121\\times 21}{331} = \\frac{2541}{331}$$ \r\nãåŸãïŒç¹ã«è§£çãã¹ã㯠$\\bf{2872}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc190/editorial/4054"
},
{
"content": "ãæ¥åŒŠå®çãšååšè§ã®å®çãã\r\n$$\\angle{AFD} = \\angle{PAB} = \\angle{PED} = \\angle{PCB}$$\r\n\r\n$$\\angle{DPE} = \\angle{DAF} = \\angle{BPC}$$\r\n\r\nãªã®ã§ïŒäžè§åœ¢ $ADF$ ãšäžè§åœ¢ $PDE$ ãšäžè§åœ¢ $PBC$ ã¯ããããçžäŒŒãªããšããããïŒããã§ïŒ$DE \\parallel BF$ ãã $AE = 10x , EF = 11x$ ãšãããïŒãã£ãŠ\r\n\r\n$$PB : PC = AD : AF = 10 : 21x$$\r\n\r\nãåŸãããïŒãŸãïŒå転çžäŒŒããäžè§åœ¢ $BPD$ ãšäžè§åœ¢ $CPE$ ã¯çžäŒŒãªã®ã§\r\n\r\n$$PB : PC = BD : CE = 11 : 21 - 10x$$\r\n\r\nãªã®ã§ïŒããšã¯ããããé£ç«ãããŠè§£ããš $x = \\dfrac{210}{331}$ ãåŸãããïŒä»¥äžããïŒ\r\n\r\n$$CF = 21 - 21x = \\dfrac{2541}{331}.$$\r\n\r\nãã£ãŠïŒæ±ããçã㯠$\\bf{2872}$ ã§ããïŒ",
"text": "è£å©ç·ã䜿ããã«",
"url": "https://onlinemathcontest.com/contests/omc190/editorial/4054/340"
},
{
"content": "ãäžè¬ã«ïŒ$2$ å $O_1,O_2$ ã $2$ ç¹ $P,Q$ ã§äº€ãã£ãŠããïŒ$P$ ãéãçŽç·ãšå $O_1,O_2$ã®äº€ç¹ã®ãã¡ $P$ ã§ãªããã®ããããã $A,B$ ãšãïŒ$Q$ ãéãçŽç·ãšå $O_1,O_2$ã®äº€ç¹ã®ãã¡ $Q$ ã§ãªããã®ããããã $C,D$ ãšãããšïŒ$AC\\/\\/BD$ ãšãªãããšãç¥ãããŠããïŒ \r\n(ããã¯ïŒaminoã®è£é¡ãšããæ称ã§äžéšã®äººãã¡ã«ç¥ãããŠãããïŒããã¯æ£åŒå称ã§ã¯ãªãïŒãªãïŒãã®æ§è³ªã¯è§åºŠè¿œè·¡ã«ãã容æã«èšŒæãåºæ¥ãïŒ) \r\n\r\nãä»åã¯ïŒ$PE$ ãš $BF$ ã®äº€ç¹ãèããããšã§aminoã®è£é¡ã®æ§å³ãäœããããšã«çç®ãããïŒ \r\n\r\nã$PE$ ãš $BF$ ã®äº€ç¹ã $Q$ ãšããïŒ$\\angle{PQB}=\\angle{PED}=\\angle{PAB}$ ããïŒ$Q$ ã¯äžè§åœ¢ $ABC$ ã®å€æ¥åäžã«ããïŒ \r\n$\\angle{DEF}=\\angle{EFQ},\\angle{DFE}=\\angle{DAP}=\\angle{EQF}$ ããïŒ$\\triangle{DEF}$ ãš $\\triangle{EFQ}$ ã¯çžäŒŒïŒ \r\nãã£ãŠïŒ$AE=10x,EF=11x,FC=21-21x,DE=10y,BF=21y$ ãšãããšïŒ$10y:11x=11x:FQ$ ããïŒ$FQ=\\dfrac{121x^2}{10y}$ ãšãªãïŒ \r\næ¹ã¹ãã®å®çããïŒ$AF\\times FC=BF\\times FQ$ ããïŒ$21x(21-21x)=21y\\times\\dfrac{121x^2}{10y}$ ãªã®ã§ïŒ$x=\\dfrac{210}{331}$ ãšãªãïŒ$CF=\\dfrac{2541}{331}$ïŒ",
"text": "aminoã®è£é¡",
"url": "https://onlinemathcontest.com/contests/omc190/editorial/4054/362"
}
] | ã $AB=AC$ ãªãäžè§åœ¢ $ABC$ ããããŸãïŒèŸº $AB$ äžïŒç«¯ç¹ãé€ãïŒã«ç¹ $D$ ãïŒèŸº $AC$ äžïŒç«¯ç¹ãé€ãïŒã«ç¹ $E, F$ ãããïŒ
$$AD=10, \quad BD=11, \quad DE\parallel BF$$
ãã¿ãããŠããŸãïŒããŸïŒäžè§åœ¢ $ABC$ ã®å€æ¥åãšäžè§åœ¢ $ADE$ ã®å€æ¥åã $A$ ã§ãªãç¹ $P$ ã§äº€ãã£ãŠããïŒäžè§åœ¢ $ADF$ ã®å€æ¥åã¯çŽç· $AP$ ãšæ¥ããŠããŸããïŒãã®ãšãïŒç·å $CF$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC190 | https://onlinemathcontest.com/contests/omc190 | https://onlinemathcontest.com/contests/omc190/tasks/6631 | F | OMC190(F) | 500 | 53 | 120 | [
{
"content": "ã$\\varphi = \\dfrac{1 + \\sqrt5}{2}$ ãšãïŒ$a_n = \\lfloor\\varphi n\\rfloor + 1$ ã§ããããšã瀺ãïŒ\\\r\nã$n = 1$ ã®ãšãïŒæããã«æç«ããïŒãŸãïŒ$n = 1,2,\\ldots,k$ ã§æç«ããŠãããšãïŒ\r\n$$\\begin{aligned}\r\na_{k+1} &= k+2 + \\\\#\\big(\\\\{1,2,\\ldots,k+1\\\\}\\cap\\\\{a_1,a_2,\\ldots,a_k\\\\}\\big)\\\\\\\\\r\n&= k+2 + \\\\#\\big(\\\\{0,1,\\ldots,k\\\\}\\cap\\\\{\\lfloor\\varphi\\rfloor,\\lfloor2\\varphi\\rfloor,\\ldots,\\lfloor k\\varphi\\rfloor\\\\}\\big)\r\n\\end{aligned}$$\r\nã§ããïŒããã§ïŒ$\\\\#\\big(\\\\{0,1,\\ldots,k\\\\}\\cap\\\\{\\lfloor\\varphi\\rfloor,\\lfloor2\\varphi\\rfloor,\\ldots,\\lfloor k\\varphi\\rfloor\\\\}\\big)$ ã¯ïŒ$\\lfloor t\\varphi\\rfloor \\lt k+1$ ãªãæ£ã®æŽæ° $t$ ã®åæ°ã§ããã®ã§ïŒ$\\varphi$ ãç¡çæ°ã§ããããšãšäœµã㊠$\\bigg\\lfloor \\dfrac {k+1}\\varphi\\bigg\\rfloor$ ã§ããïŒåŸã£ãŠïŒ$\\varphi = 1 + \\dfrac 1\\varphi$ ããïŒ\r\n$$a_{k+1} = k+2 + \\bigg\\lfloor \\dfrac {k+1}\\varphi\\bigg\\rfloor = k+2 + \\lfloor (k+1)\\varphi - (k+1)\\rfloor = \\lfloor (k+1)\\varphi\\rfloor + 1$$\r\nã§ããïŒä»¥äžããïŒåž°çŽæ³ã«ãã£ãŠç€ºãããïŒ\\\r\nãç¹ã«ïŒæ±ããçãã¯ïŒ\r\n$$a_{10^{5}} = \\lfloor 10^{5}\\varphi\\rfloor + 1 = \\bf{161804}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc190/editorial/6631"
},
{
"content": "ãããã§ã¯ã©ããã $\\dfrac{1 + \\sqrt{5}}{2}$ ãã§ãŠããã(èªåã®å Žåã®è©±ã§ãã)æžããŠãããããšæããŸãïŒ\\\r\nãŸãïŒ$a_{n}$ ãå°ããªå€ããé ã«æ±ããŠãããšïŒFibonacciæ°å( $b_{n + 2} = b_{n + 1} + b_{n} , b_{1} = b_{2} = 1$ ) ã $a_{b_{n}} = b_{n + 1}$ ãŸã㯠$a_{b_{n}} = b_{n + 1} + 1$ ãšãã圢ã§åºãŠããŠããããšãããããŸã(å®éã«åž°çŽæ³ã§ç€ºãããšãã§ããŸã)ïŒããã§æãåºãã®ãæ°å ${b_{n}}$ ã®æ¯çã®è©±ã§\r\n\r\n$$\\lim_{n \\to \\infty} {\\dfrac{b_{n + 1}}{b_{n}}} = \\dfrac{1 + \\sqrt{5}}{2}$$\r\n\r\nã«ãªãããšãç¥ãããŠãŸãïŒãããã挞ååŒã®åœ¢ãèæ
®ãããšå
¬åŒè§£èª¬ã®ãããªäºæž¬ãç«ã¡ãŸãïŒ",
"text": "å
¬åŒè§£èª¬ã®ãããªäºæ³ãç«ãŠããŸã§",
"url": "https://onlinemathcontest.com/contests/omc190/editorial/6631/339"
},
{
"content": "ã$a_n=\\lfloor\\frac{1+\\sqrt{5}}{2}n\\rfloor+1$ ã®å¥èšŒã§ãïŒ \r\n \r\nãæããã« $a_{n+1}\\gt a_n\\geq n+1$ ãªã®ã§ïŒé¡æãã \r\n$$a_n=a_1+1Ã(n-1-\\\\#(k|a_k\\leq n))+2Ã\\\\#(k|a_k\\leq n)=n+1+\\\\#(k|a_k\\leq n)$$\r\nããããïŒ \r\nã以éïŒæ°åŠçåž°çŽæ³ã§ $a_n=\\lfloor\\frac{1+\\sqrt{5}}{2}n\\rfloor+1$ ã瀺ãïŒ \r\nã$n=1$ ã®ãšãã¯æããã«æãç«ã€ïŒ \r\nã$n\\leq m$ ã®ãšãæãç«ã€ãšããïŒãã®ãšãïŒ$m+1\\geq 2ïŒa_{n+1}-a_n\\leq 2$ ãã $a_l=m+1$ ãŸã㯠$a_l=m+2$ ãªãæŽæ° $l$ ããšããïŒ \r\nã$a_l=m+1$ ãªã $l$ ãååšãããšãïŒ\r\n$$a_{m+1}=a_{a_l}= a_l+1+\\\\#(k|a_k\\leq a_l)=l+m+2$$\r\nã§ããïŒ$\\frac{1+\\sqrt{5}}{2}l$ ãæŽæ°ãšãªãããšã¯æããã«ãªãã®ã§ïŒ$a_l=m+1$ ãã $$\\frac{1+\\sqrt{5}}{2}l-1\\lt m\\lt \\frac{1+\\sqrt{5}}{2}l$$\r\nã§ããããšãã\r\n$$\\frac{1+\\sqrt{5}}{2}(m+1)=\\frac{-1+\\sqrt{5}}{2}m+m+\\frac{1+\\sqrt{5}}{2}\\gt \\frac{-1+\\sqrt{5}}{2}(\\frac{1+\\sqrt{5}}{2}l-1)+m+\\frac{1+\\sqrt{5}}{2}=l+m+1$$\r\n$$\\frac{1+\\sqrt{5}}{2}(m+1)=\\frac{-1+\\sqrt{5}}{2}m+m+\\frac{1+\\sqrt{5}}{2}\\lt l+m+2$$\r\nãšãªããã\r\n$$\\lfloor \\frac{1+\\sqrt{5}}{2}(m+1)\\rfloor+1=l+m+2=a_{m+1}$$\r\nããããïŒ \r\nãããã§ãªããšãã¯ïŒ$a_l=m+2$ ãªã $l$ ãååšããã®ã§\r\n$$a_{m+1}=a_{a_l-1}= (a_l-1)+1+\\\\#(k|a_k\\leq a_l-1)=l+m+1$$\r\nã§ããïŒ$a_l=m+2$ ãã\r\n$$\\frac{1+\\sqrt{5}}{2}l-2\\lt m\\lt \\frac{1+\\sqrt{5}}{2}l-1$$\r\nãšãªãïŒå
çšãšåæ§ã®è°è«ãã\r\n$$l+m\\lt \\frac{1+\\sqrt{5}}{2}(m+1)\\lt l+m+1$$\r\nããããã®ã§\r\n$$\\lfloor \\frac{1+\\sqrt{5}}{2}(m+1)\\rfloor+1=l+m+1=a_{m+1}$$\r\nã§ããïŒ \r\nã以äžããïŒ$n=m+1$ ã®ãšããæç«ããããšã瀺ããïŒ \r\nããããã£ãŠïŒ$a_n=\\lfloor\\frac{1+\\sqrt{5}}{2}n\\rfloor+1$ ããããïŒ \r\n \r\nãäœè«ã§ããïŒ\r\n$$a_{a_n}=a_n+1+\\\\#(k|a_k\\leq a_n)=a_n+n+1$$\r\nããïŒ$b_1=nïŒb_{n+1}=a_{b_n}$ ãšãã㊠$b_n$ ã«ã€ããŠã®äžé
é挞ååŒã®ç¹æ§æ¹çšåŒã解ãããšã§ $\\frac{1+\\sqrt{5}}{2}$ ãšããå€ãäœãšã¯ç¡ãã«èŠãããããŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc190/editorial/6631/356"
}
] | ãæ°å $\\{a_n\\}\_{n=1,2,\ldots}$ ã以äžãæºãããšãïŒ$a_{10^{5}}$ ã®å€ãæ±ããŠãã ããïŒ
- $a_1 = 2.$
- ä»»æã® $2$ 以äžã®æŽæ° $n$ ã«ã€ããŠïŒ$n\in \\{a_1,a_2,\ldots,a_{n-1}\\}$ ãªãã° $a_n = a_{n-1} + 2$ ã§ããïŒããã§ãªããªãã° $a_n = a_{n-1} + 1$ ã§ããïŒ |
NFæ¯2023 | https://onlinemathcontest.com/contests/nfhai2023 | https://onlinemathcontest.com/contests/nfhai2023/tasks/9840 | A | NFæ¯2023(A) | 100 | 99 | 141 | [
{
"content": "$$D(0,1,0), \\quad E(1,0,0), \\quad F(1,0,1), \\quad G(1,1,0)$$\r\nãšãããšïŒåé¢äœ $OABC$ïŒ$OAFC$ïŒ$OEFC$ïŒ$OEGC$ïŒ$ODGC$ïŒ$ODBC$ ã¯å
šãŠååã§ïŒç«æ¹äœ $OABD-EFCG$ ãéè€ãªãåãå°œããïŒç¹ $O$ ã«ã¯ããã $6$ ã€ã®åé¢äœã®å¯Ÿå¿ããé ç¹ãéãŸã£ãŠããã®ã§ïŒ$O$ ãäžå¿ãšããååŸ $1$ ã®ç $O$ ãšã®å
±ééšåã®äœç©ã¯ã©ããçããïŒäžæ¹ïŒç $O$ ãšç«æ¹äœ $OABD-EFCG$ ã®å
±ééšåã®äœç©ã¯ïŒååŸ $1$ ã®ç $O$ ã®äœç©ã® $8$ åã® $1$ ãªã®ã§ïŒ$\\dfrac{1}{8}\\cdot\\dfrac{4}{3}\\pi=\\dfrac{1}{6}\\pi$ ã§ããïŒãã£ãŠïŒæ±ããäœç©ã¯ïŒãã®ããã« $6$ åã® $1$ ã ããïŒ$\\dfrac{1}{36}\\pi$ ã§ããïŒåŸã£ãŠïŒæ±ããå€ã¯ $1+36=\\mathbf{37}$ ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9840"
},
{
"content": "以äžã®éç©åãæ±ããã°ãã.\r\n\r\n$$V=\\iiint_D dxdydz$$\r\nãã ãé å$D$ã®å®çŸ©ã¯ä»¥äžã®éãã§ãã.\r\n$$D=\\lbrace (x,y,z)\\in\\mathbb{R}^3;x^2+y^2+z^2\\leq 1,0\\leq x\\leq y\\leq z\\leq 1\\rbrace$$\r\n\r\n以äžã®å€æ°å€æããã.\r\n\r\n$$x=r\\sin{\\theta}\\cos{\\phi},y=r\\sin{\\theta}\\sin{\\phi},z=r\\cos{\\theta}$$\r\n\r\nãã®ãšã,ã€ã³ãã¢ã³ã¯$r^2\\sin{\\theta}$ã§ããã®ã§,\r\n\r\n$$dxdydz=r^2\\sin{\\theta} dr d\\theta d\\phi $$\r\n\r\nã§ãã.\r\n\r\nããã§,å€æ°å€æåŸã®ãã©ã¡ãŒã¿ã®åãããå€ã®ç¯å²ãèšç®ãã.\r\n\r\n$\\theta,\\phi$ã®å€ã«ããããã$0\\leq r\\leq 1$ã§ãã.\r\n\r\nããã«,$\\pi\\/4 \\leq \\phi\\leq \\pi\\/2$ãæãç«ã€.\r\n\r\nãã®ãšãã®$\\theta$ã®åãããå€ã®ç¯å²ã¯$0\\leq \\tan{\\theta}\\leq 1\\/\\sin{\\phi}$\r\n\r\nãã,$0\\leq \\theta \\leq \\tan^{-1} (1\\/\\sin{\\phi})$\r\n\r\nãã£ãŠ,\r\n\r\n$$V=\\int_{0}^{1} \\int_{\\pi\\/4 }^{\\pi\\/2} \\int_{0}^{\\tan^{-1} (1\\/\\sin{\\phi})}r^2 \\sin{\\theta} d\\theta d\\phi dr$$\r\n\r\n$$V=\\int_{0}^{1}r^2 dr\\cdot \\int_{\\pi\\/4 }^{\\pi\\/2} \\int_{0}^{\\tan^{-1} (1\\/\\sin{\\phi})} \\sin{\\theta} d\\theta d\\phi$$\r\n\r\n$$V=\\dfrac{1}{3} \\cdot \\int_{\\pi\\/4}^{\\pi\\/2} \\left[-\\cos{\\theta}\\right]_{\\theta=0}^{\\theta=\\tan^{-1} (1\\/\\sin{\\phi})} d\\phi$$\r\n\r\n$$V=\\dfrac{1}{3} \\cdot \\int_{\\pi\\/4}^{\\pi\\/2} 1-\\cos (\\tan^{-1} (1\\/\\sin{\\phi})) d\\phi$$\r\n\r\nããã§,å®æ°$t$ã«ã€ããŠ$\\cos(\\tan^{-1}(t))=\\dfrac{1}{\\sqrt{t^2+1}}$ãæãç«ã€ãã,\r\n\r\n$$V=\\dfrac{1}{3} \\cdot \\int_{\\pi\\/4}^{\\pi\\/2} 1-\\dfrac{1}{\\sqrt{1+(1\\/\\sin{\\phi})^2}} d\\phi$$\r\n\r\n$$V=\\dfrac{1}{3} \\cdot \\int_{\\pi\\/4}^{\\pi\\/2} 1-\\dfrac{\\sin{\\phi}}{\\sqrt{1+\\sin^2{\\phi}}} d\\phi$$\r\n\r\n$$V=\\dfrac{1}{3} \\cdot \\dfrac{\\pi}{4}-\\dfrac{1}{3} \\int_{\\pi\\/4}^{\\pi\\/2} \\dfrac{\\sin{\\phi}}{\\sqrt{2-\\cos^2{\\phi}}} d\\phi$$\r\n\r\n$$V=\\dfrac{\\pi}{12}-\\dfrac{1}{3} \\int_{0}^{1\\/\\sqrt{2}} \\dfrac{1}{\\sqrt{2-u^2}} du$$\r\n\r\n(ãã ã$\\cos{\\phi}=u$ãšçœ®æ)\r\n\r\n$$V=\\dfrac{\\pi}{12}-\\dfrac{1}{3} \\int_{0}^{1\\/2} \\dfrac{\\sqrt{2}}{\\sqrt{2-2v^2}} dv$$\r\n\r\n(ãã ã$u=\\sqrt{2}v$ãšçœ®æ)\r\n\r\n$$V=\\dfrac{\\pi}{12}-\\dfrac{1}{3} \\int_{0}^{1\\/2} \\dfrac{1}{\\sqrt{1-v^2}} dv$$\r\n\r\n$$V=\\dfrac{\\pi}{12}-\\dfrac{1}{3} \\left[\\sin^{-1}(v)\\right]_{0}^{1\\/2}$$\r\n\r\n$$V=\\dfrac{\\pi}{12}-\\dfrac{1}{3} (\\sin^{-1}(1\\/2)-\\sin^{-1}(0))$$\r\n\r\n$$V=\\dfrac{\\pi}{12}-\\dfrac{1}{3} \\cdot \\dfrac{\\pi}{6}$$\r\n\r\n$$V=\\dfrac{\\pi}{12}-\\dfrac{\\pi}{18}=\\dfrac{\\pi}{36}$$\r\n\r\nãã£ãŠäœç©ã¯$\\dfrac{1}{36}\\pi$ãšæžããã®ã§ã解çããã¹ãå€ã¯$1+36=37$ã§ãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9840/342"
},
{
"content": "ã$xyz$ 空éå
ã«ãããŠïŒ $x^2+y^2+z^2\\leq1,x\\geq0,y\\geq0,z\\geq0$ ã§è¡šãããç«äœã $D$ ãšãïŒ$D$ ã®ãã¡ $x\\leq y\\leq z$ ãæºããéšåã®ç«äœã $E$ ãšããïŒ \r\n$D,E$ ã®äœç©ããããã $V,W$ ãšãããšïŒ$V=\\dfrac{4}{3}\\pi\\cdot\\dfrac{1}{8}=\\dfrac{\\pi}{6}$ ã§ããïŒ \r\nãŸãïŒ$\\dfrac{W}{V}$ ã¯é å $D$ å
ããç¡äœçºã«ãšã£ãç¹ $(x,y,z)$ ã $x\\leq y\\leq z$ ãæºãã確çãªã®ã§ïŒãã㯠$\\dfrac{1}{3!}=\\dfrac{1}{6}$ ã«çããïŒ \r\n以äžããïŒæ±ããäœç©ã¯ $W=\\dfrac{V}{6}=\\dfrac{\\pi}{36}$ïŒ",
"text": "確çã§æ±ããäœç©",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9840/358"
}
] | ã座æšç©ºéäžã® $4$ ç¹ $O(0,0,0), ~ A(0,0,1), ~ B(0,1,1), ~ C(1,1,1)$ ãé ç¹ãšããåé¢äœãšïŒ$O$ ãäžå¿ãšããååŸ $1$ ã®çã®å
±ééšåã®äœç©ãæ±ããŠãã ããïŒãã ãïŒçãã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}\pi$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
NFæ¯2023 | https://onlinemathcontest.com/contests/nfhai2023 | https://onlinemathcontest.com/contests/nfhai2023/tasks/9838 | B | NFæ¯2023(B) | 100 | 128 | 173 | [
{
"content": "ã$x$ ã«ã€ããŠã®å€é
åŒ $(x+1)^{2024}$ ã $x^2+1$ ã§å²ã£ãäœã㯠$2^{1012}$ ã§ããïŒãã㯠$x$ ã«èæ°åäœ $i$ ã代å
¥ããã°åããïŒãã£ãŠ $2^{130}+1$ ãæ³ãšã㊠$(2^{65}+1)^{2024}\\equiv 2^{1012}$ ãæãç«ã€ïŒ\r\n$1012=130\\times 7+102$ ãªã®ã§ $2^{1012}\\equiv -2^{102}$ãšãªãïŒ$n$ ãšããŠæ¡ä»¶ãæºããæå°ã®ãã®ã¯ $ \\mathbf{102}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9838"
},
{
"content": "以é,åååŒã®modã¯å
·äœçãªèšåããªãéã$M=2^{130}+1$ãšãã.\r\n\r\n$$(2^{65}+1)^{2024}=(2^{130}+2^{66}+1)^{1012}\\equiv 2^{66\\times 1012}$$\r\n\r\nããã§,\r\n\r\n$$2^{66\\times 1012}+2^n\\equiv 0$$\r\n\r\nã€ãŸã,\r\n\r\n$$2^{66\\times 1012}\\equiv -2^n$$\r\n\r\nã§ããããã«ã¯,2ãš$M$ã¯äºãã«çŽ ãªã®ã§,\r\n\r\n$$2^{66\\times 1012-n}\\equiv -1$$\r\n\r\nã§ããããšãå¿
èŠååã§ãã.\r\n\r\nããã§,$\\mod{M}$ã«ããã$2$ã®äœæ°ã¯260ã§ãããã,\r\n\r\n$$66\\times 1012-n\\equiv 130\\pmod{260}$$\r\n\r\nã§ããããšãåã®å¿
èŠååæ¡ä»¶ã§ãã.\r\n\r\nãã£ãŠ,\r\n\r\n$$n\\equiv 66\\times 1012-130\\equiv 102\\pmod{260}$$\r\n\r\nã§ãã.\r\n\r\nã€ãŸã,æ¡ä»¶ãæºãã$n$ã®æå°å€ã¯102ã§ãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9838/351"
}
] | ã$(2^{65}+1)^{2024}+2^n$ ã $2^{130}+1$ ã®åæ°ãšãªãæå°ã®æ£æŽæ° $n$ ãæ±ããŠãã ãã. |
NFæ¯2023 | https://onlinemathcontest.com/contests/nfhai2023 | https://onlinemathcontest.com/contests/nfhai2023/tasks/9843 | C | NFæ¯2023(C) | 100 | 156 | 182 | [
{
"content": "ã$g(x)$ ãïŒæ¡ä»¶ $\\rm(i),\\rm(ii)$ ãæºãã $11$ 次以äžã®å€é
åŒãšããïŒå æ°å®çãã $\\rm(ii)$ 㯠$g(-1)=0$ ãšåå€ã§ããïŒ\r\n\r\n$$g(x)=a_0+a_1x+a_2x^2+\\cdots+a_{11}x^{11}$$\r\n\r\nãšããïŒ$a_0,a_1,\\cdots,a_{11}$ 㯠$0$ ãŸã㯠$1$)ïŒ\r\n\r\n$$g(-1)=(a_0+a_2+\\cdots+a_{10})-(a_1+a_3+\\cdots+a_{11})$$\r\n\r\nã§ããã®ã§ïŒ$a_i=0,1~(i=1,2,\\cdots,11)$ ã〠$g(-1)=0$ ãšãªãããã«ã¯ïŒ$i=0,2,4,6,8,10$ ã®ãã¡ $a_i=1$ ãšãªããã®ã®åæ°ãšïŒ$i=1,3,5,7,9,11$ ã®ãã¡ $a_i=1$ ãšãªããã®ã®åæ°ãçãããã°ããïŒäž¡è
ã®åæ°ã $k$ å ($1\\leq k\\leq 6$) ã«ãªããã㪠$a_i ~ (i=0,1,2,\\ldots,11)$ ã®éžã³æ¹ã¯ ${}\\_6\\mathrm{C}\\_k\\cdot {}\\_6\\mathrm{C}\\_k=({}\\_6\\mathrm{C}\\_k)^2$ éãããã®ã§ïŒ$g(x)$ ã®åæ°ã¯ïŒ\r\n\r\n$$\\sum_{k=0}^6({}\\_6\\mathrm{C}\\_k)^2={}\\_{12}\\mathrm{C}\\_6=924.$$\r\n\r\nãŸãïŒ$h(x)=1+x+x^2+\\cdots+x^{11}$ ãšãããšïŒä»»æã® $g(x)$ã«å¯ŸãïŒ$h(x)-g(x)$ ã $\\rm(i)$ïŒ$\\rm(ii)$ãæºãã$11$次以äžã®å€é
åŒã«ãªãïŒ$g(x)$ ãš $h(x)-g(x)$ ã®ãã¡ã¡ããã©äžæ¹ã $11$ 次åŒã§ããïŒãã£ãŠïŒæ±ããã¹ã $f(x)$ ã®åæ°ã¯ïŒ$g(x)$ ã®ãã¡ $11$ 次ã§ãããã®ã®åæ°ã§ããã®ã§ïŒ\r\n$$\\frac{924}{2}=\\mathbf{462}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9843"
},
{
"content": "$a_i(i=0,\\ldots,10)$ã$0$ãŸãã¯$1$ã®å€ããšã,ãã€$a_{11}=1$ã§ãããšã,\r\n\r\n$$g(x)=a\\_0+a\\_1x+a\\_2x^2+\\cdots +a\\_{10}x^{10}+a\\_{11}x^{11}$$\r\n\r\nã«ã€ããŠ\r\n\r\n$$(a\\_0+a\\_2+\\cdots + a\\_{10})-(a\\_1+a\\_3+\\cdots + a\\_{9}+1)=0$$\r\n\r\n$$(a\\_0+a\\_2+\\cdots + a\\_{10})-(a\\_1+a\\_3+\\cdots + a\\_{9})=1$$\r\n\r\n\r\n\r\nãšãªããããªå Žåã®æ°ãæ±ãã.ããã¯FPS(圢åŒçã¹ãçŽæ°)ã§èšç®ããããšãã§ãã.\r\n\r\nã€ãŸã,\r\n\r\n$$\\left[x^{1}\\right]\\sum\\_{a\\_0\\in\\lbrace 0,1\\rbrace}\\sum\\_{a\\_1\\in\\lbrace 0,1\\rbrace}\\cdots \\sum\\_{a\\_{10}\\in\\lbrace 0,1\\rbrace} x^{(a\\_0+a\\_2+\\cdots + a\\_{10})-(a\\_1+a\\_3+\\cdots + a\\_{9})}$$\r\n\r\nãæ±ããã°ããã,ããã¯å æ°å解ããããšãã§ãã.\r\n\r\nã€ãŸã,\r\n\r\n$$\\left[x^{1}\\right] (1+x)\\cdot (1+x^{-1})\\cdot (1+x)\\cdot (1+x^{-1})\\cdot \\cdots \\cdot (1+x)$$\r\n\r\nã§ãã,ããã¯\r\n\r\n$$\\left[x^{1}\\right] (1+x)^6(1+x^{-1})^5$$\r\n\r\nå
šäœã$x^5$ã§æãããš\r\n\r\n$$\\left[x^{6}\\right] (1+x)^6(1+x)^5$$\r\n\r\nã€ãŸã,\r\n\r\n$$\\left[x^{6}\\right] (1+x)^{11}$$\r\n\r\nãšãªããã,çãã¯${}\\_{11}\\mathrm{C}\\_{6}=462$ã§ãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9843/348"
}
] | ã次ã®æ¡ä»¶ããšãã«ã¿ããå®æ°ä¿æ° $11$ 次å€é
åŒ $f(x)$ ã®åæ°ãæ±ããŠãã ããïŒ
- $f(x)$ ã®ä¿æ°ã¯ãããã $0$ ãŸã㯠$1$ïŒ
- $ f(x)$ 㯠$x+1$ ã§å²ãåããïŒ |
NFæ¯2023 | https://onlinemathcontest.com/contests/nfhai2023 | https://onlinemathcontest.com/contests/nfhai2023/tasks/9837 | D | NFæ¯2023(D) | 100 | 45 | 52 | [
{
"content": "ããã§ãã®å®çïŒããã³çžå ã»çžä¹å¹³åã®äžçåŒãã\r\n$$\r\n\\dfrac{AR}{RB} + 2d\\cdot \\dfrac{BP}{PC} + 4d^2\\cdot \\dfrac{CQ}{QA} \\geq 6d\r\n$$\r\nã§ããïŒçå·ãæç«ããã®ã¯ããæ£ã®æ° $k$ ã«ãã£ãŠ\r\n$$\r\n\\dfrac{AR}{RB} = 4d^2k,\\quad \\dfrac{BP}{PC} = 2dk ,\\quad \\dfrac{CQ}{QA} = k \r\n$$\r\nãšè¡šãããšãã§ããïŒãã®ãšãïŒåã³ãã§ãã®å®çãã $4d^2k \\cdot 2dk \\cdot k = 1$ ãªã®ã§ $k = 1\\/2d$ïŒ ãã®ãšã $X$ ã¯å
å¿ãªã®ã§ãã£ãããïŒ$X$ ãšåé ç¹ãçµãã $3$ çŽç·ã¯ããããè§ã® $2$ çåç·ã§ããïŒèŸºã®æ¯ãèããããšã§\r\n$$\r\n4d^2k = 2d = \\dfrac{b}{a}, \\quad 2dk = 1 = \\dfrac{c}{b}, \\quad k = \\dfrac{1}{2d} = \\dfrac{a}{c}\r\n$$\r\nãšãªãïŒãã£ãŠ $(a,b,c,d) = (a,2da,2da,d)$ ãšãªãïŒéã«ãã®ããã«äžãããã $a,b,c$ ã¯äžè§äžçåŒãæºãããŠããïŒ \\\r\nãæ¡ä»¶ãã $a+b+c = a(1+4d) = 30!$ ã§ããïŒãã£ãŠ $1+4d$ ã¯ïŒ$30!$ ã®æ£ã®çŽæ°ã§ãã£ãŠïŒ$1$ ãã倧ãã $4$ ã§å²ã£ãŠ $1$ äœããã®ã«å¯Ÿå¿ããã®ã§ïŒãã®ãããªãã®ã®åæ°ã $K$ ãšããïŒæ±ããçµã®åæ°ã¯ $K$ ã§ããïŒ \\\r\nãã«ãžã£ã³ãã«ã®å
¬åŒããïŒ$30!$ ã®çŽ å æ°å解ã¯\r\n$$30! = 2^{26}\\cdot 3^{14}\\cdot5^{7}\\cdot7^{4}\\cdot11^{2}\\cdot13^{2}\\cdot17\\cdot 19\\cdot 23\\cdot 29$$ \r\nãšãªãïŒ$N = \\dfrac{30!}{2^{26}}$ ãšããïŒ$N$ ã® $4$ ã§å²ã£ãŠ $1$ äœã $1$ ãã倧ããçŽæ°ã®åæ°ãæ±ããã°ããïŒ\\\r\nã$N$ ã®ä»»æã® $4$ ã§å²ã£ãŠ $1$ äœãæ£ã®çŽæ° $d$ ã«å¯ŸãïŒ$d$ ã $23$ ã§å²ãããšã㯠$\\dfrac{d}{23}$ ã $\\dfrac{N}{23}$ ã® $4$ ã§å²ã£ãŠ $3$ äœãæ£ã®çŽæ°ã§ããïŒ$d$ ã $23$ ã§å²ããªããšã $d$ 㯠$\\dfrac{N}{23}$ ã® $4$ ã§å²ã£ãŠ $1$ äœãæ£ã®çŽæ°ã§ããïŒãã®å¯Ÿå¿ã§ïŒ$30!$ ã®ä»»æã® $4$ ã§å²ã£ãŠ $1$ äœãæ£ã®çŽæ°ã¯ïŒ$\\dfrac{N}{23}$ ã®æ£ã®çŽæ°ãš $1:1$ ã«å¯Ÿå¿ããïŒä»¥äžãã \r\n$$\r\nK = (14 + 1)(7 + 1)(4+1)(2+1)^2(1+1)^3 - 1= \\mathbf{43199}.\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9837"
},
{
"content": "è¡éãåãã\r\n\r\nå1.\r\n\r\n$$(\\dfrac{AR}{RB},\\dfrac{BP}{PC},\\dfrac{CQ}{QA})$$\r\n\r\nã¯,ç¹$X$ãåããããšãã«,ä»»æã®$\\lbrace (x,y,z)\\in \\mathbb{R}^3\\_{\\gt 0};xyz=1\\rbrace$äžã®ç¹ãåããããïŒ\r\n\r\nç1.\r\n\r\nçµè«ããèšããšåããã.\r\n\r\n$\\dfrac{AR}{RB}=s,\\dfrac{CQ}{QA}=t$ãšãªãããã«èŸº$AB,AC$ãå
åããããã«ç¹$R,Q$ãåã.\r\n\r\nãã®ãšã,\r\n\r\n$$\\overrightarrow{AR}=\\dfrac{s}{1+s}\\overrightarrow {AB},\\overrightarrow{AQ}=\\dfrac{1}{1+t}\\overrightarrow{AC}$$\r\n\r\nã§ãã.ä»»æã®$s,t\\in (0,\\infty)$ã«å¯ŸããŠ,ããŸãç¹$R,Q$ãããããç·å$AB,AC$ããåã£ãŠããã°æ¡ä»¶ãæºãããã.ããã«,ç¹ã®åãæ¹ã¯äžæã§ãã.\r\n\r\nãã®ãšã,$X$ã®äœçœ®ã¯$RC$ãš$BQ$ã®äº€ç¹ã§ãããšå®ãã.\r\n\r\nããã«,\r\n\r\n$\\dfrac{AR}{RB}=s,\\dfrac{CQ}{QA}=t$ãšãªããããª$X$ã®åãæ¹ã¯ãã®å Žåããç¡ãã®ã§ãã.\r\n\r\nå2. \r\n\r\nãã®ãããª$X$ã®åãæ¹ã«ãããŠ,$X$ã¯å¿
ãäžè§åœ¢ã®å
éš(åšäžãé€ã)é åã«ååšããŠããã?\r\n\r\nç2.\r\n\r\nçµè«ããèšããšåžžã«äžè§åœ¢ã®å
éšã«ããããšãä¿èšŒããã.\r\n\r\nãã§ãã®å®çã«ãã,$\\dfrac{BP}{PC}=\\dfrac{1}{st}$ã§ãã.\r\n\r\nãã£ãŠ,\r\n\r\n$$\\overrightarrow{AP}=\\dfrac{st}{1+st}\\overrightarrow{AB}+\\dfrac{1}{1+st}\\overrightarrow{AC}$$\r\n\r\nãšãªã.\r\n\r\nããã«,ã¡ãã©ãŠã¹ã®å®çãã,\r\n\r\n$$\\dfrac{AX}{XP}\\cdot \\dfrac{PC}{CB}\\cdot \\dfrac{BR}{RA}=1$$\r\n\r\nã§ãããã,\r\n\r\n$$\\dfrac{AX}{XP}\\cdot \\dfrac{st}{1+st}\\cdot \\dfrac{1}{s}=1$$\r\n\r\nãã,\r\n\r\n$$\\dfrac{AX}{XP} =s\\cdot \\dfrac{1+st}{st}$$\r\n\r\nã§ãã.ãã£ãŠ,\r\n\r\n$$\\overrightarrow{AX}=\\dfrac{1+st}{1+t+st}\\overrightarrow{AP}$$\r\n\r\nãã,\r\n\r\n$$\\overrightarrow{AX}=\\dfrac{st}{1+t+st}\\overrightarrow{AB}+\\dfrac{1}{1+t+st}\\overrightarrow{AC}$$\r\n\r\nã§ãã.\r\n\r\nããã§,$s,t\\in (0,\\infty)$ãªãã°,\r\n\r\n$$0\\lt \\dfrac{st}{1+t+st}\\land 0\\lt \\dfrac{1}{1+t+st} \\land \\dfrac{st}{1+t+st}+\\dfrac{1}{1+t+st}=\\dfrac{1+st}{1+t+st}\\lt 1$$\r\n\r\nã§ãããã,ç¹$X$ã¯äžè§åœ¢å
éšã«ååšããããšãä¿èšŒããã.\r\n\r\n泚:ç¹$X;\\overrightarrow{AX}=x\\overrightarrow{AB}+y\\overrightarrow{AC}$ãäžè§åœ¢$ABC$ã®åšäžãé€ãå
éšã«ååšããããšã®å¿
èŠååæ¡ä»¶ã¯\r\n\r\n$$0\\lt x\\land 0\\lt y\\land x+y\\lt 1$$\r\n\r\nã§ãã.ããã«,äžè§åœ¢å
éšã®ç¹$X;\\overrightarrow{AX}=x\\overrightarrow{AB}+y\\overrightarrow{AC}$ã«å¯ŸããŠ,\r\n\r\n$$s=\\dfrac{x}{1-x-y},t=\\dfrac{1-x-y}{y}$$\r\n\r\nãšãªããããª$(s,t)$ã察å¿ãã.\r\n\r\nçµå±,\r\n\r\n$\\lbrace (x,y,z)\\in \\mathbb{R}^3\\_{\\gt 0};xyz=1\\rbrace$äžã®ç¹ãšäžè§åœ¢ABCã®(åšäžãé€ã)å
éšã®ç¹ãäžå¯Ÿäžå¯Ÿå¿ããŠãããã,以éã®å
¬åŒè§£èª¬ã«ãããè°è«ãæç«ããããšãä¿èšŒããã.",
"text": "è£è¶³",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9837/354"
},
{
"content": "æ¬è§£æ³ã¯, å
¬åŒè§£èª¬ãšæ¬è³ªçã«ã¯åãã§ãã.\r\n\r\n\r\nç¹ $X$ ã¯äžè§åœ¢ $ABC$ ã®å
éšã«ããã®ã§, $x, y, z \\in \\mathbb{R}_{\\gt 0} \\, (x+y+z=1)$ ãçšããŠ\r\n$$\r\n\\overrightarrow{OX}=x\\overrightarrow{OA}+y\\overrightarrow{OB}+z\\overrightarrow{OC}\r\n$$\r\nãšäžæã«è¡šãã.\r\n$$\r\n\\frac{AR}{RB}=\\frac{y}{x}, \\quad \\frac{BP}{PC}=\\frac{z}{y}, \\quad \\frac{CQ}{QA}=\\frac{x}{z} \\quad (\\ast)\r\n$$\r\nã§ãããã,\r\n$$\r\nf(x,y,z)=\\frac{A R}{R B}+2 d \\cdot \\frac{B P}{P C}+4 d^2 \\cdot \\frac{C Q}{Q A}=2d\\left(\\frac{y}{2dx}+\\frac{z}{y}+\\frac{2dx}{y}\\right)\r\n$$\r\nãšãããš, ãããæå°ã«ãªãããã®å¿
èŠæ¡ä»¶ã¯, \r\n$$\\frac{\\partial f}{\\partial x}=\\frac{\\partial f}{\\partial y}=\\frac{\\partial f}{\\partial z}=0 \\quad (\\ast\\ast)\r\n$$\r\nããªãã¡ $2dx=y=z$ ã§ãã, ãã®ãšãç¹ $X$ ã¯äžè§åœ¢ $ABC$ ã®å
å¿ $I$ ãšäžèŽããã®ã§, $2da=b=c \\ (\\ast\\ast\\ast)$ ãåŸã.\r\n\r\n以éã¯[å
¬åŒè§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/nfhai2023\\/editorial\\/9837)ãåç
§ã®ããš.\r\n\r\n\r\n<details><summary>$(\\ast)$ <\\/summary>\r\nç¹$P$ 㯠$AX$ äžã«ããã®ã§, $k \\in \\mathbb{R}$ ãçšããŠ\r\n$$\r\n\\overrightarrow{OP}=\\overrightarrow{OA}+\\overrightarrow{AP}=\\overrightarrow{OA}+k\\overrightarrow{AX}=\\overrightarrow{OA}+k\\left(\\overrightarrow{OX}-\\overrightarrow{OA}\\right)=(kx-k+1)\\overrightarrow{OA}+ky\\overrightarrow{OB}+kz\\overrightarrow{OC}\r\n$$\r\nãšè¡šãã. ãŸã, ç¹$P$ 㯠ç·å $BC$ äžã«ããã®ã§, $\\frac{BP}{PC}=l \\in \\mathbb{R}_{\\gt 0}$ ãçšããŠ\r\n$$\r\n\\overrightarrow{OP}=\\frac{1}{1+l}\\overrightarrow{OB}+\\frac{l}{1+l}\\overrightarrow{OC}\r\n$$\r\nãšè¡šãã. 以äžãã, $\\frac{BP}{PC}=\\frac{z}{y}$ ãåŸã. $\\frac{CQ}{QA}$ãš $\\frac{AR}{RB}$ ãåæ§ã§ãã.\r\n<\\/details>\r\n\r\n<details><summary>$(\\ast\\ast)$<\\/summary>\r\n$x+y+z=1$ ãã $x, y, z$ 㯠å
2 ã€ãå®ãŸããšæ®ã 1 ã€ãå®ãŸãã®ã§, å®éã«ã¯çå·ã¯ 2 ã€ã§ååã§ãã.\r\n<\\/details>\r\n\r\n<details><summary>$(\\ast\\ast\\ast)$<\\/summary>\r\näžè¬ã«\r\n$$\r\n\\overrightarrow{OI}=\\frac{a}{a+b+c}\\overrightarrow{OA}+\\frac{b}{a+b+c}\\overrightarrow{OB}+\\frac{c}{a+b+c}\\overrightarrow{OC}\r\n$$\r\nãæãç«ã€.\r\n<\\/details>",
"text": "ç¹Xãæ瀺çã«å€æ°èšå®ãã",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9837/361"
}
] | ãæ£ã®æŽæ°ã®çµ $(a,b,c,d)$ ã§ãã£ãŠïŒæ¬¡ã® $2$ ã€ã®æ¡ä»¶ããšãã«ã¿ãããã®ã®åæ°ãæ±ããŠãã ããïŒ
- $a+b+c= 30!$ ã§ããïŒ
- $AB=c, ~ BC=a, ~ CA = b$ ãªãïŒééåãªïŒäžè§åœ¢ $ABC$ ãååšãïŒãã€ãã®äžè§åœ¢ã®å
éšïŒåšäžãé€ãïŒãä»»æã«åãç¹ $X$ ã«å¯ŸãïŒ$A, B, C$ ã®ãããããš $X$ ãšãçµãã çŽç·ãšå察蟺ãšã®äº€ç¹ããããã $P, Q, R$ ãšãããšãïŒæ¬¡ã®å®æ°ã¯ $X$ ãäžè§åœ¢ $ABC$ ã®å
å¿ã§ãããšãïŒãŸããã®ãšãã«éãæå°å€ããšãïŒ
$$ \dfrac{AR}{RB} + 2d\cdot \dfrac{BP}{PC} + 4d^2\cdot \dfrac{CQ}{QA} $$ |
NFæ¯2023 | https://onlinemathcontest.com/contests/nfhai2023 | https://onlinemathcontest.com/contests/nfhai2023/tasks/10083 | E | NFæ¯2023(E) | 100 | 76 | 92 | [
{
"content": "ããŸãäžè¬ã® $n$ ã«å¯ŸãïŒé»ãåããç³ã $1$ ã€ããïŒãã®å³åŽã«çœãåããç³ã $n$ åããå Žåã®æ¹æ³ã®æ° $a_n$ ã«ã€ããŠèããïŒ$a_1=1, ~ a_2=2$ ã§ããïŒ\\\r\nã$n\\geq3$ ã®å Žåã«ã€ããŠïŒæ¬¡ã®ããã«å ŽååãããŠèããïŒ\r\n\r\n(i)ãæåã«å·Šãã2çªç®ã«ããç³ãè£è¿ãå ŽåïŒ\\\r\nãæ®ãã®ç³ã®ç¶æ
㯠$n-1$ ã§ã®åæç¶æ
ãšåããšã¿ãªããã®ã§ïŒãã®å Žå㯠$a_{n-1}$ éã.\r\n\r\n(ii)æåã«å·Šãã3çªç®ã«ããç³ãè£è¿ãå ŽåïŒ\\\r\nãå·Šãã3çªç®ä»¥éã«ããç³ã®ç¶æ
㯠$n-2$ ã§ã®åæç¶æ
ãšåããšã¿ãªããã®ã§ïŒå·Šãã4çªç®ä»¥éã®ãªã»ããè£è¿ãé çªã¯ $a_{n-2}$ éãããïŒãã®ãã¡äžã€ãéžãã ããšïŒå·Šãã2çªç®ã«ããç³ãä»»æã®ã¿ã€ãã³ã°ã§è£è¿ãããšãã§ããããïŒãŸãšãããšãã®å Žå㯠$(n-1)a_{n-2}$ éãã§ããïŒ\r\n\r\nãã£ãŠïŒ$n\\geq3$ ã®ãšã $a_n=a_{n-1}+(n-1)a_{n-2}$ ãæãç«ã€ïŒé 次èšç®ããããšã§ïŒ$a_{10}=\\mathbf{9496}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/10083"
},
{
"content": "é»ç³ã$x$åãã£ãŠ,ãã€äžçªå·Šã®é»ç³ããäžçªå³ãŸã§ã®é»ç³ãŸã§ã®éã«çœç³ã$y$åããç¶æ
ã«ããããã®æäœåã®å Žåã®æ°ã$dp(x,y)$ãšãããš,\r\n\r\n$$dp(1,0)=1$$\r\n\r\n$$dp(1,y)=0;(y\\neq 0)$$\r\n\r\n$$dp(x,y)=dp(x-1,y-1)+dp(x-1,y)+dp(x-1,y+1)(y+1);(x\\gt 1,y\\gt 0)$$\r\n\r\n$$dp(x,y)=dp(x-1,y)+dp(x-1,y+1)(y+1);(x\\gt 1,y= 0)$$\r\n\r\n\r\nãšãã挞ååŒãæç«ãã.ãããããšã«ããŠè¡šãæžããš\r\n\r\n$$\r\n\\begin{array}{r | r r r r r r r r r r r r }\r\ndp(x,y) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\\\\\\\\r\n\\hline\r\n1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\\\\\r\n2 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\\\\\r\n3 & 2 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\\\\\r\n4 & 4 & 6 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\\\\\r\n5 & 10 & 16 & 12 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\\\\\r\n6 & 26 & 50 & 40 & 20 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\\\\\r\n7 & 76 & 156 & 150 & 80 & 30 & \\color{blue} 6 & \\color{blue} 1 & 0 & 0 & 0 & 0 & 0 \\\\\\\\\r\n8 & 232 & 532 & 546 & 350 & \\color{blue} 140 & \\color{blue} 42 & \\color{blue} 7 & \\color{blue} 1 & 0 & 0 & 0 & 0 \\\\\\\\\r\n9 & 764 & 1856 & 2128 & \\color{blue} 1456 & \\color{blue} 700 & \\color{blue} 224 & \\color{blue} 56 & \\color{blue} 8 & \\color{blue} 1 & 0 & 0 & 0 \\\\\\\\\r\n10 & 2620 & 6876 & \\color{blue} 8352 & \\color{blue} 6384 & \\color{blue} 3276 & \\color{blue} 1260 & \\color{blue} 336 & \\color{blue} 72 & \\color{blue} 9 & \\color{blue} 1 & 0 & 0 \\\\\\\\\r\n11 & \\color{red} 9496 & \\color{blue} 26200 & \\color{blue} 34380 & \\color{blue} 27840 & \\color{blue} 15960 & \\color{blue} 6552 & \\color{blue} 2100 & \\color{blue} 480 & \\color{blue} 90 & \\color{blue} 10 & \\color{blue} 1 & 0 \\\\\\\\\r\n\\end{array}\r\n$$\r\n\r\nãã,çãã¯$dp(11,0)=9496$ã§ãã.ãªã,ãã®åé¡ã解çããã«ããã£ãŠã¯,äžèšã®è¡šã«ãããéæåã®éšåã¯èšç®ããå¿
èŠã¯ç¡ãããšã«æ³šæ.\r\n\r\n----\r\n\r\näœè«ã ã,\r\n\r\n$$a_N=dp(N+1,0)=\\sum_{n=0}^{\\lfloor N\\/2\\rfloor }{}\\_{N}\\mathrm{C}_{2n}\\cdot (2n-1)!!$$\r\n\r\nãæç«ãã.\r\n\r\nããã§,ã·ã°ãã®åé
ã¯ãé»ãåããç³ã®2ã€é£ã«ããçœç³ãã²ã£ããè¿ããæäœãã¡ããã©$n$åè¡ããšãã®æäœåã®å Žåã®æ°ãšãªã£ãŠãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/10083/349"
}
] | ããªã»ãã®ç³ãå·Šå³äžåã« $11$ å䞊ãã§ããïŒå·Šç«¯ã® $1$ åã®ã¿ãé»ãïŒæ®ãã® $10$ åãçœãåããŠããŸãïŒããããïŒæ¬¡ã®èŠåã«åŸã£ãŠçœãåããç³ã $1$ æãã€é ã«è£è¿ããŠãããŸãïŒ
- ãé»ãåããç³ã«é£æ¥ããããŸãã¯ãé»ãåããç³ã® $2$ ã€é£ã«ããããšãïŒè£è¿ãããšãã§ããïŒ
$10$ åç¹°ãè¿ãããšã§ãã¹ãŠã®ç³ãé»ã«ããæ¹æ³ã¯äœéããããŸããïŒ |
NFæ¯2023 | https://onlinemathcontest.com/contests/nfhai2023 | https://onlinemathcontest.com/contests/nfhai2023/tasks/9836 | F | NFæ¯2023(F) | 100 | 61 | 75 | [
{
"content": "ã$x=ab+bc+ca$ ãšããïŒ$p=2017$ ãšããïŒ$a=p$ ã®ãšãïŒ$x$ ã $p$ ã§å²ãåãããšãããšïŒ$b=c=p$ ãšãªãããäžé©ïŒãã£ãŠåé¡ã¯ïŒ$1$ ä»¥äž $p-1$ 以äžã®çžç°ãªãæŽæ°ã®çµ $(a,b,c)$ ã§ãã£ãŠïŒ$x$ ã $p$ ã®åæ°ã«ãªããããªãã®ãæ±ããããšã«åž°çããïŒãŸãïŒçžç°ãªããšããæ¡ä»¶ãèæ
®ããã«çµãæ±ããïŒ\\\r\nã以äž, åååŒã®æ³ã¯ $p$ ãšããïŒãŸãïŒ\r\n\r\n- $S_1$ ã $1\\leq a,b,c\\leq p-1,a\\neq b$ ãæºããæŽæ°ã®çµ $(a,b,c)$ ã®éåãšããïŒ\r\n- $S_2$ ã $1\\leq a,b,c\\leq p-1,a\\neq b,b=c$ ãæºããæŽæ°ã®çµ $(a,b,c)$ ã®éåãšããïŒ\r\n- $S_3$ ã $1\\leq a,b,c\\leq p-1,a\\neq b,c=a$ ãæºããæŽæ°ã®çµ $(a,b,c)$ ã®éåãšããïŒ\r\n\r\næ±ããã¹ã㯠$|S_1|-|(S_2\\cup S_3)|=|S_1| - |S_2| - |S_3| + |S_2\\cap S_3|$ã§ãã.\r\n\r\n- $|S_2|$ ãæ±ããïŒ$b=c$ ããïŒ$x = ab + b^2 + ab = b(2a + b)$ïŒ$b$ 㯠$p$ ã§å²ããªãã®ã§ $2a + b$ ã $p$ ã§å²ããïŒ$a$ ãä»»æã«äžã€å®ãããšãïŒ$b$ ã $b\\equiv -2a$ ãæºããããã« $1$ éãã ãåãããšãã§ããããïŒ$2a + b$ ã $p$ ã®åæ°ã«ãªãå Žåã®æ°ã¯ $p-1$ éãã§ãã. ãã£ãŠ $|S_2| = p-1$ïŒå¯Ÿç§°æ§ãã $|S_3| = p-1$ ã§ãããïŒ\r\n- $S_2\\cap S_3$ ã«ã€ããŠïŒ$a=b=c$ãšãããš $x = 3a^2$ ã§ããïŒããã¯$p$ã§å²ããªãïŒãã£ãŠ $|S_2\\cap S_3| = 0$ïŒ\r\n\r\nãã£ãŠ $|S_1| - 2(p-1)$ ãæ±ããã°ããïŒä»¥äžïŒ$|S_1|$ãæ±ããïŒ$x=(a+b)c + ab$ ã«æ³šç®ãïŒ$a+b$ ã $p$ ã§å²ãããã§å Žååããè¡ãïŒ\r\n\r\n- $a+b$ ã $p$ ã§å²ããªããšãïŒ$s(a+b)\\equiv 1$ ãšãªã $p$ ã§å²ããªãæŽæ° $s$ ãããã®ã§ïŒ\r\n$x\\equiv 0$ ãªãã° $c\\equiv -abs$ ãšãªãïŒ$-abs\\not\\equiv 0$ ã§ããïŒãã®ãã ãª$c$ ã¯äžã€ã«å®ãŸãããïŒ$a+b$ ã $p$ ã®åæ° ($\\iff a+b = p$) ã§ãªããããªçµ $(a,b)$ 㧠$a\\neq b$ ãæºãããã®ã®åã ãïŒé¡æãæºãã $(a,b,c)$ ãåŸãããïŒ$a = b$ ãš $a+b = p$ ã¯äž¡ç«ããªãããšã«æ³šæãããšïŒãã®ãã㪠$(a,b)$ ã®åæ°ã¯ $(p-1)^2 - (p-1) - (p-1) = (p-1)(p-3)$ åãšæ±ãŸãïŒ\r\n- $a+b$ ã $p$ ã§å²ãããšãïŒ$ab$ ã $p$ ã§å²ãããïŒ$1\\leq a,b\\leq p-1$ ã〠$p$ ãçŽ æ°ã ããããã¯èµ·ãããªãïŒ\r\n\r\n以äžãã $|S_1| = (p-1)(p-3)$ã§ããïŒ\\\r\nããã£ãŠïŒæ±ããå Žåã®æ°ã¯ $(p-1)(p-3) - 2(p-1) = (p-1)(p-5)$ ãªã®ã§ïŒæ±ãã確çã¯\r\n$$\\frac{(p-1)(p-5)}{p(p-1)(p-2)}=\\frac{p-5}{p(p-2)}$$\r\nã§ããïŒç¹ã«ïŒ$p=2017$ ã®ãšãïŒ\r\n$$\\frac{2012}{2017\\cdot2015}=\\frac{2012}{4064255}.$$\r\nãã£ãŠïŒæ±ããå€ã¯ $2012+4064255=\\mathbf{4066267}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9836"
},
{
"content": "以é,åååŒã®æ³ã¯$p$ã§ãã.\r\n\r\n$ab+bc+ca\\equiv 0$ã§ããã,$a\\equiv 0$ãªãã°$b\\equiv 0$ãŸãã¯$c\\equiv 0$ãšãªã.ããã,$a,b,c$ã«éè€ããªããšããæ¡ä»¶ããããã,ããã¯äžé©ã§ãã.\r\n\r\nãã£ãŠ,$a,b,c\\neq 0\\pmod{p}$\r\nã§ãã.\r\n\r\nãã®ãšã,$x,y,z$ã\r\n\r\n$$x=a^{-1},y=b^{-1},z=c^{-1}$$\r\n\r\nãšå®çŸ©ãããš,æ±ããã¹ãçãã¯\r\n\r\n$$X:=\\lbrace (x,y,z)\\in \\mathbb{F}_p^3;x+y+z\\equiv 0,\\|\\lbrace x,y,z\\rbrace\\|=3,0\\notin \\lbrace x,y,z\\rbrace \\rbrace$$\r\n\r\nãšãããšãã®$X$ã®å
ã®åæ°ã§ãã.\r\n\r\nããã§,$(x_1,y_1,z_1),(x_2,y_2,z_2)\\in\\mathbb{F}_p^3\\setminus\\lbrace 0\\rbrace$ã«å¯ŸããŠ\r\n\r\n$$(x_1,y_1,z_1)\\sim (x_2,y_2,z_2)\\equiv\\_{\\mathrm{def}} \\exists t\\in\\mathbb{F}\\_p\\setminus\\lbrace 0\\rbrace,\\mathrm{s.t.}x_1=tx_2,y_1=ty_2,z_1=tz_2 $$\r\n\r\nãšå®ãã.\r\n\r\nããã«,$v \\in \\mathbb{F}_p^3\\setminus\\lbrace 0\\rbrace$ã«å¯ŸããŠ,\r\n\r\n$$\\left[v\\right]\\equiv\\_{\\mathrm{def}} \\lbrace u\\in\\mathbb{F}_p^3;u\\sim v\\rbrace$$\r\n\r\nãšå®ãã.ããã§,$\\forall v \\in \\mathbb{F}_p^3\\setminus\\lbrace 0\\rbrace$ã«ã€ããŠ,$\\|\\left[v\\right]\\|=p-1$ã§ããããšã«æ³šæã§ãã.\r\n\r\nããã«,$u\\sim v$ãªãã°$u\\in X$ãš$v\\in X$ãåå€ã§ãããã,\r\n\r\n$$X=\\sqcup_{k=1}^{m} \\left[v_k\\right]$$\r\n\r\nãšãªã.ããã§,$v_i\\sim v_j$ãªãã°$i=j$ãæãç«ã€.\r\n\r\nãã®ãããª$v_1,\\ldots,v_m$ã®çµã¿åãããåãããšãã§ããŠ,$|X|=(p-1)m$ãšãªã.\r\n\r\nãã£ãŠ,$m$ãæ±ããã°ãã.\r\n\r\n$$Y:=\\lbrace (x,y,z)\\in \\mathbb{F}_p^3\\setminus \\lbrace 0\\rbrace ; x+y+z\\equiv 0\\rbrace $$\r\n\r\nãšãããšã,\r\n\r\n$$|Y|=p^2-1=(p-1)(p+1)$$\r\n\r\nãšãªã.ããã«,$Y$ã¯ãã¯ãã«ãå®æ°åãããšãã«éåã«å
¥ã£ãŠããããäžå€ãªã®ã§,ãã$v_1,\\ldots,v_{p+1}$ãååšããŠ,\r\n\r\n$$Y=\\sqcup_{k=1}^{p+1} \\left[v_k\\right]$$\r\n\r\nãšæžãããšãã§ãã.ããã§,$v_i\\sim v_j$ãªãã°$i=j$ã§ãã.\r\n\r\nãã®äžãã,$\\|\\lbrace x,y,z\\rbrace\\|=3,0\\notin \\lbrace x,y,z\\rbrace$ãšããæ¡ä»¶ãæºããå
ãåãé€ãããšãèãã.\r\n\r\nçµè«ããèšããš,åãé€ããã察象ã¯\r\n\r\n$$\\left[(0,1,-1)\\right],\\left[(-1,0,1)\\right],\\left[(1,-1,0)\\right],\\left[(-2,1,1)\\right],\\left[(1,-2,1)\\right],\\left[(1,1,-2)\\right]$$\r\n\r\nã®6ã€ã§å
šãŠã§ãã.ãã®ãšã,ããã6ã€ã«ã¯éè€ã¯ç¡ã.\r\n\r\nãã£ãŠ,\r\n\r\n$$X=Y\\setminus \\lbrace(6ã€ã®ãã¯ãã«)\\rbrace $$\r\n\r\nãªã®ã§,$m=p+1-6=p-5$ã§ãã.ãã£ãŠ,$\\|X\\|=(p-1)(p-5)$ã§ãã.\r\n\r\næ±ããã¹ã確çã®åæ¯ã¯$p(p-1)(p-2)$ã§ãããã,çãã¯\r\n\r\n$$\\dfrac{(p-1)(p-5)}{p(p-1)(p-2)}=\\dfrac{p-5}{p(p-2)}=\\dfrac{2012}{2015\\cdot 2017}$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9836/353"
}
] | ãäžã€ã®ç®±ã®äžã«ïŒ$1$ ãã $2017$ ãŸã§ã®çªå·ãããããæžããã $2017$ æã®ã«ãŒãããããŸãïŒããã§ïŒåãçªå·ã®ã«ãŒãã¯ãªããã®ãšããŸãïŒãã®ç®±ããã«ãŒãã $3$ æïŒäžåºŠåãåºããã«ãŒããæ»ãããšãªã $1$ æãã€é ã«åãåºãïŒãããã«æžãããŠããæ°ãé ã« $a,b,c$ãšããŸãïŒãã®ãšãïŒ$ab+bc+ca$ ã $2017$ ã®åæ°ãšãªã確çã¯ïŒäºãã«çŽ ãªæ£ã®æŽæ° $x,y$ ãçšã㊠$\dfrac{x}{y}$ ãšè¡šããã®ã§ïŒ$x+y$ ãæ±ããŠãã ããïŒãã ãïŒ$2017$ ã¯çŽ æ°ã§ãïŒ |
NFæ¯2023 | https://onlinemathcontest.com/contests/nfhai2023 | https://onlinemathcontest.com/contests/nfhai2023/tasks/9864 | G | NFæ¯2023(G) | 100 | 38 | 43 | [
{
"content": "ã$F_N$ ã $2$ ã§å²ãåããåæ°ãš $3$ ã§å²ãåããåæ°ãæ±ããã°ããïŒçµè«ããè¿°ã¹ãã°ïŒäžè¬ã«\r\n$${\\rm ord}\\_2(F_{6m})={\\rm ord}\\_2(m)+3, \\quad {\\rm ord}\\_3(F_{4m})={\\rm ord}\\_3(m)+1$$\r\nãæç«ããïŒãã®ããšã瀺ãïŒãŸãïŒ$\\alpha=\\dfrac{1-\\sqrt{5}}{2},~\\beta=\\dfrac{1+\\sqrt{5}}{2}$ ãšãããšïŒ\r\n$$F_n=\\dfrac{\\beta^n-\\alpha^n}{\\beta-\\alpha}$$\r\nãšãªãïŒããã§ïŒ$L_n:=\\alpha^n+\\beta^n$ ãšå®ããïŒ\\\r\nããã®ãšãïŒ$L_n\\mod{4}$ ããã³ $F_n\\mod{4}$ ã¯ïŒä»¥äžã«ãããšãã«åšæ $6$ ããã€ïŒ\r\n$$\\begin{array}{c|c|c|c|c|c|c|c|c|c}\r\nn & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \\cdots \\\\\\\\ \\hline\r\nL_n \\mod{4} & 2 & 1 & 3 & 0 & 3 & 3 & 2 & 1 & \\cdots \\\\\\\\ \\hline\r\nF_n \\mod{4} & 0 & 1 & 1 & 2 & 3 & 1 & 0 & 1 & \\cdots \\\\\\\\\r\n\\end{array}$$\r\nã$x_n=F_{6n}\\/8$ ãšãããšïŒ$x_0=0, ~ x_1=1, ~ x_{n+2}=18x_{n+1}-x_n$ ã§ããããïŒ$m$ ãå¥æ°ã®ãšã $F_{6m}\\/8$ ã¯å¥æ°ã§ããïŒããªãã¡ïŒ$F_{6m}$ 㯠$2$ ã§ã¡ããã© $3$ åã ãå²ããïŒããã«ïŒ$n$ ã $6$ ã®åæ°ã§ãããšãïŒ\r\n$$\\dfrac{F_{2n}}{F_n}=L_n\\equiv 2\\pmod{4}$$\r\nã§ããããïŒ$F_{2n}\\/F_n$ 㯠$2$ ã§ã¡ããã© $1$ åã ãå²ããïŒä»¥äžïŒåž°çŽçã«è°è«ããããšã§ïŒ\r\n$${\\rm ord}\\_2(F\\_{6m})={\\rm ord}\\_2(m)+3$$\r\nãåŸãïŒ\\\r\nã$L_n\\mod{9}$ ããã³ $F_n\\mod{9}$ ã¯ïŒä»¥äžã«ãããšãã«åšæ $24$ ããã€ïŒ\r\n$$\\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}\r\nn & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\\\\\\\ \\hline\r\nL_n \\mod{9} & 2 & 1 & 3 & 4 & 7 & 2 & 0 & 2 & 2 & 4 & 6 & 1 & 7 & 8 & 6 \\\\\\\\ \\hline\r\nF_n \\mod{9} & 0 & 1 & 1 & 2 & 3 & 5 & 8 & 4 & 3 & 7 & 1 & 8 & 0 & 8 & 8 \\\\\\\\\r\n\\end{array}$$\r\n$$\\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c}\r\nn & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & \\cdots \\\\\\\\ \\hline\r\nL_n \\mod{9} & 5 & 2 & 7 & 0 & 7 & 7 & 5 & 3 & 8 & 2 & 1 & \\cdots \\\\\\\\ \\hline\r\nF_n \\mod{9} & 7 & 6 & 4 & 1 & 5 & 6 & 2 & 8 & 1 & 0 & 1 & \\cdots \\\\\\\\\r\n\\end{array}$$\r\nã$n$ ã $4$ ã®åæ°ã§ãã£ãŠ $3$ ã®åæ°ã§ãªããšãïŒè¡šã«ãã $F_n \\mod{9}=3,6$ ã§ããïŒããªãã¡ïŒ$F_n$ 㯠$3$ ã§ã¡ããã© $1$ åã ãå²ãåããïŒ\\\r\nããŸãïŒ$n$ ã $4$ ã®åæ°ã§ãããšãïŒ\r\n$$\\dfrac{F_{3n}}{F_n}=\\alpha^{2n}+\\alpha^n\\beta^n+\\beta^{2n}=L_{2n}+1$$\r\nãšãªãïŒããã§ïŒ$2n$ 㯠$8$ ã®åæ°ã§ããããšã«æ³šæãããšïŒè¡šãã\r\n$$L_{2n}+1\\equiv 2+1\\equiv 3\\pmod{9}$$\r\nãšãªãããïŒ$F_{3n}\\/F_n$ 㯠$3$ ã§ã¡ããã© $1$ åã ãå²ãåããïŒãã£ãŠåž°çŽçã«\r\n$${\\rm ord}\\_3(F_{4m})={\\rm ord}\\_3(m)+1$$\r\nãæãç«ã€ïŒ\\\r\nã$N$ 㯠$6$ ã®åæ°ã§ããïŒã〠$N$ ã $2$ ã§å²ãåããåæ°ã¯ $97$ åãªã®ã§ïŒ$F_N$ ã $2$ ã§å²ãåããåæ°ã¯ $97-1+3=99$ åã§ããïŒãŸãïŒ$N$ 㯠$4$ ã®åæ°ã§ããïŒ$N$ ã $3$ ã§å²ãåããåæ°ã¯ $48$ åãªã®ã§ïŒ$F_N$ ã $3$ ã§å²ãåããåæ°ã¯ $48+1=49$ åã§ããïŒ$99,49\\lt N=100!$ ã«æ³šæãããšïŒ\r\n$${\\rm gcd}(F_N,6^N)=2^{99}\\cdot 3^{49}$$\r\nãªã®ã§ïŒæ£ã®çŽæ°ã®åæ°ã¯ $(99+1)\\times (49+1)=\\bm{5000}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9864"
},
{
"content": "ãã®è§£èª¬ã¯ __ImL__ ãæžãããã®ã代çæçš¿ãããã®ã§ã.\r\n\r\n----\r\n\r\nå
¬åŒè§£çã®åºç€ã«çŸãã\r\n$$ \\mathrm{ord}\\_{2} (F_{6m}) = {\\rm ord}\\_{2}(m) + 3$$\r\n$$ {\\rm ord}\\_{3}(F_{4m}) = {\\rm ord}\\_{3}(m) + 1$$\r\nã¯ïŒã代æ°äœäžã®LTEã®è£é¡ãããåŸãããšãã§ããïŒåè: https:\\/\\/mathlog.info\\/articles\\/886 ïŒïŒ\r\n\r\nã$K$ã代æ°äœïŒ$\\mathfrak{p}$ããã®æŽæ°ç° $\\mathcal{O}_{K}$ã®æ¥µå€§ã€ãã¢ã«ïŒ$p$ ã å°äœäœ $\\mathcal{O}_K\\/\\mathfrak{p}$ã®æšæ°ïŒ$e$ã$\\mathfrak{p}\\/p\\mathbb{Z}$ã®åå²ææ°ïŒããªãã¡ $p(\\mathcal{O}_K)_\\mathfrak{p} = \\mathfrak{p}^{e}(\\mathcal{O}_K)_\\mathfrak{p} $ãæºããæ£ã®æŽæ°$e$ãšããïŒ\r\n\r\n$v: K\\to \\mathbb{Z}\\cup \\\\{\\infty \\\\}$ ã$\\mathfrak{p}$é²ä»å€ãšããïŒ$v(p)=e$ã§ãã.\r\n\r\n**å®ç.**\r\n$x,y \\in K$ ã $v(x) = 0, v(y) = 0, v(x-y) \\gt \\frac{e}{p-1}$ãæºãããšãïŒ$n$ ãä»»æã®æŽæ°ãšãããš\r\n$$ v(x^n - y^n) = v(x-y) + v(n) $$\r\nãæç«ããïŒ\r\n\r\nãæ¬åã§ã¯ïŒ$K = \\mathbb{Q}(\\sqrt{5})$ïŒ$\\mathfrak{p} = p\\mathcal{O}_K$ ã§å®çãé©çšããïŒãªãïŒ$p$ ã¯äžåå² ($e=1$) ã§ããïŒ$p\\mathcal{O}_K$ 㯠極倧ã€ãã¢ã«ãšãªãããšã«æ³šæããïŒ\r\n\r\nã$p=2, 3$ ã«å¯ŸããŠïŒ$K$ äžã® $p$é²ä»å€ã${\\rm ord}_{p}$ã§è¡šãïŒ$\\alpha = \\dfrac{1+\\sqrt{5}}{2}$ïŒ$\\beta = \\dfrac{1-\\sqrt{5}}{2}$ãšã㊠$x=\\alpha^{6}$, $y=\\beta^{6}$ ãšããïŒ$x-y= 8\\sqrt{5}$ ã ãã${\\rm ord}\\_{2}(x-y) = 3 \\gt \\frac{1}{2-1}$ ã§ããïŒå®çãé©çšã§ããŠïŒ\r\n$$\r\n\\begin{aligned}\r\n {\\rm ord}\\_{2}(F\\_{6m}) &= {\\rm ord}\\_{2}\\left( \\alpha\\^{6m} - \\beta\\^{6m} \\right) - {\\rm ord}\\_{2}(\\alpha^6 - \\beta^6) + {\\rm ord}\\_{2}\\left( \\dfrac{\\alpha^{6} - \\beta^{6}}{\\sqrt{5}} \\right) \\\\\\\\\r\n& \\overset{\\text{LTE}}{=} {\\rm ord}\\_{2} (m) + {\\rm ord}\\_{2}\\left( 8 \\right) \\\\\\\\\r\n& = {\\rm ord}\\_{2} (m) + 3\r\n\\end{aligned}\r\n$$\r\nãåŸãïŒ\r\n\r\nã${\\rm ord}\\_{3}(F_{4m}) = {\\rm ord}\\_{3}(m) + 1$ ã«ã€ããŠãïŒ$x = \\alpha^4$, $y=\\beta^4$ãšããŠå®çãé©çšããã°åŸãããïŒ(${\\rm ord}\\_{3}(x-y) = {\\rm ord}\\_{3}(3\\sqrt{5}) = 1 \\gt \\frac{1}{3-1}$ãªã®ã§é©çšå¯èœ)ïŒ",
"text": "解説ïŒImLã®ä»£çæçš¿ïŒ",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9864/357"
}
] | ã$N=100!$ ãšããŸãïŒå®æ°å $\\{F_n\\}_{n=0,1,\ldots}$ 㯠$F_0=0, ~ F_1=1$ ããã³
$$F\_{n+2}=F\_{n+1}+F\_n \quad (n=0,1,\ldots)$$
ãæºãããŸãïŒãã®ãšãïŒ$F_N$ ãš $6^N$ ã®æ倧å
¬çŽæ°ã«ã€ããŠïŒãã®æ£ã®çŽæ°ã®åæ°ãæ±ããŠãã ããïŒ |
NFæ¯2023 | https://onlinemathcontest.com/contests/nfhai2023 | https://onlinemathcontest.com/contests/nfhai2023/tasks/9844 | H | NFæ¯2023(H) | 100 | 50 | 61 | [
{
"content": "ããŸãïŒæ¬¡ã瀺ãïŒ \r\n\r\n---\r\n\r\n**è£é¡**ïŒ$m$ïŒ$k$ ãèªç¶æ°ã§ $1\\leq k\\leq m$ ãæºãããšããïŒãã®ãšã\r\n$$\r\nf^{2}(m^2 + k) = (m+1)^2 + k.\r\n$$\r\n\r\n**(蚌æ)**ã$m \\lt \\sqrt{m^2 + k} \\leq \\sqrt{m^2 + m} \\lt m+\\frac{1}{2}$ ãªã®ã§, \r\n$$\\begin{aligned}\r\n f(m^2 + k) & = m^2 + k + \\lfloor\\sqrt{m^2 + k} + \\frac{1}{2}\\rfloor \\\\\\\\\r\n & = m^2 + m + k.\r\n\\end{aligned}$$\r\n\r\nãŸã, $m+\\frac{1}{2} \\lt \\sqrt{m^2 + m + k} \\lt m+1$ãªã®ã§\r\n$$ \r\nf(m^2 + m + k) = m^2 + m + k + (m+1) = (m+1)^2 + k.\r\n$$ \r\n\r\n---\r\n\r\nãæ±ããåã¯\r\n$$\r\n\\sum_{n=1}^{10} f^{100}(n^2) + \r\n\\sum_{n=1}^{9}\\sum_{k=1}^{n} \\left( f^{100}(n^2 + k) + f^{100}(n^2 + n + k)\\right)\r\n$$\r\nã§ããïŒè£é¡ã䜿ã£ãŠïŒããããã®ç·åã調ã¹ãïŒ\r\nããŸã\r\n $$\\begin{aligned}\r\nf^{100}(n^2) & = f^{99}(n^2 + n) \\\\\\\\\r\n&= f((n+49)^2 + n) \\\\\\\\\r\n&= (n+49)^2 + 2n+49 \\\\\\\\ \r\n&= n^2 + 100n + 2450\r\n\\end{aligned}$$ \r\nããïŒ\r\n$$\\begin{aligned}\r\n\\sum_{n=1}^{10} f^{100}(n^2) &= 3550 + \\sum_{n=1}^{9} (n^2 + 100n + 2450)\r\n\\end{aligned}$$\r\nã次ã«\r\n $$f^{100}(n^2 + k) = (n+50)^2 + k$$\r\n\r\n $$\\begin{aligned} \r\nf^{100}(n^2 + n + k) &= f^{99}((n+1)^2 + k) \\\\\\\\\r\n &= f((n+50)^2 + k) \\\\\\\\ \r\n & = (n+50)^2 + n + 50 + k\r\n\\end{aligned}$$\r\nããïŒ\r\n$$\\begin{aligned}\r\n&\\sum_{k=1}^{n}\\left(f^{100}(n^2 + k) + f^{100}(n^2 + n + k)\\right) \\\\\\\\ \r\n&= \\sum_{k=1}^{n} \\left( 2(n+50)^2 + n + 50 + 2k\\right) \\\\\\\\\r\n&= 2n(n+50)^2 + n(n+50) + n(n+1) \\\\\\\\\r\n&= 2n^3 + 202n^2 + 5051n \r\n\\end{aligned}$$\r\nã以äžã®èšç®ããïŒæ±ããåã¯\r\n$$\\begin{aligned}\r\n& 3550 + \\sum_{n=1}^{9} (2n^3 + 203n^2 + 5151n + 2450) \\\\\\\\\r\n&= 3550 + \\dfrac{(9\\cdot 10)^2}{2} + 203\\cdot \\frac{9\\cdot 10\\cdot 19}{6} + 5151\\cdot \\frac{9\\cdot 10}{2} + 2450\\cdot 9 \\\\\\\\\r\n&= 3550 + 4050 + 57855 + 231795 + 22050 \\\\\\\\\r\n&= \\mathbf{319300}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9844"
}
] | ãæ£ã®å®æ° $x$ ã«å¯ŸãïŒ
$$f(x) = \left\lfloor x + \sqrt{x} +\frac{1}{2} \right\rfloor$$
ãšå®çŸ©ããŸãïŒãã®ãšãïŒæ¬¡ã®åãèšç®ããŠãã ããïŒ
$$\sum_{n=1}^{100} f^{100}(n)$$
ããã ãïŒ$f^{1}=f, ~ f^{k}(x)=f\bigl(f^{k-1}(x)\bigr)$ ãšããŸãïŒ |
NFæ¯2023 | https://onlinemathcontest.com/contests/nfhai2023 | https://onlinemathcontest.com/contests/nfhai2023/tasks/9847 | I | NFæ¯2023(I) | 100 | 28 | 42 | [
{
"content": "æ¡ä»¶ãæºãã$x$ã®éåã$S(n)$ã§è¡šã. \r\n\r\n**è£é¡.**\r\n$x\\in S(n)$ãªãã° $x^{22} = 1$ãŸãã¯$x^{24} = 1$ã§ããïŒ\r\n\r\n(**蚌æ**) $x\\in S(n)$ã®ãšã$x^{2024} = 1$ãªã®ã§ïŒãšãã«$|x| = 1$ïŒãã£ãŠ$x^{n}(x-1) = x^{23} - 1$ ãã $|x-1| = |x^{23}-1|$ ãåŸãïŒãã®åŒãè€çŽ æ°å¹³é¢äžã§èããã°ïŒ$x,x^{23}$ ã¯åäœååš $|z| = 1$ äžã«ããïŒã〠$1$ ããçè·é¢ã§ããã®ã§ïŒ$x = \\overline{x^{23}}$ ãŸã㯠$x = x^{23}$ ãšãªãïŒåè
ã®ãšãïŒ$|x| = 1$ ãã$x^{24} = 1$ãšãªãïŒ$x\\neq 0$ãªã®ã§åŸè
ã®ãšã㯠$x^{22} = 1$ ãšãªãïŒ(**蚌æçµ**)\r\n\r\nãã®è£é¡ãããšã«æ¹çšåŒãæŽçããïŒä»¥äžã«æ³šæããïŒ\r\n\r\n- $x^{22} = 1$ã®ãšãïŒ$x^{n}(x-1) = x^{23} - 1 = x-1$ ãªã®ã§ $x^{n}=1$ãšãªãïŒ$x^{2024} = 1$ ã〠$x^{22} = 1$ ã〠$x^n = 1$ ã§ããããšã¯ $x^{\\mathrm{gcd}(n,22)} = 1$ ã§ããããšãšåå€ã§ããïŒ \r\n- $x^{24} = 1$ ã®ãšãïŒ$x^{n}(x-1) = x^{23} - 1 = x^{-1} - 1$ ãæŽçã㊠$x^{n+1} = -1$ ãåŸãïŒãã®ãšã $x^{2n+2} = 1$ ã§ããïŒè€çŽ æ°$x$ã«å¯Ÿã㊠$x^{2024} = 1$ ã〠$x^{24} = 1$ ã〠$x^{2n+2} = 1$ ã§ããããšã¯ $x^{{\\rm gcd}(8,2n+2)} = 1$ ã§ããããšãšåå€ã§ããïŒ\r\n- $x^{22} = 1$ ã〠$x^{24} = 1$ ãæºãã è€çŽ æ° $x$ 㯠$x=\\pm 1$ ã®ã¿ã§ããïŒåžžã« $1\\notin S(n)$ ã§ããïŒ $-1\\in S(n)$ ã§ããã®ã¯ $n$ ãå¶æ°ã®ãšãã«éãïŒ \r\n\r\nãããã§ïŒ$g(n)={\\rm gcd}(n,22)$ïŒ$h(n) = {\\rm gcd}(8,2n+2)$ ãšããïŒäžãã $S(n)$ ã¯æ¬¡ã®3çš®é¡ã®éå $A(n), B(n), C(n)$ ã«åå²ãããïŒ\r\n$$\\begin{aligned} \r\nA(n)&= \\\\{ x\\neq \\pm 1 \\mid x^{{\\rm gcd}(n,22)} = 1\\\\}\\\\\\\\ \r\nB(n)&= \\\\{ x\\neq \\pm 1 \\mid x^{\\mathrm{gcd}(8,2n+2)} = 1, \\quad x^{n+1} = -1\\\\} \\\\\\\\ \r\nC(n)&= \r\n\\begin{cases}\r\n\\varnothing \\quad (n\\text{ãå¥æ°})\\\\\\\\\r\n\\\\{ -1 \\\\} \\quad (n\\text{ãå¶æ°}) \r\n\\end{cases}\r\n\\end{aligned}$$\r\n\r\nã$f(n) = |A(n)| + |B(n)| + |C(n)|$ ãšæžããã®ã§ïŒä»¥äžã®å Žåã«åããŠèšç®ããïŒ\r\n\r\n- $n$ ãå¶æ°ã®ãšãïŒ$h(n)=2$ ãªã®ã§ $B(n) = \\varnothing $ ã§ããïŒãã£ãŠ\r\n$$f(n) = (\\mathrm{gcd}(n,22) - 2) + 0 + 1 = g(n) - 1.$$\r\n- $n$ ãå¥æ°ã®ãšã㯠$A(n) = \\\\{ x \\mid x^{g(n)} = 1 \\\\}\\setminus{\\\\{ 1 \\\\}}$ ãªã®ã§ $f(n) = g(n) - 1 + |B(n)|$ ã§ããïŒ\r\n\r\n$n$ ãå¥æ°ã®ãšãã® $|B(n)|$ ã調ã¹ãããã«ïŒä»¥äžã®3ã€ã®å Žååããè¡ãïŒ$k$㯠$0$ 以äžã®æŽæ°ãšããïŒ\r\n\r\nã(**Case 1.**) $n = 4k+1$ ã®ãšãïŒ$h(n) = 4$ ãªã®ã§ $B(n) = \\\\{x\\neq \\pm 1\\mid x^{4} = 1, x^{2} = -1\\\\}$ ãã $|B(n)| = 2$ïŒ\r\n\r\nã(**Case 2.**) $n=8k+3$ã®ãšãïŒ$h(n) = 8$ïŒ$x^{n+1} = (x^{8})^k \\cdot x^4$ ãªã®ã§ $B(n) =\\\\{x\\neq \\pm 1\\mid x^8 = 1, x^4 = -1\\\\}$ ãã $|B(n)| = 4$ïŒ \r\n\r\nã(**Case 3.**) $n = 8k+7$ ã®ãšãïŒ $h(n) = 8$ïŒ$x^{n+1} = (x^8)^{k+1}$ ã§ããïŒ$x\\in B(n)$ ã®ãšã $x^{n+1} = 1 \\neq -1$ ãšãªããã $B(n) = \\varnothing$ã§ããïŒ\r\n \r\nã以äžããŸãšãããšïŒ$f(n)$ 㯠以äžã§äžããããïŒ\r\n$$\r\nf(n) = g(n) + r(n),\\quad \\text{ãã ã} r(n) = \r\n\\begin{cases} \r\n-1 & (n \\text{ã¯å¶æ°, ãŸãã¯} n\\equiv 7 \\pmod{8}) \\\\\\\\\r\n1 & (n \\equiv 1\\pmod{4}) \\\\\\\\ \r\n3 & (n \\equiv 3 \\pmod{8}) \r\n\\end{cases} \r\n$$\r\nãããã«ããïŒæ±ããã¹ãç·åã¯ä»¥äžã®ããã«èšç®ãããïŒ \r\n$$\\begin{aligned}\r\n\\sum_{n=0}^{2023} f(n) &= \\sum_{k=0}^{253} \\\\{g(8k) + \\dots + g(8k+7) + (r(8k) + \\dots + r(8k+7))\\\\} \\\\\\\\\r\n&= \\sum_{k=0}^{252} \\\\{g(8k) + \\dots + g(8k+7) + 0\\\\} \\\\\\\\\r\n&= \\sum_{n=0}^{2023} \\mathrm{gcd}(n,22) \\\\\\\\ \r\n&= 92\\sum_{n=0}^{21} \\mathrm{gcd}(n,22) \\\\\\\\\r\n&= 92(1\\times \\varphi(22) + 2\\times \\varphi(11) + 11\\times \\varphi(2) + 22\\times \\varphi(1)) \\\\\\\\ \r\n&= 92(10 + 20 + 11 + 22) \\\\\\\\ \r\n&= 92\\times 63\\\\\\\\ \r\n&= \\mathbf{5796}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9847"
}
] | ãéè² æŽæ° $n$ ã«å¯ŸãïŒæ¬¡ã®é£ç«æ¹çšåŒ
$$\begin{cases}
x^{2023} + x^{2022} + \dots + x + 1 = 0\\\\
x^{n}(x-1) = x^{23} - 1
\end{cases}$$
ãæºããè€çŽ æ°ã®åæ°ã $f(n)$ ãšãããšãïŒ
$$f(0) + f(1) + \dots + f(2023)$$
ãæ±ããŠãã ããïŒ |
NFæ¯2023 | https://onlinemathcontest.com/contests/nfhai2023 | https://onlinemathcontest.com/contests/nfhai2023/tasks/10037 | J | NFæ¯2023(J) | 100 | 39 | 46 | [
{
"content": "${P}$ãã${BC}$ã«äžãããåç·ã®è¶³ã${H}$ãšãã. $4$ç¹${A,B,P,C}$ã¯åäžååšäžã«ããã®ã§,\r\n$$\r\n\\angle{ ABP}+\\angle{ ACP}=180^\\circ. \\tag{1}\r\n$$\r\nãŸã, ååšè§ã®å®çã®éãã, $4$ç¹${M,B,P,H}$ã¯åäžååšäžã«ãã,\r\n$$\r\n\\angle{ ABP}=\\angle{ MBP}=180^\\circ-\\angle{ PHM}.\r\n$$\r\n$4$ç¹${N,C,H,P}$ã¯åäžååšäžã«ãã,\r\n$$\r\n\\angle{ ACP}=180^\\circ-\\angle{ PCN}=180^\\circ-\\angle{ PHN}.\r\n$$\r\nãã£ãŠ(1)ã,\r\n$$\\begin{aligned}\r\n&\\quad (180^\\circ-\\angle{ PHM})+(180^\\circ-\\angle{ PHN})=180^\\circ \\\\\\\\\r\n&\\iff \\angle{ PHM}+\\angle{ PHN}=180^\\circ\r\n\\end{aligned}$$\r\nãšãªãã®ã§$3$ç¹${H,M,N}$ã¯åäžçŽç·äžã«ãã. ããªãã¡, ${H}$ã¯${MN}$ãš${BC}$ã®äº€ç¹ã§${Q}$ãšäžèŽãã(Simsonã®å®çã®é). ååšè§ã®å®çã®éãã,$4$ç¹${M,B,P,Q}$ã¯åäžååšäžã«ãã$\\angle{ PBC}=\\angle{ PMN}$,$4$ç¹${N,C,Q,P}$ã¯åäžååšäžã«ãã$\\angle{ PCB}=\\angle{ PNM}$ã§ãããã\r\n$$\r\n\\triangle{ PBC}\\sim\\triangle{ PMN}.\r\n$$\r\nãŸã, $4$ç¹${A,M,P,N}$ãåäžååšäžã«ããã®ã§, Ptolemyã®å®çãã,\r\n$$\\begin{aligned}\r\n&\\quad {AP}\\cdot {MN}={AM}\\cdot {PN}+{AN}\\cdot {PM} \\\\\\\\\r\n&\\iff 25\\cdot {MN}=20\\cdot \\sqrt{25^2-24^2}+24\\cdot \\sqrt{25^2-20^2} \\\\\\\\\r\n&\\iff {MN}=20.\r\n\\end{aligned}$$\r\n$\\triangle{ PBC}$ãš$\\triangle{ PMN}$ã®çžäŒŒæ¯ã$k:1~(k\\gt0)$ãšãããš, ${PB}=15k,{PC}=7k,{BC}=20k$ãšãªã, Heronã®å
¬åŒãã,\r\n$$\r\n\\triangle{ PBC}=\\sqrt{21k\\cdot 6k\\cdot 14k\\cdot k}=42k^2.\r\n$$\r\nãŸã, ${PQ}\\perp {BC}$ãã,\r\n$$\r\n\\triangle{ PBC}=\\dfrac{1}{2}\\cdot {BC}\\cdot {PQ}=\\dfrac{1}{2}\\cdot 20k\\cdot 5=50k.\r\n$$\r\nããããçããããšãã,\r\n$$\\begin{aligned}\r\n&\\quad 42k^2=50k \\\\\\\\\r\n&\\iff k=\\dfrac{25}{21}\r\n\\end{aligned}$$\r\nã§ãã,\r\n$$\r\n{BC}=\\dfrac{500}{21}.\r\n$$\r\nããã§, äžè§åœ¢ã®é¢ç©å
¬åŒãã,\r\n$$\r\n\\triangle{ PBC}=\\dfrac{1}{2}\\cdot {PB}\\cdot {PC}\\cdot\\sin{\\angle{ BPC}}\r\n=\\dfrac{1}{2}\\cdot 15k\\cdot 7k\\cdot\\sin{\\angle{ BPC}}\r\n=\\dfrac{105}{2}k^2\\sin{\\angle{ BPC}}.\r\n$$\r\nããã$42k^2$ãšçããããšãã,\r\n$$\r\n\\sin{\\angle{ BPC}}=\\dfrac{4}{5}.\r\n$$\r\nãããã£ãŠ, æ£åŒŠå®çãã$\\Gamma$ã®ååŸ$R$ã¯\r\n$$\r\nR=\\dfrac{{BC}}{2\\sin{\\angle{ BPC}}}=\\dfrac{625}{42}.\r\n$$\r\nããªãã¡,æ±ããå€ã¯$625+42=\\textbf{667}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/10037"
},
{
"content": "ã·ã ãœã³ç·ã«æ°ã¥ããªããŠãïŒïŒå転ïŒçžäŒŒãèŠã€ããã°ä»¥äžã®ããã«å®¹æã«è§£ããŸãïŒãã·ã ãœã³ã®å®çã®éãã®èšŒæãåããŠããã ãã§ããã$PQ\\perp BC$ ã«ã¯æ°ã¥ããªããŠãããã§ãïŒ\r\n\r\n---\r\näžå¹³æ¹ã®å®çã«ããïŒ$MP=15,NP=7$ ãåŸãããïŒ \r\næ¡ä»¶ã«ããïŒ$A,B,P,C$ ã¯åäžååšäžã«ããããïŒååšè§ã®å®çããïŒ$\\angle{CAP} = \\angle{CBP} = \\angle{QBP}$ \r\nãŸãïŒ$A,M,P,N$ ãåäžååšäžã«ããããïŒååšè§ã®å®çããïŒ$\\angle{CAP} = \\angle{NAP} = \\angle{NMP}=\\angle{QMP}$ \r\nãã£ãŠïŒ$\\angle{QBP} = \\angle{QMP}$ ãšãªãããïŒ$Q,M,B,P$ ã¯åäžååšäžã«ããïŒ \r\nååšè§ã®å®çã䜿ãããšã§ïŒä»¥äžã®äºã€ã瀺ããïŒ\r\n$$\r\n\\angle{QPM}=\\angle{QBM}=\\angle{CBA}=\\angle{CPA} \\\\\\\\\r\n\\angle{PMQ}=\\angle{PMN}=\\angle{PAN}=\\angle{PAC}\r\n$$\r\nãããã£ãŠïŒ$\\triangle{QPM} \\sim \\triangle{CPA}$ ãšãªãããïŒèŸºã®æ¯ã®æ¡ä»¶ããïŒ\r\n$$\r\nPC = \\frac{AP\\cdot QP}{MP} = \\frac{25}{3}\r\n$$\r\nãšãªãïŒ$\\sin \\angle{PAC} = \\sin \\angle{PAN} = \\dfrac{7}{25}$ ãšãªãã®ã§ïŒæ£åŒŠå®çããååŸ $R$ ã¯ïŒ\r\n$$\r\nR = \\frac{PC}{2\\sin \\angle{PAC}} = \\frac{625}{42}\r\n$$\r\nãšãªãïŒ",
"text": "çžäŒŒãšæ£åŒŠå®ç",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/10037/360"
}
] | ãå€æ¥åã $\Gamma$ ãšããäžè§åœ¢ $ABC$ ãããïŒ$\Gamma$ ã®åŒ§ $BC$ äžïŒ$A$ ãå«ãŸãªãæ¹ïŒã«ç¹ $P$ ããšããŸãïŒ$P$ ããçŽç· $AB,AC$ ã«ããããåç·ã®è¶³ããããã $M,N$ ãšãããšïŒ$M$ ã¯èŸº $AB$ äžã«ããïŒçŽç· $BC$ ãšçŽç· $MN$ ãç¹ $Q$ ã§äº€ãããŸããïŒ
$$AP=25, \quad AM=20, \quad AN=24, \quad PQ=5$$
ãæãç«ã€ãšãïŒ$\Gamma$ ã®ååŸãæ±ããŠãã ããïŒãã ãïŒçãã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
NFæ¯2023 | https://onlinemathcontest.com/contests/nfhai2023 | https://onlinemathcontest.com/contests/nfhai2023/tasks/9845 | K | NFæ¯2023(K) | 100 | 45 | 56 | [
{
"content": "ãæ¡ä»¶ãã$f$ã¯å
šå°ïŒããã«å
šåå°ã§ããïŒ\r\n\r\nã$n$ã«å¯Ÿã, $f^{d_n}(n) = n$ãæºããæå°ã®æ£ã®æŽæ° $d_n$ ãããïŒããã $n$ ã®**åšæ**ãšåŒã¶ããšã«ããïŒæ¡ä»¶ããåšæ $d_n$ 㯠$n$ ã®çŽæ°ã§ããïŒ ããã§éè² æŽæ° $i,j$ ã«å¯ŸãïŒåå°æ§ãã\r\nã$$f^{j}(f^{i}(n)) = f^{i}(n) \\iff f^{j}(n) = n \\iff d_n \\mid j$$ \r\nãªã®ã§ïŒ$n,f(n),\\dots, f^{d_n -1}(n)$ã®åšæããŸã $d_n$ ãšãªãïŒ$0\\leq i \\lt d_n$ãšãïŒ $a = f^{i}(n)$ãšãããšïŒ$f^{a}(a) = a$ ã〠$a$ ã®åšæ㯠$d_n$ ãªã®ã§ïŒåšæã®æå°æ§ãã $a$ ã $d_n$ ã®åæ°ã§ãªããã°ãªããªãïŒ$a\\in \\\\{ 1,2,\\dots, 13 \\\\}$ ãªã®ã§ïŒ$1$ ãã $13$ ãŸã§ã®æŽæ°ã®äžã« $d_n$ ã®åæ°ã $d_n$ å以äžããããšã«ãªãïŒãã£ãŠ$d_n\\cdot d_n \\leq 13$ ãåŸãããïŒ$d_n = 1,2,3$ã§ãªããã°ãªããªãïŒããããš $d_n | n$ ãèæ
®ããããšã§ïŒç¹ã«æ¬¡ãåãã: \r\n\r\n- $n$ ã $2,3$ãšäºãã«çŽ ã§ããå Žå( $n = 1,5,7,11,13$ )ïŒ$d_n = 1$ïŒããªãã¡ $f(n) = n$ ã§ãªããã°ãªããªãïŒãã£ãŠ $f$ 㯠$8$å
éå $S = \\\\{ 2,3,4,6,8,9,10,12 \\\\}$ ã®çœ®æã§æ±ºãŸãïŒ\r\n- $n\\in S$ ã $3$ ã®åæ°ã§ãªãå Žå ( $n = 2,4,8,10$ )ïŒ$d_n \\neq 3$ïŒ\r\n- $n\\in S$ ã å¶æ°ã§ãªãå Žå ( $n = 3,9$ )ïŒ$d_n \\neq 2$ïŒ\r\n- $n = 6, 12$ ã®å ŽåïŒ$d_n$ 㯠$1,2,3$ ã®ã©ã®å¯èœæ§ãããïŒ\r\n\r\nã以éïŒ$n\\in S$ ã«å¯Ÿã㊠$O_n$ 㯠$n$ ã®$f$ã«ããè»éïŒããªãã¡éå $\\left\\\\{ n, f(n), \\dots, f^{d_n - 1(n)} \\right\\\\}$ ãè¡šããšããïŒ$O_n$ ã®**é·ã** (å
ã®åæ°) 㯠$d_n$ ã§ããïŒéå $S$ 㯠$O_n$ ($n\\in S $) ã®ããã€ãã§åå²ãããïŒ ãã®åå²ã®å¯èœæ§ã«ã€ããŠèå¯ããïŒ\r\n\r\nããŸãïŒ$S$ ã®åå²ã«**é·ã $3$ ã®è»éã¯é«ã
$1$ ã€ããå«ãŸããªã**ïŒå®éïŒé·ã $3$ ã®è»éã«å«ãŸããæ°ã¯ $3$ ã®åæ°ã§ãªããã°ãªããïŒéå$S$ ã« å«ãŸãã $3$ ã®åæ°ã¯ $6$ åæªæºã§ããããã§ããïŒåæ§ã®è°è«ã§ïŒ$S$ ã«å±ã å¶æ°ã¯ $6$ åãªã®ã§ïŒ**é·ã $2$ ã®è»é㯠$3$ å以äžã§ãã.** \r\n\r\nãé·ã $2,3$ ã®è»éã®æ°ããããã $x_2,x_3$ ãšããŠïŒ$(x_2,x_3)$ ã«é¢ããŠå Žååããããšä»¥äžã®ããã«ãªãïŒ\r\n\r\n- $(x_2,x_3) = (0,0)$ ã®ãšãïŒãã¹ãŠãåºå®ç¹ãªã®ã§ $1$ åïŒ \r\n- $(x_2,x_3) = (1,0)$ ã®ãšãïŒé·ã $2$ ã®è»éã«å
¥ãã¹ãæ°ã¯ $2,4,6,8,10,12$ ã® $6$ åãªã®ã§ ${}\\_{6}\\mathrm{C}\\_{2} = 15$ åïŒ \r\n- $(x_2,x_3) = (0,1)$ ã®ãšãïŒé·ã $3$ ã®è»éã«å
¥ãã¹ãæ°ã¯ $3,6,9,12$ã®4åã§ããïŒåé åãèããããšã§ $\\dfrac{{}\\_{4}\\mathrm{P}\\_{3}}{3} = 8$åïŒ\r\n- $(x_2,x_3) = (2,0)$ ã®ãšãïŒ$2,4,6,8,10,12$ ãã 4 ã€éžã㧠2 ã€ãã€ã«åããæ¹æ³ãèãïŒ$\\dfrac{{}\\_{6}\\mathrm{C}\\_{4}\\cdot {}\\_{4}\\mathrm{C}\\_{2}}{2!} = 45$åïŒ \r\n- $(x_2,x_3) = (1,1)$ ã®ãšãïŒé·ã$2, 3$ã®è»éããããã $S_2, S_3$ ãšããïŒ$S_3$ ã«ã¯ $6$ ã $12$ ã®å°ãªããšãäžæ¹ãå
¥ã£ãŠããïŒä»¥äžã®3ã±ãŒã¹ã«åããŠèããããšã§ïŒ$24+20+20 = 64$åã®$f$ãåŸãïŒ\r\n\r\n (**Case 1.1.**) $6,12\\in S_3$ ã®ãšã, $S_3$ãšããŠããããã®ã¯ $12\\mapsto 6 \\mapsto i\\mapsto 12$ãš$12\\mapsto i\\mapsto 6\\mapsto 12$ ($i=3,9$) ã®4ãã¿ãŒã³ã§ããïŒ$S_2$ 㯠$2,4,8,10$ ãã2ã€ã®æ°åãéžãã§æ§æããã°ããã®ã§, ${}_\\{4}\\mathrm{C}_\\{2} = 6$ãã¿ãŒã³ããã. ãã£ãŠ24åã® $f$ ãåŸãïŒ\r\n\r\n (**Case 1.2.**) $12\\in S_3$ ã〠$6\\notin S_3$ ã®ãšãïŒ$S_3$㯠$12\\mapsto 3\\mapsto 9$ ã $12\\mapsto 9\\mapsto 3$ ã®2å. $S_2$㯠$2,4,6,8,10$ ãã2ã€ã®æ°åãéžãã§æ§æããã°ããã®ã§ ${}\\_{5}\\mathrm{C}\\_{2} = 10$ åïŒãã£ãŠ20åã®$f$ãåŸãïŒ\r\n\r\n (**Case 1.3.**) $6\\in S_3$ ã〠$12\\notin S_3$ ã®ãšãã **Case 1.2.** ãšåæ§ã«åæ§ã« 20åïŒ\r\n \r\n- $(x_2,x_3) = (3,0)$ ã®ãšãïŒé·ã2ã®è»é3ã€ã $2,4,6,8,10,12$ ããäœãæ¹æ³ã®åæ°ã ã$f$ãåŸãããã®ã§ïŒ$\\dfrac{{}\\_{6}\\mathrm{C}\\_{2}\\cdot {}\\_{4}\\mathrm{C}\\_{2}\\cdot {}\\_{2}\\mathrm{C}\\_{2}}{3!} = 15$åïŒ\r\n- $(x_2,x_3) = (2,1)$ ã®ãšãïŒä»¥äžã®ããã«$12 + 30 + 30 = 72$åã®$f$ãåŸãïŒå¯äžã®é·ã3ã®è»éã$S_3$ãšããïŒ\r\n\r\n (**Case 2.1.**) $6,12 \\in S_3$ ã®ãšãïŒ*Case 1.1*ãšåæ§ã« 4éãã® $S_3$ ãããïŒé·ã2ã®è»é2ã€ã®åãæ¹ã¯$2,4,8,10$ ãäºã€ã«åããæ¹æ³ã ãããã®ã§ $\\dfrac{{}\\_{4}\\mathrm{C}\\_{2}}{2!} = 3$ éãïŒãã£ãŠ12åã®$f$ãåŸãïŒã\r\n \r\n (**Case 2.2.**) $12\\in S_3, 6\\notin S_3$ã®å ŽåïŒ$S_3$ã¯2éã( **Case 1.2** ãšåæ§). é·ã2ã®è»é2ã€ã¯$2,4,6,8,10$ ãäºã€ã«åããæ¹æ³ã ãããã®ã§, $\\dfrac{{}\\_{5}\\mathrm{C}\\_{2} \\cdot {}\\_{3}\\mathrm{C}\\_{2}}{2!} = 15$ å. ãã£ãŠ30åã® $f$ ãåŸã. \r\n\r\n (**Case 2.3.**) $6\\in S_3,\\quad 12\\notin S_3$ã®å ŽåïŒ**Case 2.2.**ãšåæ§ã«30ååŸããã. \r\n\r\nã以äžããïŒæ±ãã $f$ ã®åæ°ã¯\r\n$$\r\n1 + 15 + 8 + 45 + 64 + 15 + 72 = \\mathbf{220}\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9845"
}
] | ã$1$ ä»¥äž $13$ 以äžã®æŽæ°ã«å¯ŸããŠå®çŸ©ããïŒ$1$ ä»¥äž $13$ 以äžã®æŽæ°å€ããšãé¢æ° $f$ ã§ãã£ãŠïŒãã¹ãŠã® $n=1,2,\dots, 13$ ã«å¯ŸããŠ
$$
f^n(n) = n
$$
ãæºãããã®ã®åæ°ã解çããŠãã ããïŒ\
ããã ãïŒ$f^{1}=f, ~ f^{k}(x)=f\bigl(f^{k-1}(x)\bigr)$ ãšããŸãïŒ |
NFæ¯2023 | https://onlinemathcontest.com/contests/nfhai2023 | https://onlinemathcontest.com/contests/nfhai2023/tasks/10050 | L | NFæ¯2023(L) | 100 | 26 | 33 | [
{
"content": "$AC$ ãš $PQ$ ã®äº€ç¹ã $E$ ãšãããš, $AE:CE=3:2$ ãã, $CE=6$ ã§ãã. $PQ \\parallel BC$ ã§ãããã, $4$ ç¹ $A, P, Q, D$ ã¯åäžååšäžã«ãã. ãã£ãŠ, $\\angle{ABD}=\\angle{QCE}$, $\\angle{BAD}=\\angle{CQE}$ ãæãç«ã€ãã, $\\triangle{BAD}\\sim \\triangle{CQE}$ ã§ãã. $BA:BD=CQ:CE$ ã§ãããã, $CQ=\\dfrac{90}{13}$, $DQ=\\dfrac{60}{13}$ ã§ãã. $AD$ ãš $BC$, $PQ$ ã®äº€ç¹ããããã $F$, $G$ ãšãããš, $EG=\\dfrac{3}{5}CF$, $QG=\\dfrac{2}{5}CF$ ãã, $EQ:GQ=1:2$ ã§ãã. äžè§åœ¢ $ABC$ ãäºç蟺äžè§åœ¢ã§ããããšãã, \r\n$$\\angle{CEQ}=\\angle{ACB}=\\angle{ABC}=\\angle{QDG}$$\r\nã§ãã, $4$ ç¹ $C, E, D, G$ ã¯åäžååšäžã«ãããšåãã. ãã£ãŠ, æ¹ã¹ãã®å®çãã, $EQ\\cdot QG=CQ\\cdot DQ=\\dfrac{60}{13}\\cdot\\dfrac{90}{13}$ ã§ãã. $EQ:GQ=1:2$ ãšããããŠ, $EQ=\\dfrac{30}{13}\\sqrt{3}$, $GQ=\\dfrac{60}{13}\\sqrt{3}$ ã§ãã. $\\angle{BDA}=\\angle{CDF}$ ãã, $DF$ 㯠$\\angle{BDC}$ ã®å€è§ã®äºçåç·ã§ãããã, $BF:FC=BD:CD$ ã§ãã, $BC:CF=19:150$ ã§ãã. ãã£ãŠ, $PE:EG=BC:CF=19:150$ ã§ãããã, $PE=\\dfrac{57}{65}\\sqrt{3}$ ãåŸã. 以äžãã, $PQ=PE+EQ=\\dfrac{207}{65}\\sqrt{3}$ ã§ãã, 解çãã¹ãå€ã¯ $\\mathbf{128612}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/10050"
},
{
"content": "ã³ã³ãã¹ãäžã«å®æœããèšç®ã玹ä»ããŸãïŒçžäŒŒãèŠã€ãããããããªè£å©ç·ãèŠã€ããã®ãèŠæã ã£ãããã人ã«ã¯è¯ããããããŸããïŒãã ãïŒæ¹ã¹ãã®å®çãå¹³è¡ç·ã®æ¯ãçšããŠãããïŒäžå¹³æ¹ã®å®çã掻çšããããã®è£å©ç·ãåŒããŠããã®ã§ïŒçŽç²ãªèšç®ã®ã¿ã®ææ³ã§ã¯ãããŸããïŒ\r\n___\r\n$D$ ãéãïŒ$BC$ã«å¹³è¡ãªçŽç·ãš $AB,AC$ ã®äº€ç¹ãé ã« $X,Y$ ãšããïŒ$XP:PB=DQ:QC=2:3$ ããïŒ$XP=4,AX=AY=5$ ãåŸãïŒ\r\n$XY,BC$ ã®äžç¹ãé ã« $N,M$ ãšããïŒ$\\triangle ABC$ã¯äºç蟺äžè§åœ¢ã§ãã£ãããïŒ$A,N,M$ ã¯åäžçŽç·äžã§ïŒ$AM \\perp BC$ ã§ããïŒ\r\n$\\angle{BAM}=\\dfrac{1}{2}\\angle{BAC}=\\theta$ ãšããïŒãŸãïŒ$DX$ ãšå€æ¥åã®äº€ç¹($\\neq D$) ã $D^{\\prime}$ ãšããïŒ \r\n$\\theta$ ãçšã㊠$BD(=13)$ ãè¡šãïŒãããããšã«äžè§æ¯ãèšç®ããã®ã第äžç®æšã§ããïŒ(ãã®ããã«ïŒé·ããã€ãã¿ãããå¹³è¡ç·ãäžå¹³æ¹ã®å®çã䜿ããããåçŽãªç·ãåŒããïŒ)\r\n$YD=l$ ãšããïŒæ¹ã¹ãã®å®çãã $D^{\\prime}Y\\cdot YD = AY\\cdot YC =50$ ã§ããïŒäžæ¹ïŒ$YD^{\\prime} = 2YN+XD^{\\prime} = 10\\sin\\theta+l$ ãšåããããšïŒ$l(l+10\\sin\\theta) =50$ ãåŸãã®ã§ïŒããã解ããšïŒ$l \\gt 0$ ããïŒ\r\n$$\r\nl = -5\\sin\\theta + 5\\sqrt{\\sin^{2}\\theta+2}\r\n$$\r\nãšãªãïŒããã«ããïŒ$ND = NY+YD =5\\sqrt{\\sin^{2}\\theta+2}$ ã§ããïŒ$BM=15\\sin\\theta$ ãšåããããšïŒäžå¹³æ¹ã®å®çãã以äžã®æ¹çšåŒãç«ã€ïŒ\r\n$$\r\n\\begin{aligned}\r\n13^2 &= BD^2 = (BM+ND)^2+NM^2 \\\\\\\\\r\n&= (15\\sin\\theta + 5\\sqrt{\\sin^{2}\\theta+2})^2 + (10\\cos\\theta)^2\\\\\\\\\r\n&= 25(10\\sin^2\\theta+2+6\\sqrt{\\sin^2\\theta(\\sin^2\\theta+2)})+100(1-\\sin^2\\theta)\r\n\\end{aligned}\r\n$$\r\näžåŒã§ $\\sin^2\\theta = t$ ãšçœ®ããŠå床æŽçãããšä»¥äžã®éã\r\n$$\r\n\\begin{aligned}\r\n169 &= 150+150t+150\\sqrt{t(t+2)}\\\\\\\\\r\n\\Leftrightarrow (\\frac{19}{150}-t)&=\\sqrt{t(t+2)}\\\\\\\\\r\n\\end{aligned}\r\n$$\r\nããã解ããŠ(çµå± $t$ ã®äžæ¬¡åŒã«ãªããã倧å€ã§ã¯ãªã)ïŒ$\\sin^2\\theta = t = \\dfrac{361}{50700}$ ãåŸãïŒäžæ¹ã§ïŒä»åèŠæ±ãããŠãã $PQ$ ã«é¢ããŠã¯ïŒå¹³è¡ç·ã®æ§è³ªããïŒ\r\n$$\r\n\\begin{aligned}\r\nPQ &= \\frac{3XD+2BC}{5} \\\\\\\\\r\n&= \\frac{15\\sin\\theta + 15\\sqrt{\\sin^{2}\\theta+2}+60\\sin\\theta}{5}\\\\\\\\\r\n&=15\\sin\\theta + 3\\sqrt{\\sin^{2}\\theta+2} \\\\\\\\\r\n&=15\\sqrt{t} + 3\\sqrt{t+2}\\\\\\\\\r\n&=\\frac{15\\cdot 19\\sqrt{3}}{390} + \\frac{3\\cdot 319\\sqrt{3}}{390}\\\\\\\\\r\n&=\\frac{207\\sqrt{3}}{65}\r\n\\end{aligned}\r\n$$\r\nãšãªãïŒ",
"text": "äžè§é¢æ°ãçšããèšç®",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/10050/359"
}
] | ã$AB=AC=15$ ãªãäžè§åœ¢ $ABC$ ãããïŒãã®å€æ¥åã®åŒ§ $AC$ äžïŒ$B$ ãå«ãŸãªãæ¹ïŒã®ç¹ $D$ ã $BD=13$ ãã¿ãããŸãïŒããã«ïŒãããã蟺 $AB$, $CD$ äžã«ããç¹ $P,Q$ ã
$$AP:BP=CQ:DQ=3:2, \quad PQ\parallel BC$$
ãã¿ãããŸããïŒãã®ãšãïŒç·å $PQ$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{\sqrt{a}}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ãã. |
NFæ¯2023 | https://onlinemathcontest.com/contests/nfhai2023 | https://onlinemathcontest.com/contests/nfhai2023/tasks/9846 | M | NFæ¯2023(M) | 100 | 31 | 41 | [
{
"content": "$2^{n! + 1} - 1$ ã $2n+3$ ã§å²ãåãããã㪠$n$ ã®å¿
èŠååæ¡ä»¶ãæ±ããïŒ$n=1$ã¯äžé©ã§ããã®ã§ïŒä»¥é $n\\geq 2$ãšããïŒ\r\n\r\nãŸãïŒ$2^{n! + 1} - 1$ ã $2n+3$ ã§å²ãåãããšä»®å®ããïŒ \r\n\r\nã$2n+3$ ã® çŽ å æ° $p$ ãä»»æã«ãšãïŒ$p\\lt 2n+3$ ã§ãããšä»®å®ããïŒ$2n+3$ ã¯å¥æ°ãªã®ã§ $p$ ãå¥æ°ã§ããïŒ$2n+3=pk$ ($k\\geq 2$)ãšæžãããšãããšïŒ$p \\leq \\frac{2n+3}{2} $ ãã $p\\leq n+1$ïŒãã£ãŠ $n!+1$ ã $p-1$ ã§å²ã£ãäœã㯠$1$ ã§ããïŒæ¡ä»¶ãã $2^{n! + 1} \\equiv 1 \\pmod{p}$ ã§ããïŒãã§ã«ããŒã®å°å®çãã $2^{p-1}\\equiv 1\\pmod{p}$ ã§ããããïŒ \r\n$$2^{\\mathrm{gcd}(p-1, n!+1)} = 2^1 \\equiv 1 \\pmod{p}$$ \r\nãåŸããïŒæããã«ççŸã§ããïŒãã£ãŠ **$2n+3$ ã¯çŽ æ°ã§ããå¿
èŠããã**ã®ã§ïŒ$2n+3 = p$ ãšããïŒ$2^{(\\frac{p-3}{2})! + 1} \\equiv 1\\pmod{p}$ ãšãªããããªçŽ æ° $p$ ã決å®ãããïŒ\r\n \r\nã$2^{d} \\equiv 1\\pmod{p}$ ãæºããæå°ã®æ£ã®æŽæ° $d$ ($2 \\bmod{p}$ ã®äœæ°) ãèããïŒæããã« $d\\leq p-1$ïŒã㟠$d\\leq n$ ãšä»®å®ãããšïŒ$2^d, 2^{n! + 1}\\equiv 1 \\pmod{p}$ ããåæ§ã« $2\\equiv 1 \\pmod{p}$ ãåŸãããããäžé©ïŒãã£ãŠ $n \\lt d$ïŒããªãã¡ $\\frac{p-1}{2} \\leq d$ ãåŸãïŒ \r\n\r\nãäœæ°ã®äžè¬è«ã«ããïŒ$d$ 㯠$p-1$ ãš $n! + 1$ ãå²ãåãïŒ$d = p-1$ ãšä»®å®ãããš $p-1$ ã $n! + 1$ ãå²ãåããïŒ$n!+1$ã¯å¥æ° ( $\\because n\\geq 2$ )ã§ãã $p-1$ã¯å¶æ°ãªã®ã§äžé©ïŒãã£ãŠ $d \\lt p-1$ ã§ããïŒ$\\frac{p-1}{2} \\leq d \\lt p-1$ ã〠$d$ 㯠$p-1$ã®çŽæ°ãªã®ã§ \r\n$$d = \\frac{p-1}{2}$$ \r\nã確å®ããïŒããã«ãã®ãšãïŒ$2^{\\frac{p-1}{2}}\\equiv 1\\pmod{p}$ ãã $2\\bmod{p}$ ã¯å¹³æ¹å°äœãªã®ã§ïŒå¹³æ¹å°äœç¬¬äºè£å
åã«ãã $p\\equiv 1,7\\pmod{8}$ ã§ããïŒ$d-1 = \\frac{p-3}{2}$ ã«æ³šæããŠïŒ\r\n$$2^{(d-1)! + 1} \\equiv 1\\pmod{p}, \\quad 2^d \\equiv 1\\pmod{p}$$ \r\nãåŸãïŒãã£ãŠ\r\n$$2^{\\mathrm{gcd}((d-1)! + 1, d)} \\equiv 1\\pmod{p}$$\r\nãå°ãããïŒããã§ææ°ã«ã€ããŠïŒæ¬¡ã«æ³šæããïŒ\r\n\r\n**è£é¡.** $d = \\frac{p-1}{2}$ ã $1$ïŒ ãŸãã¯åææ°ã§ãããšã \r\n$$\\mathrm{gcd}((d-1)! + 1, d) = 1.$$\r\n\r\n**(蚌æ)**\r\nããããã®å Žåã«ãã㊠$(d-1)!$ ã $d$ ã®åæ°ã§ããããšã瀺ãã°ããïŒ\r\n$d=1$ã®ãšãã¯æããïŒ$p\\neq 9$ ãªã®ã§ $d\\neq 4$ ã«æ³šæïŒ$d$ã $4$ ãšç°ãªãåææ°ã§ããå ŽåïŒ$d$ 㯠ããå¥çŽ æ° $q$ ã®äºä¹ã§ãããïŒ$1 \\lt a \\lt b \\lt d$ ã§ãããããªæŽæ° $a,b$ ã«ãã£ãŠ $d = ab$ ãšæžããïŒåè
ã®å ŽåïŒ$(d-1)!$ ã¯ã$q\\cdot 2q$ ã§å²ãããã $d$ ã®åæ°ã§ããïŒåŸè
ã®å ŽåïŒ$(d-1)!$ 㯠$a\\cdot b$ ã§å²ãããã $d$ ã®åæ°ã§ããïŒ(**蚌æçµ**)\r\n\r\nããã£ãŠ è£é¡ã®ãã㪠$d$ ã«é¢ããŠã¯ $2^1 \\equiv 1 \\pmod{p}$ ãšãªãã®ã§äžé©ïŒãã£ãŠ **$d$ã¯çŽ æ°ã§ãªããã°ãªããªãïŒ** \r\n\r\nããŸãïŒ$p\\equiv 1\\pmod{8}$ ã®å Žå㯠$d$ ã $4$ ã®åæ°ã«ãªãã®ã§äžé©ïŒãã£ãŠã$p\\equiv 7\\pmod{8}$ïŒããªãã¡ $d\\equiv 3\\pmod{4}$ã§ããããšãå¿
èŠïŒ\r\n\r\n以äžããŸãšãããšïŒ **ã$4$ ã§å²ã£ãŠ $3$ äœããœãã£ãŒãžã§ã«ãã³çŽ æ°$d$ (ããªãã¡ $d$ ãš $2d+1$ ãçŽ æ°) ãçšã㊠$n = d-1$ ãšæžããããšããå¿
èŠã§ããïŒ**\r\n\r\nãéã«äžã®ãã㪠$n$ ãååã§ããããšã瀺ãïŒå®éïŒ$(d-1)! + 1$ ã¯ãŠã£ã«ãœã³ã®å®ç ãã $dr$ (ãã ã $r$ ã¯å¥æ°) ãšæžãããšãã§ãïŒ$2d + 1 \\equiv 7\\pmod{8}$ ããã³ç¬¬äºè£å
åãã $2\\bmod{(2d+1)}$ ã¯å¹³æ¹å°äœã§ããã®ã§ïŒãã§ã«ããŒã®å°å®çïŒ$r$ ãå¥æ°ã§ããããšãã \r\n$$2^{dr}\\equiv 2^{d(r-1) + d} \\equiv 1 \\pmod{(2d+1)}$$\r\nãšãªãïŒã€ãŸãïŒ$\\frac{2^{(d-1)! + 1} -1}{2d+1}$ã¯æŽæ°ãšãªãïŒ\r\n\r\nããã£ãŠè§£çããã¹ã㯠$2\\leq d \\leq 201$ ãªããœãã£ãŒãžã§ã«ãã³çŽ æ° $d$ ã§ãã£ãŠ$d\\equiv 3\\pmod{4}$ ãšãªããã®ãã¹ãŠã«å¯Ÿãã $(d-1)$ ã®ç·ç©ã§ããïŒãã®ãã㪠$d$ ã¯\r\n$$ 3,11,23,83,131,179,191$$\r\nã§ãã ( $d \\gt 3$ ã®ãšã㯠$d\\equiv 11\\pmod{12}$ ãå©çšãããšæ¢ãããã)ïŒ \r\n\r\nã以äžãã, æ±ããç·ç©ã¯\r\n$$\\begin{aligned}\r\n& (3-1)(11-1)(23-1)(83-1)(131-1)(179-1)(191-1) \\\\\\\\\r\n=& \\mathbf{158629328000}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9846"
}
] | ã$1$ ä»¥äž $200$ 以äžã®æŽæ° $n$ ã§ïŒ
$$2^0 + 2^1 + 2^2 + 2^3 + \dots + 2^{n!- 2} + 2^{n! - 1} + 2^{n!}$$
ã $2n+3$ ã§å²ãåãããããªãã®ããã¹ãŠæ±ãïŒãã®**ç·ç©**ã解çããŠãã ããïŒ |
NFæ¯2023 | https://onlinemathcontest.com/contests/nfhai2023 | https://onlinemathcontest.com/contests/nfhai2023/tasks/9862 | N | NFæ¯2023(N) | 100 | 3 | 12 | [
{
"content": "ãç¹æ§æ¹çšåŒã¯\r\n$$t^2-xt-y=0$$\r\nã§ããïŒ$x,y$ ãåºå®ãããšãïŒããã®è§£ã $\\alpha,\\beta$ ãšãããšïŒä»¥äžãæãç«ã€ïŒ\r\n$$a_n=\\begin{cases}\r\n\\dfrac{\\beta^n-\\alpha^n}{\\beta-\\alpha} & (\\alpha\\neq \\beta) \\\\\\\\\r\nn\\alpha^{n-1} & (\\alpha=\\beta)\r\n\\end{cases}$$\r\nã以äžïŒç¹æ§æ¹çšåŒã $\\mathbb{F}_p$ ä¿æ°ãšããŠèãïŒä»¥äžã®äžã€ã®ãã¿ãŒã³ã«å ŽååãããŠèããïŒãã ãïŒ$\\mathbb{F}_p$ ã¯äœæ° $p$ ã®æéäœã§ããïŒ\r\n\r\n+ (1) $\\alpha=\\beta$ã§ãããããªå Žå $(p-1)$éã\r\n+ (2) $\\alpha\\neq \\beta$ãã€è§£ã$\\mathbb{F}_p$äžã«ååšããå Žå $\\dfrac{(p-1)(p-2)}{2}$éã\r\n+ (3) 解 $\\alpha,\\beta$ ã $\\mathbb{F}\\_p$ äžã«ååšããªãå ŽåïŒãã®ãšã解ã¯$\\mathbb{F}_{p^2}\\setminus \\mathbb{F}_p$ã®å
ã§ããïŒ$\\dfrac{p(p-1)}{2}$éã\r\n\r\n\r\n(1)ã«ã€ããŠ\r\n\r\nãã®ãšã,äžè¬é
ã¯\r\n$$a_n=n\\alpha^{n-1}$$\r\nã§ãã.ãããŠ, $k$ãåšæãšãããšã\r\n$$n\\alpha^{n-1}\\equiv (n+k)\\alpha^{n+k-1}$$\r\nåå倧ããªæŽæ°$m$ã«ã€ããŠ,$n=mp$ãšãããšãã«çå·ãæç«ãã.\r\n\r\n$$\\begin{aligned}\r\nmp\\alpha^{mp-1}&\\equiv (mp+k)\\alpha^{mp+k-1}\\\\\\\\\r\n0&\\equiv k\\alpha^{mp+k-1}\\\\\\\\\r\n\\end{aligned}$$\r\n\r\nãã£ãŠ,$k$ã$p$ã®åæ°ã§ããããšãå¿
èŠã§ãã.ããã«,$n=mp+1$ã®å Žåã«ã€ããŠèå¯ãããš\r\n$$\\begin{aligned}\r\n(mp+1)\\alpha^{mp}&\\equiv (mp+1+k)\\alpha^{mp+k}\\\\\\\\\r\n\\alpha^{mp}&\\equiv \\alpha^{mp+k}\\\\\\\\\r\n\\end{aligned}$$\r\nãã£ãŠ,$\\alpha^k=1$ã§ããããšãå¿
èŠã§ãã.\r\n\r\nãã£ãŠ,åšæãšãªãããã«ã¯,$p$ãš$\\alpha$ã®äœæ°ã§äž¡æ¹å²ãåããããšãå¿
èŠã§ãã.éã«ãã®å Žå$a_{n+k}\\equiv a_n \\forall n\\in\\mathbb{N}$ãªã®ã§åšæãšããŠã®æ¡ä»¶ãæºãããŠãã.ãã£ãŠ,$f(x,y)$ã¯$p$ãš${\\rm ord}(\\alpha)$ã®æå°å
¬åæ°ã§ãã.\r\n\r\nããã§,$\\alpha$ã®äœæ°ã¯$p-1$ã®çŽæ°ãšãªã.ããã¯$p$ãšã¯äºãã«çŽ ãªã®ã§$f(x,y)=p\\cdot {\\rm ord}(\\alpha)$ã§ãã.ããã«,$\\mathbb{F}\\_p$ã®ä¹æ³çŸ€ã¯$\\mathbb{Z}\\/(p-1)\\mathbb{Z}$ã«ååã§ããããšã«æ°ãã€ãããš,\r\näœæ°ã$d$ã§ãããããª$\\alpha\\in \\mathbb{F}\\_p^{\\times}$ã®åæ°ã¯ããŒã·ã§ã³ãé¢æ°ã䜿ã£ãŠ$\\varphi(d)$ãšæžãã.\r\nãã£ãŠ,(1)ã®ç¯å²ã§ã®ç·åã¯\r\n$$\\sum_{d|(p-1)}dp\\varphi(d)$$\r\nã§ãã.\r\n\r\n\r\n\r\n(2)ã«ã€ããŠ\r\n\r\nãã®ãšã,äžè¬é
ã¯\r\n\r\n$$a_n=\\dfrac{\\beta^n-\\alpha^n}{\\beta-\\alpha}$$\r\n\r\nã§ãã.\r\n\r\nããã«,\r\n$$(\\alpha,\\beta);1\\leq \\alpha\\lt \\beta\\leq p-1$$\r\nã®ãã¢ããããã1ã€ãã€ç»å Žããã®ã§,ãããã«ã€ããŠã®ç·åãæ±ãã.\r\n\r\nåšæã$k$ã ãšããå Žå,ããæŽæ°$m$ãååšããŠ,\r\n$$a_{m(p-1)}\\equiv a_{m(p-1)+k}\\pmod{p}$$\r\nã§ãããã,\r\n$$\\beta^{m(p-1)}-\\alpha^{m(p-1)}=\\beta^{m(p-1)+k}-\\alpha^{m(p-1)+k}$$\r\nã§ãã.ããã§,ãã§ã«ããŒã®å°å®çãã,\r\n$$0=\\beta^{k}-\\alpha^{k}$$\r\n\r\nããã«,\r\n$$a_{m(p-1)+1}\\equiv a_{m(p-1)+k+1}\\pmod{p}$$\r\nã§ãããã,\r\n$$\\beta^{m(p-1)+1}-\\alpha^{m(p-1)+1}=\\beta^{m(p-1)+k+1}-\\alpha^{m(p-1)+k+1}$$\r\nã§ããã,\r\n$$\\beta-\\alpha=\\beta^{k+1}-\\alpha^{k+1}$$\r\nãå¿
èŠã ã,\r\n$$\\beta^{k+1}-\\alpha^{k+1}=\\beta^{k+1}-\\alpha \\cdot \\beta^{k}=\\beta^k (\\beta-\\alpha)$$\r\nã§ãã.ãã£ãŠ,$k$ãåšæã§ããããã«ã¯\r\n$$\\alpha^k\\equiv \\beta^k\\equiv 1\\pmod{p}$$\r\nãå¿
èŠã§ãã.éã«ãã®ãšãã«åšæãšãªã.\r\nãã£ãŠ,\r\n$$f(x,y)={\\rm lcm}({\\rm ord}(\\alpha),{\\rm ord}(\\beta))$$\r\n\r\nã§ãã.\r\n$1\\leq \\alpha,\\beta\\leq p-1$ã®ç¯å²å
ã§ã®${\\rm lcm}({\\rm ord}(\\alpha),{\\rm ord}(\\beta))$ã®ç·åã¯\r\n$$\\sum_{d_1|(p-1)}\\sum_{d_2|(p-1)}\\varphi(d_1)\\varphi(d_2){\\rm lcm}(d_1,d_2)$$\r\nã§ãã.ããã«,$1\\leq \\alpha=\\beta\\leq p-1$ã®ç¯å²å
ã§ã®${\\rm lcm}({\\rm ord}(\\alpha),{\\rm ord}(\\beta))$ã®ç·åã¯\r\n$$\\sum_{d|(p-1)}d\\varphi(d)$$\r\nã§ãã.\r\n\r\nãã£ãŠ,(2)ã®å Žåã®çãã®ç·åã¯\r\n\r\n$$\\dfrac{1}{2}\\sum_{d_1|(p-1)}\\sum_{d_2|(p-1)}\\varphi(d_1)\\varphi(d_2){\\rm lcm}(d_1,d_2)-\\dfrac{1}{2}\\sum_{d|(p-1)}d\\varphi(d)$$\r\nã§ãã.\r\n\r\n(3)ã«ã€ããŠ\r\n\r\nãã®ãšãã(2)ãšåæ§ã«äžè¬é
ã¯\r\n\r\n$$a_n=\\dfrac{\\beta^n-\\alpha^n}{\\beta-\\alpha}$$\r\n\r\nã§ãã.ãã ã,$\\alpha,\\beta$ã¯$\\mathbb{F}_{p^2}\\setminus \\mathbb{F}_p$ã®ç¯å²å
ãåã.ãã ã,$\\alpha$ãš$\\beta$ãå
¥ãæ¿ããŠãããã®ã¯åäžèŠããŠãããã,該åœã®$(x,y)$ã®çµã¿åããã¯$\\dfrac{p(p-1)}{2}$éãã§ãã.\r\n\r\n(2)ãšåæ§ã«ãããš,\r\n$$f(x,y)={\\rm lcm}({\\rm ord}(\\alpha),{\\rm ord}(\\beta))$$\r\nã ã,ãã®ãšãã®ordãšã¯,$\\mathbb{F}_{p^2}^{\\times}$ã«ãããäœæ°ã§ãã.\r\n\r\nããã«ãã®ãšã,$\\alpha,\\beta$ã¯$\\mathbb{F}\\_{p^2}$ã®å
ã®äžã§å
±åœ¹å
ã®é¢ä¿ã«ãªã£ãŠãã.ãã£ãŠäœæ°ã¯çãã.\r\nã€ãŸã${\\rm ord}(\\alpha)={\\rm ord}(\\beta)$ãšããããšã§ãã.ãªã®ã§,çµå±åšæã®ç·åã¯\r\n$$\\dfrac{1}{2}\\sum_{\\alpha\\in\\mathbb{F}\\_{p^2}\\setminus\\mathbb{F}\\_p}{\\rm ord}(\\alpha)$$\r\nããã§,å®ã¯$\\mathbb{F}_{p^2}^{\\times}$ã¯çŸ€$\\mathbb{Z}\\/(p^2-1)\\mathbb{Z}$ã«ååã§ããããšã«æ³šæ.\r\nããã«ãã®ãšã,$\\mathbb{Z}\\/(p^2-1)\\mathbb{Z}$ã®å
ã®äžã§$(p+1)$ã®åæ°ã§ãããããªãã®$(p-1)$åã$\\mathbb{F}_p$ã®å
ã«å¯Ÿå¿ããŠãã.\r\nãã£ãŠ,(3)ã«ã€ããŠã®ç·åã¯\r\n\r\n$$\\dfrac{1}{2}\\sum_{d|(p^2-1)}d\\varphi(d)-\\dfrac{1}{2}\\sum_{d|(p-1)}d\\varphi(d)$$\r\n\r\nã§ãã.\r\n\r\nçµå±åèšãããš,æçµçãªçãã¯\r\n\r\n$$(p-1)\\sum_{d|(p-1)}d\\varphi(d) + \\dfrac{1}{2}\\sum_{d|(p^2-1)}d\\varphi(d)+\\dfrac{1}{2}\\sum_{d_1|(p-1)}\\sum_{d_2|(p-1)}\\varphi(d_1)\\varphi(d_2){\\rm lcm}(d_1,d_2)$$\r\n\r\nãšãªã.ãã®å€ã$p-1$ã$p^2-1$ã®çŽæ°å
šãŠã«ã€ããŠå€ãæ±ããã®ã¯äººåã§ã¯å€§å€ã§ãã.\r\n\r\n䟿å®äžä»¥äžã®ããã«é¢æ°$F(n),G(n)$ãå®ãã.\r\n\r\n$$F(n):=\\sum_{d|n} d\\varphi(d); G(n):=\\sum_{d_1|n}\\sum_{d_2|n}\\varphi(d_1)\\varphi(d_2){\\rm lcm}(d_1,d_2)$$\r\n\r\nãã®ãšã,æ±ããã¹ãçãã¯\r\n\r\n$$(p-1)F(p-1) + \\dfrac{1}{2}F(p^2-1)+\\dfrac{1}{2}G(p-1)$$\r\n\r\nã€ãŸã,$p=2017$ã§ãããã,\r\n\r\n$$2016\\cdot F(2016) + \\dfrac{1}{2}F(2016\\cdot 2018)+\\dfrac{1}{2}G(2016)$$\r\n\r\nå®ã¯$F(n),G(n)$ã¯ä¹æ³çé¢æ°ã§ãã.ã€ãŸã,$n,m$ãäºãã«çŽ ãªæ£ã®æŽæ°ãšããå Žå,$F(nm)=F(n)F(m),G(nm)=G(n)G(m)$ãšãªããšããæ§è³ªããã.\r\n\r\nãã®æ§è³ªã䜿ãããšã§,æ±ããã¹ãçãã¯\r\n\r\n$$2016\\cdot F(2^5)F(3^2)F(7) + \\dfrac{1}{2}F(2^6)F(3^2)F(7)F(1009)+\\dfrac{1}{2}G(2^5)G(3^2)G(7)$$\r\n\r\nã§ãããšããã.ããããã«ã€ããŠçããæ±ãã.\r\n\r\n$$\\begin{aligned}\r\nF(7)&=&1\\cdot \\varphi(1)+7\\cdot \\varphi(7)&=&1\\cdot 1+7\\cdot 6&=&43\\\\\\\\\r\nF(1009)&=&1\\cdot \\varphi(1)+1009\\cdot \\varphi(1009)&=&1\\cdot 1+1009\\cdot 1008&=&1017073\\\\\\\\\r\nF(3^2)&=&1\\cdot \\varphi(1)+3\\cdot \\varphi(3)+9\\cdot \\varphi(9)&=&1+6+54&=&61\\\\\\\\\r\nF(2^5)&=&1\\cdot 1+2\\cdot 1+4\\cdot 2+\\cdots+32\\cdot 16&=&1+2(1+4+\\cdots +4^{4})&=&683\\\\\\\\\r\nF(2^6)&=&1\\cdot 1+2\\cdot 1+4\\cdot 2+\\cdots+64\\cdot 32&=&1+2(1+4+\\cdots +4^{5})&=&2731\\\\\\\\\r\nG(7)&=&1\\cdot 1+(7^2-1)\\cdot 7&&&=&337\\\\\\\\\r\nG(3^2)&=&1\\cdot 1+(3^2-1)\\cdot 3+(3^4-3^2)\\cdot 9&&&=&673\\\\\\\\\r\nG(2^5)&=&1\\cdot 1+ (2^2-1)\\cdot 2+\\cdots+ (2^{10}-2^8)\\cdot 2^5&=& 1+6\\cdot(1+8+\\cdots+8^4)&=&28087\\\\\\\\\r\n\\end{aligned}$$\r\n\r\nãã£ãŠçãã¯\r\n\r\n$$\\begin{aligned}\r\n&2016\\cdot 683\\cdot 61\\cdot 43+\\dfrac{1}{2}\\cdot (2731\\cdot 61\\cdot 43\\cdot 1017073+28087\\cdot 673\\cdot 337)\\\\\\\\\r\n&=3611682144+\\dfrac{1}{2}\\cdot(7285713950149+6370159687)\\\\\\\\\r\n&=\\bm{3649653737062}\\\\\\\\\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9862"
},
{
"content": "ããã®è§£èª¬ã§ã¯, $f(x,y)$ ãwell-definedã§ããããšã®èšŒæãè¡ããŸã.\r\n\r\n$f(x,y)$ã®å®çŸ©ã¯,ãïœïœïœãæºããæå°ã®æ£ã®æŽæ°$k$ããšæžãããŠããŸã. ããã§,ãïœïœïœãæºããæ£ã®æŽæ°$k$ãã1ã€ã§ãååšããããšãèšããã°,well-definedã§ããããšãèšããŸã. \r\n\r\nã€ãŸã,\r\n\r\n$$X=\\lbrace k\\in\\mathbb{Z}_{\\gt 0} ; \\exists N,\\forall n\\geq N, s.t. a\\_{n+k}\\equiv a\\_{n}\\pmod{p}\\rbrace$$\r\n\r\nãšããéåã«å¯ŸããŠ,\r\n\r\n$$f(x,y):=\\min X$$\r\n\r\nãšããŠããããã§ãã,\r\n\r\n$X$ã空éåã§ãªãã£ãã$X$ã¯(æ£ã®æŽæ°ãããªãéåãªã®ã§)æå°å€ã®ååšãä¿èšŒãããããã§ã.\r\n\r\néã«èšãã°,$X$ã空éåã ã£ãããŸããã®ã§,$X$ã空éåã§ãªãããšã蚌æããã°ããããšã«ãªããŸã.\r\n\r\nãšããããã§èšŒæ\r\n\r\néå$A$ã以äžã§å®ããŸã.\r\n\r\n$$A=\\lbrace (a,b);0\\leq a,b\\leq p-1\\rbrace$$\r\n\r\nãã®ãšã,$|A|=p^2\\lt \\infty$ãšãªããŸã.\r\n\r\n$\\lbrace (a_n\\mod{p} ,a_{n+1}\\mod{p})\\rbrace_{n=0,1,\\ldots}$\r\n\r\nãšããåãèãããš,åé
ã¯å
šãŠ$A$ã®å
ãšãªããŸã.\r\n\r\nãã£ãŠ,\r\n\r\n$$(a_0,a_1),(a_1,a_2),\\ldots,(a_{p^2},a_{p^2+1})$$\r\n\r\nã®$p^2+1$åã®çµãèãããš,鳩ã®å·£è«æ³ã«ãã£ãŠ,äžèŽãããã¢ãååšããããšãèšããŸã.\r\n\r\nã€ãŸã,ãã$0\\leq i\\lt j\\leq p^2$ãšããæŽæ°$i,j$ãååšããŠ,\r\n\r\n$$(a_i,a_{i+1}) \\equiv (a_j,a_{j+1}) \\Leftrightarrow a_i\\equiv a_j \\land a_{i+1}\\equiv a_{j+1}$$\r\n\r\nãšãªããŸã.ãã®ãšã,æ°å$\\lbrace a\\rbrace$ã¯äžé
é挞ååŒã§å®çŸ©ãããã®ã§,2é
ããäžèŽããŠããã°ãã以éã¯ãã£ãšåãã§ã.\r\n\r\nãã£ãŠ,\r\n\r\n$$a_{i+2}\\equiv a_{j+2} \\land a_{i+3}\\equiv a_{j+3}\\land a_{i+4}\\equiv a_{j+4}\\land \\cdots $$\r\n\r\nãšãªããŸã.\r\n\r\nãã®ãšã,$N=i$ãšããã°,$n\\geq N$ãªãä»»æã®æŽæ°$n$ã«ã€ããŠ\r\n\r\n$$a_{n+(j-i)}\\equiv a_{n}\\pmod{p}$$\r\n\r\nãæç«ããŸã.\r\n\r\nãã£ãŠ,$(j-i)\\in X$ãšãªããã,$X$ã空ã§ãªãããšãèšããŸãã.\r\n\r\n----\r\n\r\näœè«ã®äœè«\r\n\r\nåšæã®å®çŸ©ããã®ããã«ããŠããŸãã,å®ã¯$0\\leq x\\lt p,1\\leq y\\lt p$ã®æ¡ä»¶ãªãã°$N=0$ãšããŠãåé¡ãªãã§ã.ã€ãŸã,åšæã®å®çŸ©ã\r\n\r\nãä»»æã®éè² æŽæ°$n$ã«å¯ŸããŠ,$a_{n+k}\\equiv a_n$ãæççã«æãç«ã€ãããªæå°ã®æ£ã®æŽæ°$k$ã\r\n\r\nãšããŠãåé¡ãªãããã§ã. ã€ãŸã,ãã®åé¡ã§åãããŠããç¶æ³ã®ç¯å²å
ã§ã¯,æ£çŽã©ã£ã¡ã§ãããã®ã§ãã,ãã®å®çŸ©ã«ãããš$y=0$ã®ãšãã«åé¡ãçºçããŸã.\r\n\r\n$y=0,x\\neq 0$ãªãã°,$a_n$ã¯\r\n\r\n$$0,1,x,x^2,x^3,\\ldots $$\r\n\r\nãšãªããŸã.$a_n=0$ãšãªããããª$n$ã¯1åããç¡ãã®ã§åšæãå®çŸ©ã§ããŸãã.\r\n\r\nç¹ã«,$x=0$ãã€$y=0$ã ãš\r\n\r\n$$0,1,0,0,0,\\ldots$$\r\n\r\nãšãªããš,ãã£ã¡ãããŸãåšæãå®çŸ©ã§ããªããªã£ãŠããŸããŸã.\r\n\r\nã¡ãªã¿ã«,åé¡ã§æ¡çšããŠãã,ãããæ£æŽæ°$N$ãååšãïœãã ãš,$y=0$ã®å Žåã§ãåé¡ãªãåšæãå®çŸ©ããããšãã§ããŸã.\r\n\r\nå®ã¯ãã®åé¡ã®åæ¡ã¯ã·ã°ããåãç¯å²ã$1\\leq y\\lt p$ã§ã¯ãªã$0\\leq y\\lt p$ã§ãã.ããã«,åšæã®å®çŸ©ããããæ£æŽæ°$N$ãååšãïœãã§ã¯ãªããã®ã§ãã.ãããã®ãŸãŸã ãš$y=0$ã®å Žåã«$f(x,y)$ãå®çŸ©ã§ããªããªããã,åé¡äžåã«ãªã£ãŠããŸããŸã. \r\n\r\næå¿ã³ã³äœåã®ã¡ã³ããŒã«äžèšã®ç¹ãææããããšã,ããšããããåšæã®å®çŸ©ãå€ããã°åé¡äžåã¯ãªããªãããšæã£ãããçŸåšã®ãããªåšæã®å®çŸ©ã«å€ããã®ã§ãã,ãã®äžã§ç¹æ§æ¹çšåŒã®è§£ã«0ãããå Žåã®äŸå€åŠçãããŸã奜ããããªããšæã£ããã,$y=0$ã®å Žåãçãããšã«ããããã§ã.\r\n\r\nçµæ,ããåºãå Žåã§ãé©çšã§ãããããªå®çŸ©ã ããæ®ã£ããšããè£è©±ã§ãã.",
"text": "äœè«ãf(x,y)ãwell-definedã§ããããšã®èšŒæ",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9862/343"
},
{
"content": "ïŒå
¬åŒè§£èª¬ã®è£è¶³ïŒ\r\n\r\nåšæãç¹æ§æ¹çšåŒã®è§£$\\alpha,\\beta$ã®äœæ°ã§è¡šãéšåã¯ïŒæéäœäžã®è¡åãèãããšæ¥œã§ããïŒ\r\n\r\n以äžïŒ$x$ã$\\mathbb{F_p}$ã®å
ãšãïŒ$y$ã$\\mathbb{F_p^\\times}$ã®å
ãšããïŒ\r\n$\\mathbb{F_p}$äžã®è¡å$A_n$ããã³$B$ã\r\n$$\r\nA_n=\\begin{pmatrix}a_{n+2}&a_{n+1}\\\\\\ a_{n+1}&a_n\\end{pmatrix},\\quad B=\\begin{pmatrix}x&y\\\\\\ 1&0\\end{pmatrix}\r\n$$\r\nã«ããå®ãããšïŒ$a_n$ã®åæå€åã³æŒžååŒã¯æ¬¡ã®ããã«èšãæããããïŒ\r\n$$\r\nA_0=\\begin{pmatrix}x&1\\\\\\ 1&0\\end{pmatrix},\\quad A_{n+1}=BA_n.\r\n$$\r\n$A_0,B$ã¯æ£åè¡åãªã®ã§$A_n$ã¯åžžã«æ£åè¡åã§ããïŒ\r\næ°å$a_n$ã®mod $p$ã§ã®åšæã¯ïŒä»»æã®$n$ã«å¯ŸããŠ$B^kA_n=A_n$ãæãç«ã€ãããªæå°ã®æ£æŽæ°$k$ã«çããïŒ\r\n$A_n$ã¯æ£åãªã®ã§ããã¯$B$ã®$\\mathrm{GL_2}(\\mathbb{F_p})$ã«ãããäœæ°ã«çããããšããããïŒ\r\n\r\n$B$ã®åºææ¹çšåŒ$t^2-xt-y=0$ïŒããã¯æ°å$a_n$ã®ç¹æ§æ¹çšåŒã§ãããïŒã®è§£ã$\\alpha,\\beta$ãšããïŒ$y\\in \\mathbb{F_p^\\times}$ãã$\\alpha,\\beta\\in \\mathbb{F_{p^2}^\\times}$ã§ããïŒ\r\n\r\n- $\\alpha,\\beta\\in \\mathbb{F_p^\\times}$ã®å ŽåïŒ$\\alpha\\neq \\beta$ãªãã°$B$ã¯\r\n$$\r\n\\begin{pmatrix}\\alpha&0\\\\\\ 0&\\beta\\end{pmatrix}\r\n$$\r\nãšå¯Ÿè§åãããããïŒãã®äœæ°ã¯$\\mathrm{lcm}(\\mathrm{ord}(\\alpha),\\mathrm{ord}(\\beta))$ã«çããïŒ$\\alpha=\\beta$ã®å ŽåïŒ$B$ã¯ã¹ã«ã©ãŒè¡åã§ã¯ãªãããšã«æ³šæãããšïŒ$B$ã®Jordanæšæºåœ¢ã¯\r\n$$\r\n\\begin{pmatrix}\\alpha&1\\\\\\ 0&\\alpha\\end{pmatrix}\r\n$$\r\nãšãªãïŒãã®äœæ°ã¯$p\\cdot \\mathrm{ord}(\\alpha)$ã§ããïŒ\r\n\r\n- $\\alpha,\\beta\\in \\mathbb{F_{p^2}^\\times} \\setminus\\mathbb{F_p^\\times}$ã®å ŽåïŒ$\\alpha$ãš$\\beta$ã¯$\\mathbb{F_p}$äžå
±åœ¹ã§ããïŒ$\\alpha\\neq \\beta$ãªã®ã§$B$ã¯ä»¥äžã®ããã«å¯Ÿè§åãããïŒ\r\n$$\r\n\\begin{pmatrix}\\alpha&0\\\\\\ 0&\\beta\\end{pmatrix}.\r\n$$\r\nãã£ãŠ$B$ã®äœæ°ã¯$\\mathrm{lcm}(\\mathrm{ord}(\\alpha),\\mathrm{ord}(\\beta))=\\mathrm{ord}(\\alpha)$ã§ããïŒ",
"text": "è¡åã䜿ã£ãŠåšæãæ±ããæ¹æ³",
"url": "https://onlinemathcontest.com/contests/nfhai2023/editorial/9862/363"
}
] | ã$p=2017$ ãšããŸãïŒããã¯çŽ æ°ã§ãïŒïŒ\
ãæŽæ° $x,y$ ã«ã€ããŠïŒæ°å $\\{a_n\\}\_{n=0,1,\ldots}$ ã以äžã®æŒžååŒã§å®çŸ©ããŸãïŒ
$$a_0=0, \quad a_1=1, \quad a_{n+2}=xa_{n+1}+ya_n \quad (n=0,1,\ldots)$$
ãã®ãšãïŒ$\mathrm{mod}~p$ ã«ããã $a_n$ ã®åšæã $f(x,y)$ ãšããŠïŒç·å
$$\sum_{x=0}^{p-1}\sum_{y=1}^{p-1}f(x,y)$$
ãæ±ããŠãã ãã.
<details><summary>$f(x,y)$ ã®å®çŸ©<\/summary>
ã以äžãæºããæå°ã®æ£ã®æŽæ° $k$ ããããŸãïŒ
- ããæ£æŽæ° $N$ ãååšããŠïŒ$n\geq N$ ãªãä»»æã®æŽæ° $n$ ã«ã€ã㊠$a_{n+k}\equiv a_n\pmod{p}$ ãæãç«ã€ïŒ
ãªãïŒãã®ãã㪠$k$ 㯠$x,y$ ã«ãããååšããŸãïŒ
<\/details> |
OMC189 (SEGæ¯) | https://onlinemathcontest.com/contests/omc189 | https://onlinemathcontest.com/contests/omc189/tasks/4875 | A | OMC189(A) | 100 | 386 | 406 | [
{
"content": "ããã®äžè§éã®åé¢ãå¹³é¢äžã§é©åœã«ç¹ãåããããšäžèŸº $3$ ã®æ£æ¹åœ¢ãšãªãã®ã§ïŒæ±ããå€ã¯\r\n$$9 - 3 \\times 1 \\times \\frac{1}{2} - 3 \\times 2 \\times \\frac{1}{2} - 2 \\times 1 \\times \\frac{1}{2} = \\frac{7}{2}$$\r\nã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{9}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc189/editorial/4875"
},
{
"content": "ã$AB=\\sqrt{13},BD=\\sqrt5,DA=\\sqrt{10}$ ãçŽã¡ã«åããïŒãã£ãŠæ¬¡ã®å
¬åŒããïŒ$\\triangle{ABD}=\\dfrac72$ ã§ããïŒ\\\r\n**å
¬åŒ(ããã³ã®å
¬åŒäºçš®):** äžèŸºã®é·ãã $a,b,c$ ã§äžããããäžè§åœ¢ã®é¢ç©ã¯\r\n$$\\dfrac{\\sqrt{2(a^2b^2+b^2c^2+c^2a^2)-(a^4+b^4+c^4)}}{4}$$\r\nã§ããïŒ\\\r\n\\\r\nãã®åŒã¯ïŒããã³ã®å
¬åŒã®èšŒæã®éäžéšåãå€åœ¢ããããšã§åŸãããïŒæ¬åã®ããã«ïŒèŸºã®é·ãã $\\sqrt{n}$ ã§è¡šãããäžè§åœ¢ã®é¢ç©ãæ±ããéã«å€§å€æçšã§ããïŒ",
"text": "ããã³ã®å
¬åŒäºçš®ãçšãã解æ³",
"url": "https://onlinemathcontest.com/contests/omc189/editorial/4875/344"
},
{
"content": "ãäžè¬ã«ïŒ$OA,OB,OC$ ãäºãã«çŽäº€ããåé¢äœ $OABC$ ã«ã€ããŠïŒé¢ $OAB,OBC,OCA,ABC$ ã®é¢ç©ããããã $S_1,S_2,S_3,S_4$ ãšãããšïŒ${S_1}^2+{S_2}^2+{S_3}^2={S_4}^2$ ãæãç«ã€ããšãç¥ãããŠããïŒ \r\nãã£ãŠïŒä»åã®å ŽåïŒæ±ããé¢ç©ã $S$ ãšãããšïŒ$S^2=1^2+3^2+(\\dfrac{3}{2})^2=\\dfrac{49}{4}$ ããïŒ$S=\\dfrac{7}{2}$ ãšãªãïŒ",
"text": "4å¹³æ¹ã®å®ç",
"url": "https://onlinemathcontest.com/contests/omc189/editorial/4875/345"
}
] | ãäžè§é $ABCD$ ã¯
$$AC=3, \quad BC=2, \quad DC=1$$
ãã¿ããïŒããã $3$ 蟺ã¯äºãã«çŽäº€ããŠããŸãïŒãã®ãšãïŒäžè§åœ¢ $ABD$ ã®é¢ç©ãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC189 (SEGæ¯) | https://onlinemathcontest.com/contests/omc189 | https://onlinemathcontest.com/contests/omc189/tasks/3976 | B | OMC189(B) | 200 | 284 | 380 | [
{
"content": "ã$a$ ãš $b$ ã®æ倧å
¬çŽæ°ã $g$ ãšããã°ïŒäºãã«çŽ ãªæŽæ°ã®çµ $(p,q)$ (ãã ã$p\\lt q$ ) ã«ãã£ãŠ $a=gp,b=gq$ ãšè¡šããïŒãã®ãšã $L=gpq$ ã§ããããïŒæ¡ä»¶ã¯\r\n$$112=ab-L=g^2pq-gpq=g(g-1)pq$$\r\nãšè¡šããïŒããŸïŒ$g(g-1)$ ã $112$ ã®çŽæ°ã§ããããšããïŒ$g=2,8$ ãå¿
èŠã§ããïŒ\r\n $g=2$ ã®ãšã $(p,q)=(1,56),(7,8)$ ãïŒ$g=8$ ã®ãšã $(p,q)=(1,2)$ ãé©ããããïŒããããã $(a,b)$ ã«çŽãããšã§æ±ããå€ã¯ $224+224+128=\\mathbf{576}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc189/editorial/3976"
}
] | ã$a\leq b$ ãªãæ£æŽæ° $a,b$ ã«ã€ããŠïŒãããã®æå°å
¬åæ°ã $L$ ãšãããšïŒ
$$ab-L=112$$
ãæãç«ã¡ãŸããïŒãã®ãšãïŒçµ $(a,b)$ ãšããŠãããããã®ãã¹ãŠã«ã€ããŠïŒ$ab$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC189 (SEGæ¯) | https://onlinemathcontest.com/contests/omc189 | https://onlinemathcontest.com/contests/omc189/tasks/2478 | C | OMC189(C) | 300 | 133 | 266 | [
{
"content": "ãäžèŸºã®é·ãã $x\\geq y\\geq z$ ãšãããšãïŒæ¡ä»¶ã¯ $x\\lt y+z$ ã§ããïŒ$x$ ãåºå®ãããšããã®æ¡ä»¶ãæºããçµ $(y,z)$ ã®æ°ã $f(x)$ ãšãããš $y+z$ ã®å€ã§å Žååãããããšã§ïŒ\r\n$$\\begin{aligned}\r\nf(x)&=\r\n\\begin{cases}\r\n\\dfrac{x+1}{2}+\\dfrac{x-1}{2}+\\dfrac{x-1}{2}+\\cdots+1+1&=\\dfrac{(x+1)^2}{4} & (x~ ãå¥æ°) \\\\\\\\\r\n\\dfrac{x}{2}+\\dfrac{x}{2}+\\cdots+1+1&=\\dfrac{x(x+2)}{4} & (x~ ãå¶æ°)\r\n\\end{cases}\\\\\\\\\r\n\\end{aligned}$$\r\nã§ããããšããããïŒããã $x=1,\\ldots,28$ ã«ã€ããŠè¶³ãåãããã°ããïŒæ±ããå€ã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\sum_{k=1}^{14}(f(2k-1)+f(2k))=\\sum_{k=1}^{14}(2k^2+k)=\\bf{2135}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc189/editorial/2478"
},
{
"content": "ã$3$ 蟺ã®é·ã $1\\leq z\\leq y\\leq x\\leq 28$ ãšãïŒæ¬¡ã® $a,b,c$ ã«å€æããïŒ\r\n$$a=\\dfrac{-x+y+z}{2},ãb=\\dfrac{x-y+z}{2},ãc=\\dfrac{x+y-z}{2}$$\r\nãã®ãšã $a,b,c$ ã¯æŽæ° $l\\leq m\\leq n$ ãçšããŠæ¬¡ã® $2$ ãã¿ãŒã³ã®ããããã§è¡šããïŒ$(\\because -x+y+z\\equiv x-y+z\\equiv x+y-z\\mod 2)$\r\n$$(a,b,c)=(l,m,n),(l-\\frac{1}{2},m-\\frac{1}{2},n-\\frac{1}{2})$$\r\n- åè
ã®å ŽåïŒæ¡ä»¶ã¯æ¬¡ã®éãïŒ\r\n$$1\\leq l\\leq m\\leq n,ãm+n\\leq28\\Longleftrightarrow 1\\leq l\\leq m,ãn\\leq m\\leq28-n$$\r\nãããæºãã$(l,m,n)$ 㯠$\\displaystyle\\sum_{m=1}^{14}m(29-2m)$ ã ãããïŒ\r\n- åŸè
ã®å ŽåïŒæ¡ä»¶ã¯æ¬¡ã®éãïŒ\r\n$$\\frac{1}{2}\\leq l-\\frac{1}{2}\\leq m-\\frac{1}{2}\\leq n-\\frac{1}{2},ãm+n-1\\leq28\\Longleftrightarrow 1\\leq l\\leq m,ãn\\leq m\\leq29-n$$\r\nãããæºãã $(l,m,n)$ 㯠$\\displaystyle\\sum_{m=1}^{14}m(30-2m)$ ã ãããïŒ\r\n\r\nãããã£ãŠæ¡ä»¶ãæºãã $(a,b,c)$ ã®çµã®æ°ã¯ $\\displaystyle\\sum_{m=1}^{14}m(29-2m)+\\sum_{m=1}^{14}m(30-2m)=\\sum_{m=1}^{14}(59m-4m^2)=\\bf{2135}.$",
"text": "Raviå€æ",
"url": "https://onlinemathcontest.com/contests/omc189/editorial/2478/336"
},
{
"content": "æŽæ°ã®çµ $(x,y,z)$ ã§ãã£ãŠ $0 \\lt x \\leq y \\leq z \\leq t = 28$ ããã³ $z \\lt x+y$ ãæºãããã®ãæ°ããããšãšåå€ïŒ \r\næ¬é åã$z=k$ ã§ã«ããããŠèãããš $0 \\lt x \\leq y \\leq k$ ã〠$k \\lt x+y$ ãæºãã $(x,y)$ ã®çµãæ°ãïŒ$k$ ã«é¢ããŠç·åãèšç®ããã°ããïŒïŒãããŸã§å
¬åŒè§£èª¬ãšåæ§ïŒ \r\n$y=x$ ãš $x+y=k$ ã®äº€ç¹ã $P$ ãšããïŒ $P$ ãäžå¿ã« $90^{\\circ}$ ãã€å転ããã $4$ ã€ã®é åã®åéåãèãããšïŒã¡ããã©äžèŸº $k$ ã®æ£æ¹åœ¢ã®é åãã $P$ ãåãé€ãããã®ãšäžèŽããïŒæ£æ¹åœ¢å
ã«æ Œåç¹ã¯ $(k+1)^2$ åååšãïŒ$k$ ãå¶æ°ã®æã®ã¿ $P$ ãæ Œåç¹ãšãªãã®ã§ïŒçµã®åæ°ã $f(k)$ ãšããã°ïŒ\r\n$$\r\nf(k)=\r\n\\begin{cases}\r\n& \\dfrac{(k+1)^2}{4} &(k\\text{ãå¥æ°ã®ãšã})\\\\\\\\\r\n& \\dfrac{(k+1)^2-1}{4}& (k\\text{ãå¶æ°ã®ãšã})\r\n\\end{cases}\r\n$$\r\nãåŸãããïŒãããã®åã¯ä»¥äžã®ããã«ãããšçŽ æ©ãèšç®ã§ããïŒ \r\n$$\r\n\\begin{aligned}\r\n\\sum_{k=1}^{28} f(k) &= (\\sum_{k=1}^{28} \\frac{(k+1)^2}{4}) - 14\\times \\frac{1}{4} \\\\\\\\\r\n&= (\\sum_{k=2}^{29} k^2 - 14)\\times \\frac{1}{4} \\\\\\\\\r\n&= (\\frac{29(29+1)(2\\times29+1)}{6} -1 - 14)\\times \\frac{1}{4} \\\\\\\\\r\n& =2135\r\n\\end{aligned}\r\n$$",
"text": "察称æ§ã®æŽ»çšã«ããæ Œåç¹æ°ãäžã",
"url": "https://onlinemathcontest.com/contests/omc189/editorial/2478/350"
}
] | ããã¹ãŠã®èŸºã®é·ãã $1$ ä»¥äž $28$ 以äžã®æŽæ°å€ã§ãããããªïŒééåãªïŒäžè§åœ¢ã¯äœéããããŸããïŒããã ãïŒå転ãå転ã«ãã£ãŠäžèŽãããã®ã¯åäžèŠããŸãïŒ |
OMC189 (SEGæ¯) | https://onlinemathcontest.com/contests/omc189 | https://onlinemathcontest.com/contests/omc189/tasks/5665 | D | OMC189(D) | 300 | 146 | 246 | [
{
"content": "ã$x$ 軞æ¹åã« $-1$ åãåäœã $a$ åãã£ããšãããšïŒä»¥äžã®ããã«èšç®ã§ããïŒ\r\n- $x$ 軞æ¹åã« $1$ åãåäœã $a+2$ åïŒ\r\n- $y$ 軞æ¹åã« $-1$ åãåäœã $6-a$ åïŒ\r\n- $y$ 軞æ¹åã« $1$ åãåäœã $7-a$ åïŒ\r\n\r\nããã«ããïŒæ±ããå Žåã®æ°ã¯ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$ \\sum_{a=0}^{6}\\frac{15!}{a!(a+2)!(6-a)!(7-a)!}=\\frac{15!}{6!9!}\\sum_{a=0}^{6}\\frac{6!}{a!(6-a)!}\\frac{9!}{(a+2)!(7-a)!} ={}\\_{15}\\mathrm{C}\\_{6} \\times \\sum_{a=0}^{6} \\bigl({}\\_{6}\\mathrm{C}\\_{a}\\times{}\\_{9}\\mathrm{C}\\_{7-a}\\bigr) = {}\\_{15}\\mathrm{C}\\_{6} \\times {}\\_{6+9}\\mathrm{C}\\_{7} = \\mathbf{32207175}. $$\r\nãããã§ïŒä»¥äžã®çåŒ\r\n$$\\sum_{a=0}^{6} \\bigl({}\\_{6}\\mathrm{C}\\_{a}\\times{}\\_{9}\\mathrm{C}\\_{7-a}\\bigr) = {}\\_{6+9}\\mathrm{C}\\_{7} $$\r\nã¯Vandermondeã®ç³ã¿èŸŒã¿ã®äžäŸã§ãããïŒ$8\\times 7$ ã®æ Œåã®ç§»åã§è·é¢ $6$ é²ãã æç¹ã®äœçœ®ãèããŠãå°ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc189/editorial/5665"
},
{
"content": "ã$|A|=7,|B|=9$ ãæºãã $\\\\{1,2,...,15\\\\}$ ã®éšåéå $A,B$ ãšé¡æãæºããåäœã®è¡ãæ¹ã¯æ¬¡ã®äžå¯Ÿäžå¯Ÿå¿ãå¯èœã§ããïŒ\r\n\r\n$i=1,2,...,15$ ã«ã€ããŠ\r\n- $i\\in A\\backslash B\\Longleftrightarrow x$ 軞æ¹åã« $1$ åã\r\n- $i\\in B\\backslash A\\Longleftrightarrow x$ 軞æ¹åã« $-1$ åã\r\n- $i\\in A\\cap B\\Longleftrightarrow y$ 軞æ¹åã« $1$ åã\r\n- $i\\notin A\\cup B\\Longleftrightarrow y$ 軞æ¹åã« $-1$ åã\r\n\r\nãã®ãããªéå $A,B$ 㯠${}\\_{15}\\mathrm{C}\\_{7}\\cdot {}\\_{15}\\mathrm{C}\\_{9}=\\bf{32207175}$ ã ãããã®ã§ãããæ±ãããå€ã§ããïŒïŒè«ãéïŒ",
"text": "éšåéåãšã®å¯Ÿå¿",
"url": "https://onlinemathcontest.com/contests/omc189/editorial/5665/331"
},
{
"content": "ãtesterã® **ojamesi1357** ããã®è§£æ³ãç§éžã ã£ãã®ã§å
±æããŸãïŒ\r\n\r\n----\r\nã$x(y)$ 軞æ¹åã« $\\pm1$ ã ãé²ãããšã $x^{\\pm1}(y^{\\pm1})$ ãšè¡šçŸããã°æ±ããã¹ãã¯æ¬¡ã®åŒãå±éãããšãã® $x^2y$ ã®ä¿æ°ã§ããïŒ\r\n$$\\Big(x+\\frac{1}{x}+y+\\frac{1}{y}\\Big)^{15}$$\r\n $(xy)^{15}$ ããããŠæŽçãããšïŒäžåŒã®$x^2y$ ã®ä¿æ°ã¯æ¬¡ã®åŒã® $x^{17}y^{16}$ ã®ä¿æ°ã«çããïŒ\r\n$$(x+y)^{15}(xy+1)^{15}$$\r\n $(x+y)^{15}$ ã®å±éåŒã«ãããŠäžè¬é
㯠${}\\_{15}\\mathrm{C}\\_{s}x^sy^{15-s}ã(s=0,1,...,15)$ïŒ\\\r\n$(xy+1)^{15}$ã®å±éåŒã«ãããŠäžè¬é
㯠${}\\_{15}\\mathrm{C}\\_{t}x^ty^tã(t=0,1,...,15)$ãªã®ã§ïŒãã® $s,t$ ãçšããŠ\\\r\n $\\Big(x+\\dfrac{1}{x}+y+\\dfrac{1}{y}\\Big)^{15}$ ã®å±éåŒã«ãããŠäžè¬é
㯠${}\\_{15}\\mathrm{C}\\_{s}\\cdot{}\\_{15}\\mathrm{C}\\_{t}x^{s+t}y^{15-s+t}ã(t=0,1,...,15)$ ãšè¡šãããïŒ\\\r\nç¹ã« $s+t=17,15-s+t=16$ ãšãªãã®ã¯ $s=8,t=9$ ã®ãšãã«éãããã®ã§ææã®ä¿æ°ã¯\r\n$${}\\_{15}\\mathrm{C}\\_{8}\\cdot{}\\_{15}\\mathrm{C}\\_{9}=\\bf{32207175}.$$",
"text": "圢åŒçã¹ãçŽæ°",
"url": "https://onlinemathcontest.com/contests/omc189/editorial/5665/338"
},
{
"content": "座æšã45°å転ãããŸã.\r\n\r\nãããšã$(x+y,x-y)$ã®æåãèŠãã°è¯ããªããŸã.\r\n\r\nãããããšã©ããªãããšèšããš,4éãã®åäœ(xãŸãã¯yæ¹åã«$\\pm 1$é²ã)ã\r\n\r\n$ (x+y)$ã1å¢ãã or 1æžã\r\n\r\nãš\r\n\r\n$(x-y)$ã1å¢ãã or 1æžã\r\n\r\nã®$2\\times 2=4$éããšãªããŸã.ãããªããšäœãå¬ããããšèšããš,座æšããšã«å Žåã®æ°ãç¬ç«ã«èããŠãè¯ããªããŸã.\r\n\r\nã€ãŸã,\r\n\r\n$+1$ãŸãã¯$-1$ã15åç¹°ãè¿ããŠ3ã«è¡ãçãå Žåã®æ°ã¯${}\\_{15}C\\_{9}$éã\r\n\r\n$+1$ãŸãã¯$-1$ã15åç¹°ãè¿ããŠ1ã«è¡ãçãå Žåã®æ°ã¯${}\\_{15}C\\_{8}$éã\r\n\r\nã§,æçµçãªçããšããŠã¯ãã®2ã€ã®ç©${}\\_{15}C\\_{9} \\times {}\\_{15}C\\_{8}$éã\r\n\r\nãšãªããŸã.\r\n\r\n----\r\n\r\näœè«\r\n\r\nOMCé»åã§ãããèšç®ããæ¹æ³ã®äŸ\r\n\r\nããã¯${}\\_{15}C\\_{6} \\times {}\\_{15}C\\_{7}$ã§ãããããšã«æ³šæ.\r\n\r\n$15\\times 14\\times \\cdots \\times 10$ãèšç®ãã\r\n\r\nâ\r\n\r\n\r\n$6!=720$ã§å²ã\r\n\r\nâ\r\n\r\nå
šäœã2ä¹ãã\r\n\r\nâ\r\n\r\nå
šäœã«9ãæããŠ7ã§å²ã\r\n\r\nâ\r\n\r\nçããåºãŠãã",
"text": "座æšã45°å転ããã",
"url": "https://onlinemathcontest.com/contests/omc189/editorial/5665/346"
}
] | ãOMCå㯠$xy$ å¹³é¢äžã«ããïŒåã㯠$(0,0)$ ã«ããŸãïŒOMCåã¯ïŒ $1$ åã®åäœã§ $x$ 軞æ¹åãŸã㯠$y$ 軞æ¹åã« $1$ ãŸã㯠$-1$ åããŸãïŒããªãã¡ïŒ$1$ åã«ããããåäœã¯ $4$ éãã§ãïŒïŒ$15$ åã®åäœãè¡ã£ãæç¹ã§ $(2,1)$ ã«ãããããªïŒåäœã®è¡ãæ¹ã¯äœéããããŸããïŒ |
OMC189 (SEGæ¯) | https://onlinemathcontest.com/contests/omc189 | https://onlinemathcontest.com/contests/omc189/tasks/2210 | E | OMC189(E) | 300 | 56 | 117 | [
{
"content": "**è£é¡.**ã$n$ ã®äºé²æ³è¡šèšã« $1$ ã $k$ åçŸãããšãïŒ$n!$ ã $2$ ã§å²ãåããæ倧ã®åæ° $f(n)$ 㯠$n-k$ ã§ããïŒ\r\n\r\n**蚌æ.**ã$n=1$ ã®ãšãæããã«æç«ããããïŒä»¥äžãã $m\\geq 2$ ã«ã€ã㊠$n\\lt m$ ã§æç«ãä»®å®ãïŒ$m=n$ ã§æç«ã瀺ãã°ããïŒ$m$ ãå¶æ°ã®ãšãïŒåž°çŽæ³ã®ä»®å®ãã $f(m\\/2)=m\\/2-k$ ã§ããããïŒLegendreã®å®çãã\r\n$$f(m)=\\dfrac{m}{2}+f\\left(\\dfrac{m}{2}\\right)=m-k$$\r\nãåŸãïŒ$m$ ãå¥æ°ã®å Žåãåæ§ã§ããïŒãªãïŒ$f(m)$ ã $f(m-1)$ ã«ãã£ãŠè¡šãæ¹éã§ã瀺ãããïŒ(蚌æçµ)\r\n----\r\nãæããã« $N$ ã¯ä»¥äžã®ããã«è¡šãããïŒ\r\n$$N=\\frac{(1023Ã1024)!}{1!2!\\cdots 1023!(1023Ã512)!}.$$\r\nããã§ïŒ$0$ ä»¥äž $1023$ 以äžã®æŽæ°ã $10$ æ¡ã®äºé²æ°ã§æžãè¡šããšïŒåèš $10Ã1024$ æ¡ã®ã¡ããã©ååã $1$ ã§ããããïŒ$f(0)=0$ ã«æ³šæããŠïŒ\r\n$$f(1)+f(2)+\\cdots+f(1023)=1+2+\\cdots+1023-\\dfrac{1}{2}\\times 10\\times 1024=1023\\times512-5120.$$\r\nãŸã以äžãšäœµããŠïŒ$N$ ã $2$ ã§å²ãåããåæ°ã¯ $\\textbf{5120}$ åã§ããïŒ\r\n$$f(1023\\times 1024)=1023\\times 1024-10,\\quad f(1023\\times 512)=1023\\times 512-10$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc189/editorial/2210"
},
{
"content": "ã解説ã®è£é¡ãç¥ããªãã£ãïŒæãã€ããªãã£ãïŒå Žåã®è§£æ³ã§ãïŒïŒãã ãïŒãããªãã«æåãªè£é¡ã ãšæãã®ã§ïŒèŠããŠäœ¿ããããã«ããŠãããæ¹ãè¯ããšæããŸãïŒïŒ\r\n\r\n---\r\n\r\n$$N=\\dfrac{(1023Ã1024)!}{1!\\ 2! \\cdots 1023! \\ (1023Ã512)!}$$\r\nã§ããïŒ$\\dfrac{(1023Ã1024)!}{(1023Ã512)!}$ ã $2$ ã§å²ãåããåæ°ã¯å®¹æã«æ±ããããïŒ$1023Ã512$ åã§ããïŒïŒ\\\r\nããã£ãŠïŒ$1!\\ 2 ! \\cdots 1023!$ ã $2$ ã§äœåå²ãåããããæ±ããã°ããïŒ\\\r\nã$0!\\ 1! \\cdots (2^{n}-1)!$ ã $2$ ã§å²ãåããåæ°ã $S_n$ ãšããïŒ ä»¥äžïŒ$S_{n+1}$ ã $S_n$ ã§è¡šãããšãèããïŒ\r\n\r\nãèªç¶æ° $m$ ã $2$ ã§å²ãåããåæ°ã $v_2(m)$ ã§è¡šãïŒïŒãªãïŒãã®èšæ³ã¯äžè¬çã§ããïŒïŒ\\\r\nã$1âŠkâŠ2^n-1$ ãšãããš $v_2(2^n+k)=v_2(k)$ïŒãã®ããšãã $v_2((2^n+k)!)=v_2(2^n!)+v_2(k!)=v_2(k!)+2^n-1$ ã§ããïŒãã£ãŠïŒ\r\n$$S_{n+1}=S_n+\\sum\\limits_{k=0}^{2^n-1} v_2((2^n+k)!)=S_n+\\sum\\limits_{k=0}^{2^n-1} (v_2(k!)+2^n-1)=2S_n+2^n(2^n-1)$$\r\nã挞ååŒã解ããŠïŒ$S_n=2^n(2^{n-1}-1)-2^{n-1}(n-1)$ ãæ±ãããïŒ$S_1=0$ ããå§ããŠæŒžååŒã«åŸã£ãŠé 次èšç®ããã°ïŒ$S_{10}=518656$ ãåŸãïŒæ±ããã¹ãå€ã¯ $1023Ã512-518656=\\mathbf{5120}$ ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc189/editorial/2210/329"
}
] | ãå€é
åŒ $(1+x_1+x_2+x_3+\cdots+x_{1023})^{1023^2+1023}$ ãå±éãããšãïŒ
$$(x_1)^1(x_2)^2(x_3)^3\cdots( x_{1023})^{1023}$$
ã®ä¿æ°ã¯ $N$ ãšãªããŸãïŒ$N$ ã $2$ ã§å²ãåããæ倧ã®åæ°ãæ±ããŠäžããïŒ |
OMC189 (SEGæ¯) | https://onlinemathcontest.com/contests/omc189 | https://onlinemathcontest.com/contests/omc189/tasks/5017 | F | OMC189(F) | 400 | 28 | 54 | [
{
"content": "ã$A$ ãã $BC$ ã«ããããåç·ã®è¶³ã $H$, äžè§åœ¢ $APQ$ ã®å€å¿ã $O^\\prime$ ãšãã. \r\n$$\\angle APQ = 90^\\circ - \\angle BAO = \\frac{1}{2}\\angle AOB = \\angle ACB$$\r\nã§ãã, $\\angle BAC = \\angle QAP$ ã¯å
±éã§ãããã, äžè§åœ¢ $ABC$ ãšäžè§åœ¢ $AQP$ ã¯çžäŒŒã§ãããšåãã. ãã®çžäŒŒã«ãã㊠$H$ ãš $O$, $O$ ãš $O^\\prime$ ã察å¿ãã. åŸã£ãŠ, $O^\\prime$ ã¯çŽç· $AH$ äžã«ããããšãåãã, äžè§åœ¢ $APQ$ ã®å€æ¥å㯠$H$ ã§çŽç· $BC$ ãšæ¥ããããšãåãã. ãã£ãŠ, 以äžãåŸã. \r\n$$AH:AO=AO : AO^\\prime = AO:\\frac{1}{2}AH \\implies AH=\\sqrt{2} AO$$\r\nãããã§, äžè§åœ¢ $ABC$ ã®é¢ç©ã«çç®ãããš,\r\n$$\\frac{1}{2}\\times AB\\times AC\\times \\sin{A} = \\frac{1}{2}\\times AH\\times BC$$\r\nã§ãã, æ£åŒŠå®çãšäžã®åŒãã\r\n$$\\frac{1}{2}\\times AB\\times AC\\times \\frac{BC}{2AO} = \\frac{1}{2}\\times \\sqrt{2} AO\\times BC \\implies AB\\times AC = 2\\sqrt{2} AO^2$$\r\nã§ãã. åŸã£ãŠ, $AC = \\sqrt{\\dfrac{625}{8}}$ ãšèšç®ã§ããã®ã§, ç¹ã«è§£çãã¹ãå€ã¯ $\\bf{633}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc189/editorial/5017"
},
{
"content": "ã以äžã®è§£èª¬ã«ãããïŒçŽäº€åº§æšãèšå®ãããšé·ããäœåŒŠãããç°¡æœã«æ±ãŸãïŒ\\\r\nãå $APQ$ ãš $BC$ ã®æ¥ç¹ã $T$ ãšããïŒç°¡åãªèšç®ã«ããïŒ$BP=\\dfrac74$ ãªã®ã§ïŒæ¹ã¹ãã®å®çããïŒ$BT=\\sqrt{14}$ïŒããã§ïŒ$\\triangle{ABC}\\sim\\triangle{AQP}$ ããïŒ$AQ\\times AC=50$ïŒ$CT=k$ ãšãããšïŒæ¹ã¹ãã®å®çããïŒ$AC\\times CQ=k^2\\iff AC(AC-AQ)=k^2$ïŒ$AQ\\times AC=50$ ããïŒ$AC=\\sqrt{k^2+50}$ïŒ$\\cos{\\angle ACB}=\\dfrac35$ ã«æ³šæããŠïŒäœåŒŠå®çããïŒ\r\n$$64=k^2+50+(k+\\sqrt{14})^2-2(k+\\sqrt{14})\\sqrt{k^2+50}\\times\\dfrac35$$\r\nããçºãããšïŒ$k+\\sqrt{14}$ ã§æ¬ãã(ïŒ)ïŒçµå±ïŒ\r\n$$(k+\\sqrt{14})(3\\sqrt{k^2+50}-5k)=0$$\r\nãšãªãïŒ$k\\gt0$ ããïŒ$k^2=\\dfrac{225}{8}$ ã§ããïŒãã£ãŠïŒ$AC=\\sqrt{k^2+50}=\\sqrt{\\dfrac{625}{8}}$ïŒ",
"text": "å°ãèšç®å¯ããªè§£æ³",
"url": "https://onlinemathcontest.com/contests/omc189/editorial/5017/347"
}
] | ãäžè§åœ¢ $ABC$ ã®å€å¿ã $O$ ãšããŸãïŒ$O$ ãéãçŽç· $AO$ ã«åçŽãªçŽç·ãšèŸº $AB,AC$ ãããããç¹ $P,Q$ ãšäº€ããïŒäžè§åœ¢ $APQ$ ã®å€æ¥åã¯èŸº $BC$ ã«æ¥ããŸããïŒããã«
$$AB=8,\quad AO=5$$
ã§ãããšãïŒèŸº $AC$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\sqrt{\dfrac{a}{b}}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |