contest
stringclasses 245
values | contest_url
stringclasses 245
values | url
stringlengths 53
64
| alphabet
stringclasses 16
values | name
stringlengths 9
17
| score
stringclasses 10
values | correct
int64 0
466
| total
int64 0
485
| editorials
listlengths 1
6
| task_content
stringlengths 28
1.49k
|
---|---|---|---|---|---|---|---|---|---|
OMC060 (for experts) | https://onlinemathcontest.com/contests/omc060 | https://onlinemathcontest.com/contests/omc060/tasks/1484 | E | OMC060(E) | 700 | 9 | 35 | [
{
"content": "ã$k = \\dfrac{2021}2$ ãšãããšïŒ$\\ell_t$ ã $x$ åçãæã€ããšãš $t \\ne k$ ã¯åå€ã§ããïŒ$\\\\{x_n\\\\}$ ã«ã€ããŠ\r\n$$x_{n+1} = \\frac{x_n^2 - 4k^2}{2 \\left(x_n - k\\right)}. $$\r\nãã®ãšãïŒ$\\tan \\theta_n = \\dfrac{\\sqrt3\\\\, k}{x_n - k}$ ãšããã° $\\tan \\theta_{n+1} = \\tan 2\\theta_n$ ãåŸãããïŒ$\\tan \\alpha\\pi = \\dfrac{\\sqrt3\\\\, k}{a - k}$ ãªã $\\alpha$ ã«ã€ããŠ\r\n$$x_n = \\frac{\\sqrt3\\\\, k}{\\tan\\mathopen{}\\left(2^{n-1}\\alpha\\pi\\right)} + k. $$\r\nã㟠$0 \\le a \\le 2k$ ã®ç¯å²ã§èããŠããããšããïŒ$\\dfrac13 \\le \\alpha \\le \\dfrac23$ ãšããŠããïŒ\r\n\r\nã$x_1, x_2, \\ldots, x_{20}$ ããã¹ãŠçžç°ãªãïŒã〠$x_{21} = a$ ã§ããããšã¯ïŒ$x_{21} = a, x_{11} \\ne a, x_5 \\ne a$ ãšåå€ã§ïŒ\r\n$$\\tan\\mathopen{}\\left(2^{20}\\alpha\\pi\\right) = \\tan \\alpha\\pi,\\qquad \\tan\\mathopen{}\\left(2^{10}\\alpha\\pi\\right) \\ne \\tan \\alpha\\pi,\\qquad \\tan\\mathopen{}\\left(2^4\\alpha\\pi\\right) \\ne \\tan \\alpha\\pi, $$\r\nããªãã¡ $\\left(2^{20}-1\\right) \\alpha$ ãæŽæ°ã§ã〠$\\left(2^{10}-1\\right) \\alpha$ ããã³ $\\left(2^4-1\\right) \\alpha$ ããšãã«æŽæ°ã§ãªãããšãšåå€ã§ããïŒ\r\n\r\nã$2^{20} - 1$ 㯠$2^{10} - 1, 2^4 - 1$ ã®åæ°ã§ããïŒãŸãæ£æŽæ° $m$ ã«å¯Ÿã㊠$2^{2m} - 1$ ã¯åžžã« $3$ ã®åæ°ã§ïŒããã«\r\n$$\\gcd\\mathopen{}\\left(2^{10} - 1, 2^4 - 1\\right) = 2^{\\gcd(10,4)} - 1 = 2^2 - 1$$\r\nã§ããããïŒ$\\alpha$ ã®ç¯å²ã«æ³šæããŠïŒæ±ããéè² æŽæ°ã¯å
é€åçãã\r\n$$\\left(\\frac{2^{20} - 1}3 + 1\\right) - \\left(\\frac{2^{10} - 1}3 + 1\\right) - \\left(\\frac{2^4 - 1}3 + 1\\right) + \\left(\\frac{2^2 - 1}3 + 1\\right) = \\mathbf{349180}. $$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc060/editorial/1484"
}
] | ãé¢æ° $f(x) =x^2 - 2021x + 2021^2$ ããã³ä»»æã®å®æ° $t$ ã«ã€ããŠïŒ$xy$ 座æšå¹³é¢äžã§æ²ç· $y=f(x)$ ã®ç¹ $(t,f(t))$ ã«ãããæ¥ç·ã $\ell_t$ ãšããŸãïŒãŸãå®æ°å $\\{x_n\\}_{n=1,2,\ldots}$ ãïŒä»¥äžã®ããã«å®çŸ©ããŸãïŒ
* $a$ ãé©åœãªå®æ°ãšããŠïŒ$x_1=a$ ãšããïŒ
* $x_n$ ãå®çŸ©ãã㊠$â_{x_n}$ ã® $x$ åçãååšãããªãã°ïŒãã® $x$ åçã®å€ã $x_{n+1}$ ãšããïŒ
* $x_n$ ãå®çŸ©ãããã $â_{x_n}$ ã® $x$ åçã¯ååšããªããšãïŒä»»æã®æŽæ° $m\gt n$ ã«å¯Ÿã $x_m$ ã¯å®çŸ©ãããªãïŒ
ãããŸïŒ$x_1,x_2,\ldots,x_{21}$ ããã¹ãŠå®çŸ©ããïŒã〠$x_1,x_2,\ldots,x_{20}$ ããã¹ãŠçžç°ãªãïŒããã« $x_{21}=a$ ã§ãã£ããšãïŒ$a$ ãšããŠããåŸãå€ã®ãã¡ $0$ ä»¥äž $2021$ 以äžã®ãã®ã®åæ°ãæ±ããŠãã ããïŒ |
OMC060 (for experts) | https://onlinemathcontest.com/contests/omc060 | https://onlinemathcontest.com/contests/omc060/tasks/289 | F | OMC060(F) | 1000 | 2 | 20 | [
{
"content": "ã$\\varphi$ ã§Eulerã®totienté¢æ°ãè¡šããã®ãšãã. äžè¬ã« $N\\geq 2$ ãéè² æŽæ° $l_2,l_3,l_5,l_{17},l_{257}$ ãçšããŠ\r\n$$2^{l_{2}}\\times 3^{l_{3}}\\times 5^{l_{5}}\\times 17^{l_{17}}\\times 257^{l_{257}}$$\r\nãšè¡šããããšãã (ãã®ãã㪠$N$ ã**è¯ãæŽæ°**ãšãã¶ããšãšãã).\r\nãŸã, æ£ã®æŽæ° $n$ ãšéè² æŽæ° $k$ ã«å¯Ÿã\r\n$$a(n,0)=1,\\quad a(n,k+1)=n^{a(n,k)}-1\\quad(k=0,1,\\dots)$$\r\nãšå®ãã. ããã«, è¯ãæŽæ° $N$ ãšæ£ã®æŽæ° $n$ ã«å¯Ÿã, ããæ£ã®æŽæ° $K$ ãååšããŠ\r\n$$a(n,K)\\equiv a(n,K+1)\\equiv\\cdots \\pmod N$$\r\nãšãªããšã, $a(n,K)$ ã $N$ ã§å²ã£ãäœãã $f(N,n)$ ãšè¡šãããšãšãã. \r\n\r\n----\r\n\r\n**䞻匵1.**ãä»»æã®è¯ãæŽæ° $N$ ãšæ£ã®æŽæ° $n$ ã«å¯Ÿã, $f(N,n)$ ãå®ãŸã. \r\n\r\n**蚌æ.**ãäžåœå°äœå®çãã, $N$ ãçŽ ã¹ã $p^l$ ã§ããå Žåã«ç€ºãã°ååã§ãã.\r\nä»®å®ãã $p-1$ 㯠$2$ ã®ã¹ãã§ãã.\\\r\nã$n=1$ ã®ãšã, ä»»æã® $k\\geq 1$ ã«ã€ã㊠$a(n,k)=0$ ãšãªããã, $f(N,n)=0$ ãšå®ãŸã.\\\r\nã$n=2$ ã®ãšã, ä»»æã® $k$ ã«ã€ã㊠$a(n,k)=1$ ãšãªããã, $f(N,n)=1$ ãšå®ãŸã.\\\r\nãä»¥äž $n\\gt 2$ ãšãã. ãã®ãšã $a(n,0)\\lt a(n,1)\\lt \\cdots$ ãšãªãããšã«æ³šæãã.\r\n\r\n- $n$ ã $p$ ã®åæ°ã®ãšãïŒ\\\r\nã$k$ ãåå倧ããªæŽæ°ãšãããšã,\r\n$$a(n,k)=n^{a(n,k-1)}-1\\equiv -1\\pmod N$$\r\nãšãªããã, $f(N,n)=N-1$ ãšå®ãŸã.\r\n- $\\gcd(p,n)=1$ ã〠$n$ ãå¥æ°ã®ãšãïŒ\\\r\nã$N,\\varphi(N),\\varphi^2(N),\\dots$ ã¯ãã¹ãŠ $(2\\text{ã®ã¹ã})\\times(p\\text{ã®ã¹ã})$ ã®åœ¢ã§ãã.\r\nãŸã, ãã $M$ ãååšã $\\varphi^M(N)=1$ ãšãªã,\r\nçŸããæ°ããã¹ãŠ $n$ ãšäºãã«çŽ ã§ããããšãããã.\\\r\nã$k$ ãä»»æã®éè² æŽæ°ãšãããšã,\r\nãŸãæããã« $a(n,k)$ 㯠$\\varphi^M(N)$ ã®åæ°ã§ãã.\r\nãããš $a(n,k+1)=n^{a(n,k)}-1$ ã¯Eulerã®å®çãã $\\varphi^{M-1}(N)$ ã®åæ°ã§ãã.\r\nãããç¹°ãè¿ãããšã§, $a(n,k+M)$ ã $N$ ã®åæ°ã§ããããšãããã.\r\nãããã£ãŠ $f(N,n)=0$ ãšå®ãŸã.\r\n- $\\gcd(p,n)=1$ ã〠$n$ ãå¶æ°ã®ãšãïŒ\r\n$$a(n,k+2)-a(n,k+1)=n^{a(n,k+1)}-n^{a(n,k)}=n^{a(n,k)}(n^{a(n,k+1)-a(n,k)}-1)$$\r\nã§ãããã, $2^{a(n,p)}\\geq p-1$ ã«æ³šæãããš, $a(n,p+2)-a(n,p+1)$ 㯠$\\varphi(p)=p-1$ ã®åæ°ã§ãã.\\\r\nããŸã, $a(n,p+k+1)-a(n,p+k)$ã$\\varphi(p^k)=(p-1)p^{k-1}$ ã®åæ°ã§ãããšä»®å®ãããš,\r\nEulerã®å®çãã $n^{a(n,p+k+1)-a(n,p+k)}-1$ 㯠$p^k$ ã®åæ°ã§ããã\r\n$n^{a(n,p+k)}$ 㯠$p-1$ ã®åæ°ã§ãããã,\r\n$$a(n,p+k+2)-a(n,p+k+1)$$\r\n㯠$\\varphi(p^{k+1})=(p-1)p^k$ ã®åæ°ã§ãã.\\\r\nããããã£ãŠ, $k\\geq l$ ã®ãšã $a(n,p+k+2)-a(n,p+k+1)$ 㯠$N$ã®åæ°ã§ãã, $f(N,n)$ ã¯å®ãŸã.\r\n\r\n----\r\n\r\nã次ã«å $N$ ã«ã€ã㊠$f(N,n)$ ãšããŠãšãããå€ã®åæ°ãèãã. ãŸã㯠$N$ ãçŽ ã¹ã $p^l$ ã®å Žåãèå¯ãã.\r\n䞻匵1ã®èšŒæã«åºã¥ãã°, $\\gcd(p,n)=1$ ã〠$n$ ãå¶æ°ã®ãšã, $f(N,n)$ ãã©ã®ãããªå€ããšããèå¯ããã°ãã.\\\r\nã$n\\equiv 1\\pmod p$ ã®ãšã, LTEã®è£é¡ãã以äžãæãç«ã€ãã, åå倧ã㪠$k$ ã«ã€ã㊠$a(n,k)$ 㯠$p^l$ ã®åæ°ãšãªã. \r\n$$v_p(a(n,k+1))=v_p(a(n,k))+v_p(n-1)$$\r\nãã£ãŠ $f(p^l,n)=0$ ã§ãã. ä»¥äž $n\\not\\equiv 1\\pmod p$ ãšãã.\r\n\r\n----\r\n\r\n**䞻匵2.**ã$n_1,n_2$ ã $4$ 以äžã®å¶æ°ã§ãã£ãŠ, ãšãã« $\\bmod~p$ 㧠$0,1$ ãšååã§ãªããã®ãšãã. ãã®ãšã,\r\n$f(p^l,n_1)\\not\\equiv 0,-1\\pmod{p}$ ã§ãã, $f(p^l,n_1)=f(p^l,n_2)$ ãªãã° $n_1\\equiv n_2\\pmod{p^l}$ ã§ãã. \r\n\r\n**蚌æ.**ã$l$ ã«ã€ããŠã®åž°çŽæ³ã§ç€ºã. ãŸã $l=1$ ãšãã. $n$ ã $4$ 以äžã®å¶æ°ãšãããšã, \r\nåå倧ã㪠$k$ ã«ã€ããŠ\r\n$$a(n,k)=n^{a(n,k-1)}-1\\equiv -1\\pmod{p-1}$$\r\nãšãªããã, \r\n$$a(n,k+1)=n^{a(n,k)}-1\\equiv n^{-1}-1\\pmod{p}$$\r\nãšãªã. ãã£ãŠ $f(p,n)\\equiv n^{-1}-1\\pmod{p}$ ãã, $l=1$ ã®å Žåã¯æãç«ã€. \\\r\nãä»¥äž $l=i$ ã®å Žåã®æç«ãä»®å®ã $l=i+1$ ã®å Žåãèãã. \r\n$f(p^{i+1},n)\\equiv f(p^i,n)\\pmod{p^i}$ ã«æ³šæãããš, \r\n$f(p^{i+1},n)\\not\\equiv 0,-1\\pmod p$ ãããã. \r\nãŸã, åž°çŽæ³ã®ä»®å®ãã, \r\n$f(p^{i+1},n_1)=f(p^{i+1},n_2)$ ãªãã°\r\n$$n_2=n_1+2sp^i$$\r\n(ãã ã $s$ ã¯æŽæ°) ãšè¡šããã. ãã®ãšã, $k$ ãåå倧ããªæŽæ°ãšããã°, 以äžã®ååååŒ\r\n$$\r\n\\begin{aligned}\r\n a(n_1,k)&\\equiv a(n_1+2sp^i,k) &\\pmod{p^{i+1}}\\\\\\\\\r\n a(n_1,k)&\\not\\equiv 0 &\\pmod{p}\\\\\\\\\r\n a(n_1,k)&\\equiv a(n_1+2sp^i,k)(\\equiv -1) &\\pmod{p-1}\r\n\\end{aligned}\r\n$$\r\nãæãç«ã€ãã, $D=a(n_1,k)$ ãšãããš, Eulerã®å®çãã\r\n$$\r\n\\begin{aligned}\r\n && n_1^{a(n_1,k)}-1&\\equiv (n_1+2sp^i)^{a(n_1+2sp^i,k)}-1 &\\pmod{p^{i+1}}\\\\\\\\\r\n &\\implies& n_1^D-1&\\equiv (n_1+2sp^i)^D-1 &\\pmod{p^{i+1}}\\\\\\\\\r\n &\\implies& n_1^D-1&\\equiv n_1^D+2Dn_1sp^i-1&\\pmod{p^{i+1}}\\\\\\\\\r\n &\\implies& 2Dn_1s&\\equiv 0 &\\pmod{p}\\\\\\\\\r\n &\\implies& s&\\equiv 0 &\\pmod{p}\r\n\\end{aligned}\r\n$$\r\n以äžãã $l=i+1$ ã§ãæç«ã瀺ããã.\r\n----\r\n\r\nã以äžã®è°è«ããŸãšãããš, $N=p^l$ ã«ãã㊠$f(N,n)$ ã¯\r\n\r\n- $p=2$ ã®ãšã $f(N,1)=0,f(N,2)=1$ ã§, 以é㯠$0,N-1$ ãç¹°ãè¿ã.\r\n- $p\\geq 3$ ã®ãšã $f(N,1)=0,f(N,2)=1$ ã§, 以é㯠$p^{l-1}(p-2)+2$ çš®é¡ã®å€ãåšæ $2p^l$ ã§ç¹°ãè¿ã.\r\n\r\nãããã£ãŠ, äžè¬ã® $N$ (ãã ã $l_2\\geq 2$, $l_3,l_5,l_7,l_{257}\\geq 1$ )ã«å¯ŸããŠ, $f(N,n)$ ã®ãšãåŸãå€ã®çš®é¡æ°ã¯\r\n$$1+2^4+\\prod_{p=3,5,17,257}(p^{l_p-1}(p-2)+2)$$\r\nã§ããããšã容æã«ããã. ä»åã® $N$ ã«ã€ããŠ, ãã®å€ã¯ $\\textbf{147487434}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc060/editorial/289"
}
] | ã$N=2^5\times 3^4\times 5^3\times 17^2\times 257$ ã«ã€ããŠ, 以äžãã¿ãã $0$ ä»¥äž $N$ æªæºã®æŽæ° $m$ ã®åæ°ãæ±ããŠãã ãã.
- ããæ£ã®æŽæ° $n$ ãšæ£ã®æŽæ° $K$ ãååšã, æŽæ°å $a_0,a_1,\dots$ ã
$$a_0=1,\quad a_{k+1}=n^{a_k}-1\quad(k=0,1,\dots)$$
ã§å®ãããš, $a_K\equiv a_{K+1}\equiv\cdots\equiv m\pmod N$ ãšãªã. |
OMC059 | https://onlinemathcontest.com/contests/omc059 | https://onlinemathcontest.com/contests/omc059/tasks/1637 | A | OMC059(A) | 100 | 185 | 194 | [
{
"content": "ãè¡ãç®ç·ã§äžãå, äžãå, å¹³åŠãªéãåèšã§ãããã $a\\\\,\\text{m},b\\\\,\\text{m},c\\\\,\\text{m}$ ãã£ããšãããš, 以äžã®äžåŒãæãç«ã€ïŒ\r\n$$\\frac{a}{40}+\\frac{b}{60}+\\frac{c}{50}=210,\\quad\\frac{a}{60}+\\frac{b}{40}+\\frac{c}{50}=220,\\quad a+b+c =10560$$\r\nãã®äžå
äžæ¬¡é£ç«æ¹çšåŒã解ã㊠$(a,b,c)=(1680,2880,6000)$ ãåŸããã, å¹³åŠãªéã¯åèšã§ $\\textbf{6000}\\\\,\\text{m}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc059/editorial/1637"
}
] | ãnatuåã¯äžãåãåé $40\\,\text{m}$, äžãåãåé $60\\,\text{m}$, å¹³åŠãªéãåé $50\\,\text{m}$ ã§æ©ããŸã. natuåã $10560\\,\text{m}$ ã®éã®ãã $210$ åãããŠè¡ã, $220$ åãããŠæ»ã£ãŠãããšã, ãã®éã®ãã®ãã¡å¹³åŠãªéã¯åèšã§äœ $\text{m}$ ãããŸããïŒ |
OMC059 | https://onlinemathcontest.com/contests/omc059 | https://onlinemathcontest.com/contests/omc059/tasks/1248 | B | OMC059(B) | 200 | 155 | 175 | [
{
"content": "ã$5$ åã®ããŒã«ã«å¯ŸããŠ, 以äžã§å®ãŸãæäœ $k\\ \\ (k=1,2,3,4,5)$ ãèãã (æäœ $0$ ã§ã¯äœãè¡ããªã)ïŒ\r\n\r\n- æäœ $k$ïŒæäœ $k-1$ ãŸã§ã«éžã°ããŠããªãããŒã«ãã, $a_k$ åãéžã㧠$k$ ãæžã蟌ã.\r\n\r\nãããš, æäœ $k$ ã®æœãæ¹ã¯ $\\_{5-a_1-...-a_{k-1}}\\mathrm{C}\\_{a_k}$ éãã§ãããã, æ±ããç·åã¯æäœ $5$ åãéããŠã®æœãæ¹ã®å Žåã®æ°ã«çããããšãããã. äžæ¹ã§, ãã®æäœ $5$ åã¯åããŒã«ã« $1,2,3,4,5$ ã®ãããããå²ãæ¯ãããšãšç䟡ã§ãããã, æ±ããç·å㯠$5^5=\\textbf{3125}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc059/editorial/1248"
}
] | ã$a_1+a_2+a_3+a_4+a_5=5$ ãªãéè² æŽæ°ã®çµ $(a_1,a_2,a_3,a_4,a_5)$ ãã¹ãŠã«ã€ããŠ, 以äžã®å€
$$\_{5}\mathrm{C}\_{a_1}\times{}\_{5-a_1}\mathrm{C}\_{a_2}\times{}\_{5-a_1-a_2}\mathrm{C}\_{a_3}\times{}\_{5-a_1-a_2-a_3}\mathrm{C}\_{a_4}\times{}\_{5-a_1-a_2-a_3-a_4}\mathrm{C}\_{a_5}$$
ã足ãåããããã®ã解çããŠãã ããïŒ |
OMC059 | https://onlinemathcontest.com/contests/omc059 | https://onlinemathcontest.com/contests/omc059/tasks/1488 | C | OMC059(C) | 300 | 104 | 165 | [
{
"content": "ã$10^a$ ã®æ£ã®çŽæ°ã§, ã〠$10^b$ ã®åæ°ã§ãããã®ã®åæ°ã¯, $10^{a-b}$ ã®æ£ã®çŽæ°ã®åæ°ã«çãããã $(a-b+1)^2$ ã§ãã. äžæ¹ã§ $10^a$ ã®æ£ã®çŽæ°ã¯ $(a+1)^2$ åã§ãããã, æ¡ä»¶ã¯\r\n$$10^{100}=(a+1)^2-(a-b+1)^2=(2a-b+2)b$$\r\nãã㧠$2a-b+2$ ãš $b$ ã®å¶å¥ã¯äžèŽãããã, ãããã¯ãšãã«å¶æ°ã§ãã. ããã« $a\\geq b$ ãã\r\n$$2a-b+2\\gt b$$\r\nç¹ã«æ±ããã¹ããã®ã¯ $AB=2^{98}\\times5^{100}$ ãªãæ£æŽæ°ã®çµ $A\\gt B$ ã®æ°ã«çããããšãããã, ãã㯠$\\textbf{4999}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc059/editorial/1488"
}
] | ã次ã®æ¡ä»¶ãã¿ããæ£æŽæ°ã®çµ $a\geq b$ ã®åæ°ã¯ããã€ã§ããïŒ
- æ¡ä»¶ïŒ$10^a$ ã®æ£ã®çŽæ°ã§ãã£ãŠ, $10^b$ ã®åæ°ã§ãªããã®ã¯ã¡ããã© $10^{100}$ åããïŒ |
OMC059 | https://onlinemathcontest.com/contests/omc059 | https://onlinemathcontest.com/contests/omc059/tasks/250 | D | OMC059(D) | 400 | 52 | 99 | [
{
"content": "ã$\\Gamma$ ã®é¢ç©ã $S$ ãšãã. $AB,CD$ ã®äžç¹ã $M,N$ ãšããã°, $AP^2+BP^2$ ã®ãšãåŸãå€ã®ç¯å²ã¯\r\n$$\\dfrac{2S}{\\pi}=AB^2\\/2\\leq2(AM^2+MP^2)=AP^2+BP^2\\leq AB^2=\\dfrac{4S}{\\pi}$$\r\nãããã£ãŠ,\r\n$$NQ^2=\\dfrac{1}{2}(CQ^2+DQ^2)-CN^2=\\dfrac{1}{2}(AP^2+BP^2)-36$$\r\nãã, $Q$ ã®ééãåŸãé åã¯ååŸ $\\sqrt{2S\\/\\pi-36}$ ã®åç€ããååŸ $\\sqrt{S\\/\\pi-36}$ ã®åç€ãåãé€ãããã®ã§ãã (ãã ã $S\\lt36\\pi$ ãªãã°ç©Žã¯éããªã). ãã㧠$S\\geq36\\pi$ ãšä»®å®ããã°, æ¡ä»¶ãã $S=30$ ãšãªãççŸã§ãã. ãããã£ãŠ $2S-36\\pi=30$ ãã $S=18\\pi+15$ ã§ãã, ãã㯠$S\\lt36\\pi$ ãã¿ãã. ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{33}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc059/editorial/250"
}
] | ãå¹³é¢äžã«å®ç¹ $A,B,C,D$ ããã³ $AB$ ãçŽåŸãšããåç€ $\Gamma$ ããã, $CD$ ã®é·ã㯠$12$ ã§ã. ç¹ $P$ ã $\Gamma$ å
ãåããšã, 以äžã®æ¡ä»¶
$$AP=CQ,\ \ BP=DQ$$
ãã¿ããç¹ $Q$ ãééãåŸãé åã®é¢ç©ã¯ $30$ ã§ãã. ãã®ãšã, $\Gamma$ ã®é¢ç©ãæ±ããŠãã ãã.\
ããã ã, çãã¯æŽæ° $a,b$ ãçšã㊠$a+b\pi$ ãšè¡šããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC059 | https://onlinemathcontest.com/contests/omc059 | https://onlinemathcontest.com/contests/omc059/tasks/264 | E | OMC059(E) | 500 | 15 | 45 | [
{
"content": "ã$a_i=x_{i+1}\\/x_{i}$ ãšããã°, æ¡ä»¶ã¯ $a_0\\lt a_1\\lt\\cdots\\lt a_6$ ã§ãã, æ±ãããã®ã¯\r\n$$\\displaystyle\\frac{a_0a_1+1}{a_1-a_0}+\\frac{a_1a_2+1}{a_2-a_1}+...+\\frac{a_{5}a_{6}+1}{a_6-a_{5}}\\gt c$$\r\nãåžžã«ã¿ããå®æ° $c$ ã®æ倧å€ã§ãã. äžè¬ã« $6$ ã $n$ ãšãã, æ±ããæ倧å€ã $A_n$ ãšãã.\\\r\n ãå $i=0,1,...,n$ ã«å¯Ÿã, $a_i=\\tan \\theta_i$ ãªãå®æ° $0\\lt \\theta_i\\lt \\dfrac{\\pi}{2}$ ããšã, ãã®ãšã\r\n$$\\sum_{i=1}^{n} \\frac{a_{i-1} a_i+1}{a_i-a_{i-1}}=\\sum_{i=1}^{n}\\frac{\\tan \\theta_{i-1} \\tan \\theta_i+1}{\\tan \\theta_i-\\tan \\theta_{i-1}}=\\sum_{i=1}^{n}\\frac{1}{\\tan(\\theta_i-\\theta_{i-1})}$$\r\nããã㧠$f(\\theta)=\\dfrac{1}{\\tan \\theta}$ ãšãããš, $f^\\prime(\\theta)=-\\dfrac{1}{\\sin ^2\\theta}$ ã $0\\lt \\theta\\lt \\dfrac{\\pi}{2}$ ã§å調å¢å ã§ããããšãã, $f(\\theta)$ ã¯ãã®ç¯å²ã§äžã«åžã§ãã. ãããã£ãŠ, Jensenã®äžçåŒãã\r\n$$\\displaystyle\\sum_{i=1}^{n}\\frac{1}{\\tan(\\theta_i-\\theta_{i-1})}=\\sum_{i=1}^{n} f(\\theta_i-\\theta_{i-1})\\geq n f\\left(\\frac{\\sum (\\theta_i-\\theta_{i-1})}{n}\\right)=n f\\left(\\frac{\\theta_{n}-\\theta_0}{n}\\right)$$\r\nç¹ã« $\\theta_i$ ãçå·®æ°åããªããšãã«çå·ãæç«ãããã, çµå± $f(\\theta)$ ã®å調æžå°æ§ãšäœµã㊠$A_n$ ã«ã€ããŠ\r\n$$A_n=nf\\left(\\dfrac{\\pi}{2n}\\right)=n\\/\\tan\\left(\\dfrac{\\pi}{2n}\\right)$$\r\nç¹ã« $n=6$ ã®ãšã $A_6=12+6\\sqrt{3}$ ã§ãã, 解çãã¹ãå€ã¯ $\\textbf{120}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc059/editorial/264"
}
] | ã$8$ åã®æ£ã®å®æ° $x_0,x_1,\ldots,x_7$ ã¯, $n=1,\ldots,6$ ã«å¯Ÿã $x_{n-1}x_{n+1}\gt x_{n}^2$ ãã¿ãããŸã. ãã®ãšã, 以äžã®äžçåŒ
$$\frac{x_1(x_0+x_2)}{x_0x_2-x_1^2}+\frac{x_2(x_1+x_3)}{x_1x_3-x_2^2}+\cdots+\frac{x_6(x_5+x_7)}{x_5x_7-x_6^2}\gt c$$
ãåžžã«ã¿ããå®æ° $c$ ã®æ倧å€ãæ±ããŠãã ãã.\
ããã ã, æ±ããå€ã¯æ£æŽæ° $s,t$ ã«ãã£ãŠ $s+\sqrt{t}$ ãšè¡šããã®ã§, $s+t$ ã解çããŠãã ãã. |
OMC059 | https://onlinemathcontest.com/contests/omc059 | https://onlinemathcontest.com/contests/omc059/tasks/1467 | F | OMC059(F) | 600 | 5 | 22 | [
{
"content": "ã$\\ell$ ã®äž¡ç«¯ã $A,B$ ãšã, $\\omega_1,\\omega_2$ ãš $\\ell$ ã®æ¥ç¹ããããã $U_1,U_2$ ãšãã.\\\r\nããã®ãšã, well-known factãšã㊠$S_1U_1$ ããã³ $S_2U_2$ ã®äº€ç¹ $M$ ã¯åŒ§ $AB$ ã®äžç¹ã«ããã, ããã« \r\n$$MS_1\\times MU_1=MA^2=MS_2\\times MU_2$$\r\nãã $4$ ç¹ $S_1,S_2,U_1,U_2$ ã¯å
±åã§ãã. ãã®åãš $\\omega_1,\\omega_2$ ã®æ ¹å¿ã¯ $M$ ã§ããããšãã, ç¹ $T$ ã§ã®äž¡åãžã®æ¥ç·ã¯ $M$ ãéã. ãããã£ãŠ $MA=MT=MB$ ãæç«ã, çŽç· $MT$ ãš $\\Gamma$ ã®äº€ç¹ã®ãã¡ $M$ ã§ãªãæ¹ã $C$ ãšãããš, $T$ ã¯äžè§åœ¢ $ABC$ ã®å
å¿ã§ãã.\\\r\nãæ¡ä»¶ããäžè§åœ¢ $ABC$ ã«ã€ããŠå
æ¥åã®ååŸã¯ $d$, å€æ¥åã®ååŸã¯ $r$, å
å¿ãšå€å¿ã®è·é¢ã¯ $OT$ ã§ãããã, Eulerã®å®çãã $OT^2=r^2-2dr$ ãåŸã. ããã $d^2$ ã§èŸºã
å²ã, $r\\/d$ ã«ã€ããŠè§£ãããšã§\r\n$$\\displaystyle\\frac{r}{d}=1+\\sqrt{1+\\left(\\frac{OT}{d}\\right)^2}=\\dfrac{10+\\sqrt{149}}{10}$$\r\nç¹ã«è§£çãã¹ãå€ã¯ $10+149+10=\\textbf{169}$ ã§ãã.\\\r\nããªãæ
å ± $\\angle S_1OS_2=120^\\circ$ ã¯éå°ã§ããã, ãããã¿ããå³ã¯å®éã«ååšãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc059/editorial/1467"
},
{
"content": "ãé·ã远跡ã«ãã解æ³ã§ãïŒ\\\r\n$w_{1} , w_{2}$ ã®äžå¿ããããã $O_{1} , O_{2}$ ãšãïŒååŸããããã $r_{1} , r_{2}$ ãšããïŒãŸãïŒ$w_{1} , w_{2}$ ãš $l$ ãšã®æ¥ç¹ããããã $U_{1} , U_{2}$ ãšããïŒ\\\r\n$O_{1}U_{1} = O_{1}T = r_{1} , O_{2}U_{2} = O_{2}T = r_{2}$ ããïŒ$d = \\dfrac{2r_{1}r_{2}}{r_{1} + r_{2}}$ ãåŸãããïŒãŸãïŒ$\\Gamma$ 㯠$w_{1} , w_{2}$ ã«ããããæ¥ããŠããäºãã $O_{1}T = r - r_{1} , O_{2}T = r - r_{2}$ ããããã®ã§ïŒäžè§åœ¢ $OO_{1}O_{2}$ ã«æ³šç®ããŠïŒStewartã®å®çãã\r\n\r\n$$\\begin{aligned}\r\n& OO_{1}^{2} \\times O_{2}T + OO_{2}^{2} \\times O_{1}T - O_{1}O_{2} (O_{1}T \\times O_{2}T + OT^{2}) \\\\\\\\\r\n& = (r - r_{1})^{2} \\times r_{2} + (r - r_{2})^{2} \\times r_{1} - (r_{1} + r_{2})\\left(r_{1}r_{2} + \\left(\\dfrac{7r_{1}r_{2}}{5(r_{1}+r_{2})}\\right)^{2}\\right) \\\\\\\\\r\n& = (r_{1} + r_{2}) (r^{2} - 2dr - \\dfrac{49}{100} d^{2}) \\\\\\\\\r\n& = 0\r\n\\end{aligned}$$\r\n\r\nãã£ãŠïŒ$r_{1} + r_{2} \\not = 0 , r \\gt 0$ ããïŒ$r = \\dfrac{10 + \\sqrt{149}}{10} d$ ãªã®ã§ïŒæ±ããå€ã¯ $\\bf{169}$ ã§ããïŒ",
"text": "èšç®ã§ã®è§£æ³",
"url": "https://onlinemathcontest.com/contests/omc059/editorial/1467/324"
},
{
"content": "$T$ ãäžå¿ãšããååŸ $d$ ã®å転ãèããïŒãã®å転㧠$l$, $Î$ ã移ãåã $l^{\\prime},Î^{\\prime}$ ãšããïŒ$l,Î$ 㯠$Ï_{1},Ï_{2}$ ã«æ¥ããã®ã§ïŒ$l^{\\prime},Î^{\\prime}$ ã¯ãã®å転㧠$Ï_{1},Ï_{2}$ ã移ãå¹³è¡ãªäºçŽç·ã«ãšãã«æ¥ããïŒç¹ã«ïŒ $l^{\\prime},Î^{\\prime}$ ã®çŽåŸã¯çããïŒ$l^{\\prime}$ ã®çŽåŸã¯ $d$, $Î^{\\prime}$ ã®çŽåŸã¯ $\\dfrac{d^2}{r-OT}+\\dfrac{d^2}{r+OT}$ ã§ããïŒãã£ãŠ $$\\dfrac{d^2}{r-\\dfrac{7}{10}d}+\\dfrac{d^2}{r+\\dfrac{7}{10}d}=d$$ ããã解ã㊠$\\dfrac{r}{d}=\\dfrac{10+\\sqrt{149}}{10}$ ãåŸãïŒãã£ãŠæ±ããå€ã¯ $\\mathbf{169}$ ã§ããïŒ",
"text": "å転ã«ãã解æ³",
"url": "https://onlinemathcontest.com/contests/omc059/editorial/1467/326"
}
] | ãç¹ $O$ ãäžå¿ãšããååŸ $r$ ã®å $\Gamma$ ããã³ãã®åŒŠ $\ell$ ããããŸã. äºãã« $T$ ã§å€æ¥ããå $\omega_1$ ããã³ $\omega_2$ ã¯, äžå¿ããšãã« $\Gamma$ ã®å
éšã® $\ell$ ã«é¢ããŠåãåŽã«ãã, ã©ã¡ãã $\Gamma$ ããã³ $\ell$ ã®äž¡æ¹ãšæ¥ããŠããŸã. ãã®ãšã, $\omega_1,\omega_2$ ãš $\Gamma$ ã®æ¥ç¹ããããã $S_1,S_2$ ãšãããš, $\angle S_1OS_2=120^\circ$ ãæãç«ã¡ãŸãã.\
ãããã« $T$ ãš $\ell$ ã®è·é¢ $d$ ã«ã€ããŠ, $OT:d=7:10$ ãæãç«ã€ãšã, æ£æŽæ° $a,b,c$ ãååšããŠ
$$r:d=(a+\sqrt{b}):c$$
ãšè¡šãããã®ã§ (ãã ã $b$ 㯠$1$ ãã倧ããå¹³æ¹æ°ã§å²ãåããªã), $a+b+c$ ã解çããŠãã ãã. |
OMC058 (for beginners) | https://onlinemathcontest.com/contests/omc058 | https://onlinemathcontest.com/contests/omc058/tasks/2245 | A | OMC058(A) | 100 | 156 | 173 | [
{
"content": "ãã©ã® $2$ æ¬ã端ç¹ãå
±æããªãããšãã, åŒãã察è§ç·ã¯é«ã
$[2021\\/2]=1010$ æ¬ã§ãã, ããã« $1010$ æ¬ãåŒãããšãããšèŸºãå«ãã§ããŸãããšã容æã«ããã. éã«, åé ç¹ãé ã« $A_1,A_2,\\cdots,A_{2021}$ ãšãããš,\r\n$$A_2A_{2021} ,\\quad A_3A_{2020} ,\\quad\\cdots, \\quad A_{1010}A_{1013}$$\r\nãšã㊠$1009$ æ¬ã®å¯Ÿè§ç·ãåŒãããšãã§ãããã, æ±ããæ倧å€ã¯ $\\textbf{1009}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc058/editorial/2245"
}
] | ãæ£ $2021$ è§åœ¢ã«ãããŠ, ãã®å¯Ÿè§ç·ã $1$ æ¬ãã€åŒããŠãããŸã. ãã®ãšã, æ°ããåŒã察è§ç·ã¯, ãããŸã§ã«åŒããã©ã®å¯Ÿè§ç·ãšãå
±æç¹ïŒ**端ç¹ãå«ã**ïŒããã£ãŠã¯ãããŸãã. åŒãããšã®ã§ãã察è§ç·ã¯æ倧ã§äœæ¬ã§ããïŒ |
OMC058 (for beginners) | https://onlinemathcontest.com/contests/omc058 | https://onlinemathcontest.com/contests/omc058/tasks/1999 | B | OMC058(B) | 200 | 101 | 139 | [
{
"content": "$$S_k=\\sum_{i=4}^{k}\\dfrac{1}{2}i(i-3)=\\sum_{i=1}^{k-3}\\dfrac{1}{2}i(i+3)=\\dfrac{1}{6}(k-3)(k-2)(k+2)$$\r\n$2021=43\\times 47$ ãã $k=\\textbf{45}$ 㧠$S_k$ 㯠$2021$ ã®åæ°ãšãªã, æå°æ§ã容æã«åŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc058/editorial/1999"
}
] | ã$k\geq 4$ ãªãæŽæ° $k$ ã«å¯Ÿã, åž $k$ è§åœ¢ã®å¯Ÿè§ç·ã®æ¬æ°ã $a_k$ ãšã, ããã« $S_k$ ã以äžã§å®ããŸãïŒ
$$S_k=a_4+a_5+\cdots+a_k$$
ãã®ãšã, $S_k$ ã $2021$ ã®åæ°ãšãªãæå°ã® $k$ ãæ±ããŠãã ãã. |
OMC058 (for beginners) | https://onlinemathcontest.com/contests/omc058 | https://onlinemathcontest.com/contests/omc058/tasks/2230 | C | OMC058(C) | 300 | 66 | 84 | [
{
"content": "ãæ¹çšåŒã $2021$ åã®è² ã®æŽæ°è§£ãæã€ãã, å®æ°é
ã®çŽ å æ°å解ãèããããšã§ $f$ ã¯\r\n$$(x+1)^{2020}(x+2021),\\quad (x+1)^{2019}(x+43)(x+47)$$\r\nã®ããããã§ãã. ããããã«ã€ã㊠$S=f(1)-2022$ ãåèšãããš, \r\n$$T=(2^{2020}Ã2022-2022)+(2^{2019}Ã44Ã48-2022)=2^{2021}Ã3^4Ã19-4044$$\r\nãããã£ãŠ, 解çãã¹ãå€ã¯ $2+2021+3+4+19=\\bf2049$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc058/editorial/2230"
}
] | ãå®æ°ãä¿æ°ãšãã $x$ ã® $2021$ 次æ¹çšåŒ
$$x^{2021}+a_1x^{2020}+a_2x^{2019}++a_{2020}x+2021=0$$
ã, éè€ã蟌ã㊠$2021$ åã®è² ã®æŽæ°è§£ããã€ãããªçµ $(a_1, \cdots, a_{2020})$ ãã¹ãŠã«ã€ããŠ, $S=a_1+\cdots+a_{2020}$ ã®ç·åã $T$ ãšããŸã. ãã®ãšã, $T+4044$ 㯠$a,c,e$ ãçžç°ãªãçŽ æ°ãšããŠçŽ å æ°å解ã®åœ¢ã§
$$T+4044=a^b\times c^d\times e$$
ãšè¡šããã®ã§, $a+b+c+d+e$ ã®å€ã解çããŠãã ãã. |
OMC058 (for beginners) | https://onlinemathcontest.com/contests/omc058 | https://onlinemathcontest.com/contests/omc058/tasks/1605 | D | OMC058(D) | 300 | 55 | 70 | [
{
"content": "ãçåŒ $\\dbinom{k+1}{n+1}=\\dbinom{k}{n+1}+\\dbinom{k}{n}$ ãç¹°ãè¿ãçšããããšã«ãã,\r\n$$\\binom{k+1}{n+1}=\\binom{n+1}{n+1}+\\sum_{i=n+1}^{k}\\binom{i}{n}=\\sum_{i=n}^{k}\\binom{i}{n}$$\r\nãæãç«ã€ãã, æ±ãã $n$ ã«ã€ããŠä»¥äžãæç«ãã.\r\n$$\\binom{2021}{n}=\\binom{2021}{n+1}$$\r\nããªãã¡ $n+(n+1)=2021$ ã§ãããã, $n=\\textbf{1010}$ ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc058/editorial/1605"
}
] | ã以äžã®çåŒãã¿ãããããª, $2020$ 以äžã®æ£æŽæ° $n$ ã®ç·åãæ±ããŠãã ãã.
$${}\_{2021}\mathrm{C}\_{n}=\sum_{i=n}^{2020}{}\_{i}\mathrm{C}\_{n}$$ |
OMC058 (for beginners) | https://onlinemathcontest.com/contests/omc058 | https://onlinemathcontest.com/contests/omc058/tasks/1777 | E | OMC058(E) | 300 | 47 | 63 | [
{
"content": "ãç¹ $P$ ããå¹³é¢ $BCDE,ABFD$ ã«ããããåç·ã®è¶³ããããã $G,H$ ãšãããš, British flag theoremãã (詳现ã¯[**OMC030(B)ã®è§£èª¬**](https:\\/\\/onlinemathcontest.com\\/contests\\/omc030\\/editorial\\/1340)ãåç
§ãã) 以äžãæç«ããïŒ\r\n$$BG^2+DG^2=CG^2+EG^2,\\quad AH^2+FH^2=BH^2+DH^2$$\r\nãã®ãšã, 第äžåŒã®äž¡èŸºã« $2PG^2$ ã, 第äºåŒã®äž¡èŸºã« $2PH^2$ ãå ããããšã§\r\n$$CP^2+EP^2=BP^2+DP^2=AP^2+FP^2$$\r\nãã£ãŠ $AP^2+EP^2+FP^2=2(BP^2+DP^2)-CP^2=2(24^2+32^2)-27^2=\\textbf{2471}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc058/editorial/1777"
}
] | ãæ£å
«é¢äœ $A-BCDE-F$ ããã³ãã®å€éšã«ããç¹ $P$ ã
$$BP=24,\quad CP=27,\quad DP=32$$
ãã¿ãããŠãããšã, $AP^2+EP^2+FP^2 $ã®å€ãæ±ããŠãã ãã. |
OMC058 (for beginners) | https://onlinemathcontest.com/contests/omc058 | https://onlinemathcontest.com/contests/omc058/tasks/1656 | F | OMC058(F) | 400 | 15 | 42 | [
{
"content": "ã芳芧è»ãæèšåãã§ãããšã, äžåšã®é·ãã $75$ ãšãã. ãŸãè¡å $A,B$ ããããã以äžã®ããã«å®çŸ©ããïŒ\r\n\r\n- $A$ïŒ$9$ æã®æ¹åããäžæã, $12$ æã®æ¹åã«éããããå
ã«èœäžããŠä¹ã移ã, åã³ $9$ æã®æ¹åã«éãã.\r\n- $B$ïŒ$9$ æã®æ¹åããäžæã㊠$12$ æã®æ¹åã«éããŠä»¥éã«èœäžããŠä¹ã移ã, $6$ æã®æ¹åã«éãã.\r\n\r\nè¡å $B$ ã¯é«ã
äžåã§ãã. ãã®ãšã $i\\ (0\\leq i\\leq 37)$ æ©å
ã®ãŽã³ãã©ã«ä¹ã移ã£ããšãã. ãã㧠$i=0$ ããã£ãŠè¡å $B$ ãè¡ããªãã£ãå Žåãçµ±äžçã«è¡šçŸãããã®ãšãã. ãã®ãšãè¡å $A$ ã§åèšã§ä»¥äžã®è·é¢ãäžæããã°ãã.\r\n$$3\\times 2021-(75-i)=5988+i$$\r\näžè¬ã«è¡å $A$ ãç¹°ãè¿ããŠåèš $n$ ã ãäžæããå Žåã®æ°ã $f(n)$ ãšããã°, ããã¯ä»¥äžã®æŒžååŒãã¿ããïŒ\r\n$$f(n)=\\sum_{j=1}^{37}{f(n-j)}$$\r\nãããã, é©åœã«æ·»åã調æŽããããšã§ $f(n)=F_{n+36}$ ã®æç«ãåãã, 以äžããç¹ã«è§£çãã¹ãå€ã¯ $\\bm{6061}$ ã§ãã.\r\n$$\\sum_{i=0}^{37}{f(5988+i)}=\\sum_{i=0}^{37}{F_{6024+i}}=2F_{6061}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc058/editorial/1656"
}
] | ã倧ããã®ç¡èŠã§ãã $75$ åºã®ãŽã³ãã©ãååšäžã«çééã«èšçœ®ãã, äžå®ã®é床ã§å転ãã芳芧è»ããããŸã. æäžç¹ããä¹ã蟌ã¿, $25$ åãããŠäžåšãããå¿
ãéããŸã. ããã, OMCåã¯ãã®èŠ³èŠ§è»ã«åºæ¥ãã ãé·ãä¹ã£ãŠãããã®ã§, 以äžã®è¡ãäœåŸããŸããïŒ
- ä¹ã£ãŠãããŽã³ãã©ã®çäžã«å¥ã®ãŽã³ãã©ããããšã, ãã®ãŽã³ãã©ãŸã§èœäžããŠä¹ã移ãããšãã§ãã. ãã ã, èœäžæéã¯ç¡èŠã§ãããã®ãšãã.
ãOMCåããŽã³ãã©ã«ä¹ã蟌ãã§ãã $2021$ ååŸã«åããŠåã³æäžç¹ã«ãããããªç§»åæ¹æ³ã®ç·æ°ã¯, éè² æŽæ° $a$ ã«ãã£ãŠ $2F_a$ ãšè¡šãããã®ã§, $a$ ã®å€ã解çããŠãã ãã. ããã§, éè² æŽæ° $n$ ã«å¯Ÿã, $F_n$ ã¯ä»¥äžã§å®çŸ©ãããŸã.
$$F_{n}=0\quad(0 \leq n \leq 35),\quad F_{36}=1,\quad F_{n}=\sum_{k=1}^{37}{F_{n-k}}\quad (n \geq 37)$$ |
OMC057 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc057 | https://onlinemathcontest.com/contests/omc057/tasks/1883 | A | OMC057(A) | 200 | 187 | 192 | [
{
"content": "ãäžåœå°äœå®çãã, $3$ ã€ã®äœãã®çµã¯ $(0,0,0)$ ãé€ããŠã¡ããã©äžã€ãã€çŸãããã, æ±ããç·åã¯\r\n\r\n$$\\sum_{i=0}^{6}\\sum_{j=0}^{10}\\sum_{k=0}^{12}ijk=\\sum_{i=0}^{6}i\\sum_{j=0}^{10}j\\sum_{k=0}^{12}k=\\dfrac{6\\times 7}{2}\\times\\dfrac{10\\times 11}{2}\\times\\dfrac{12\\times 13}{2}=\\textbf{90090}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc057/editorial/1883"
},
{
"content": "https:\\/\\/youtu.be\\/sWGabm0MNck",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc057/editorial/1883/95"
}
] | ãæ£æŽæ° $n,m$ ã«å¯Ÿã, $n$ ã $m$ ã§å²ã£ãäœãã $n\ \mathrm{mod}\ m$ ã§è¡šããšã, 以äžã®ç·åãæ±ããŠãã ããïŒ
$$\sum_{n=1}^{1000}(n\ \mathrm{mod}\ 7)(n\ \mathrm{mod}\ 11)(n\ \mathrm{mod}\ 13)$$ |
OMC057 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc057 | https://onlinemathcontest.com/contests/omc057/tasks/1831 | B | OMC057(B) | 300 | 111 | 156 | [
{
"content": "ãå
±ééšåã¯æ£å
è§éãäžäžã« $2$ ã€è²Œãåãããç«äœã§ãã. ããã¯å
ã®ç«æ¹äœããäžè§éã $6$ ã€åãé€ãããšè§£éã§ã, ãã®äœç©ã¯ $1-6\\times\\left(\\dfrac{1}{6}\\times\\dfrac{1}{2}\\times\\dfrac{1}{2}\\right)=\\dfrac{3}{4}$ ã§ãããã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{7}$ ã§ãã.\r\n![figure 1](\\/images\\/V3HEAx3KJx4u3cfZaiSsWxnuVxlb6E1aDl7rraiJ)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc057/editorial/1831"
},
{
"content": "https:\\/\\/youtu.be\\/9yVZ930VjmE",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc057/editorial/1831/96"
}
] | ãäžèŸºã®é·ãã $1$ ã®ç«æ¹äœã«ã€ããŠ, ããäœå¯Ÿè§ç·ã軞㫠$60^\circ$ å転ãããŠåŸãããç«æ¹äœãšã®å
±ééšåã®äœç©ãæ±ããŠãã ãã. ãã ã, æ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $x,y$ ã«ãã£ãŠ $\dfrac{x}{y}$ ãšè¡šããã®ã§, $x+y$ ã解çããŠãã ãã. \
ããªã, ç«æ¹äœã«ãããŠ**äœå¯Ÿè§ç·**ãšã¯, åãé¢äžã«ãªã $2$ é ç¹ãçµãã§åŸãããç·åã®ããšãæããŸã. |
OMC057 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc057 | https://onlinemathcontest.com/contests/omc057/tasks/1314 | C | OMC057(C) | 500 | 64 | 136 | [
{
"content": "ã$f(n)$ ã¯ã$n$ ãäºé²æ°ã§è¡šèšãããšãã®åæ¡ã®ç·åãã§ããããšã容æã«ããã. ãã㧠$f(n)=k$ ãã€äºé²æ°ã§è¡šèšã㊠$i$ æ¡ç®ã $1$ ã§ãããã㪠$n$ ã¯, $i$ ã«ããã\r\n$$\\binom{N-1}{k-1}= \\frac{k}{N}\\binom{N}{k}$$\r\nåååšãããã,\r\n$$\\sum_{f(n)=k,n\\lt 2^N}nf(n)=\\sum_{i=1}^{N}k2^{i-1}\\binom{N}{k}\\frac{k}{N}=\\frac{k^2}{N}\\binom{N}{k}(2^N-1)$$\r\n----\r\n**è£é¡.**ã$\\displaystyle\\sum_{k=0}^{N}k^2\\binom{N}{k}=2^{N-2}N(N+1)$\r\n\r\n**蚌æ.**ãæ§ã
ãªæ¹æ³ãèããããã, ããã§ã¯ä»¥äžã®åŒãåºçºç¹ãšãã.\r\n$$(1+x)^N=\\sum_{k=0}^{N} \\binom{N}{k}x^k$$\r\n䞡蟺ã $x$ ã§åŸ®åã, $x$ ãä¹ããããšã§\r\n$$Nx(1+x)^{N-1}=\\sum_{k=0}^{N} k\\binom{N}{k}x^k$$\r\nãããããã« $x$ ã§åŸ®åã, $x=1$ ã代å
¥ããããšã§çµè«ãåŸã,\r\n$$N(1+x)^{N-1}+N(N-1)x(1+x)^{N-2}=\\sum_{k=0}^{N} k^2\\binom{N}{k}x^{k-1}$$\r\n----\r\nãããã£ãŠ, è£é¡ããæ±ããç·åã¯\r\n$$\\sum_{n=0}^{2^N-1}nf(n)=\\frac{2^N-1}{N}\\sum_{k=0}^{N}k^2\\binom{N}{k}=2^{N-2}(N+1)(2^N-1)$$\r\nç¹ã«ããã $2$ ã§å²ãåããæ倧ã®åæ°ã¯, $(N-2)+20=\\textbf{1048593}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc057/editorial/1314"
},
{
"content": "https:\\/\\/youtu.be\\/ZmKUA71W4Pc",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc057/editorial/1314/97"
}
] | ãéè² æŽæ°ã«å¯ŸããŠå®çŸ©ãããé¢æ° $f$ ã¯, $f(0)=0$ ããã³æ£æŽæ° $n$ ã«å¯ŸããŠ
$$f(n)=\begin{cases} f(n\/2) & (n\ \text{ãå¶æ°ã®ãšã}) \\\\ f((n-1)\/2)+1 & (n\ \text{ãå¥æ°ã®ãšã}) \end{cases}$$
ãã¿ãããŸã. ãã®ãšã, $N=2^{20}-1(=1048575)$ ã«å¯Ÿã以äžã®ç·å
$$M=\sum_{n=0}^{2^N-1}nf(n)$$
ã $2$ ã§å²ãåããæ倧ã®åæ°ãæ±ããŠãã ãã. |
OMC057 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc057 | https://onlinemathcontest.com/contests/omc057/tasks/2040 | D | OMC057(D) | 500 | 155 | 166 | [
{
"content": "ãäžè§åœ¢ã®å蟺ã $x+y,y+z,z+x$ ãšè¡šã,é¢ç©ã $S$, å€æ¥åã»å
æ¥åã®ååŸããããã $R,r$ ãšããã°,\r\n$$S=\\sqrt{xyz(x+y+z)},\\quad r=\\dfrac{S}{x+y+z}=\\sqrt{\\dfrac{xyz}{x+y+z}}$$\r\nãããã $Sr=xyz=1001$ ã§ãã, ããã« $x+y+z=\\dfrac{S^2}{xyz}=31$ ã§ãã.ãããã£ãŠ,\r\n$$(x+y+z)(xy+yz+zx)-xyz=(x+y)(y+z)(z+x)=4RS=8640$$\r\nãã $xy+yz+zx=311$ ãåŸããã, 解ãšä¿æ°ã®é¢ä¿ãã $x,y,z$ ã¯ä»¥äžã® $t$ ã®æ¹çšåŒã® $3$ 解ã§ããïŒ\r\n$$t^3-31t^2+311t-1001=0$$\r\n$1001=7\\times 11\\times 13$ ã«çæããŠããã解ãã°\r\n$$t^3-31t^2+311t-1001=(t-7)(t-11)(t-13)$$\r\nãåŸããã, ç¹ã«è§£çãã¹ã蟺ã®é·ã㯠$7+13=\\bm{20}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc057/editorial/2040"
},
{
"content": "https:\\/\\/youtu.be\\/Qei7nVOUQmI",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc057/editorial/2040/98"
}
] | ãé¢ç©ã $\sqrt{31031}$, å€æ¥åã®ååŸã $\dfrac{2160}{\sqrt{31031}}$, å
æ¥åã®ååŸã $\sqrt{\dfrac{1001}{31}}$ ã§ãããããªäžè§åœ¢ã«ãããŠ, $2$ çªç®ã«é·ã蟺ã®é·ããæ±ããŠãã ãã. ãã ã, æ±ããäžè§åœ¢ã«ãããŠãã¹ãŠã®èŸºã®é·ããç°ãªãããšãä¿èšŒãããŸã. |
OMC057 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc057 | https://onlinemathcontest.com/contests/omc057/tasks/1709 | E | OMC057(E) | 600 | 62 | 99 | [
{
"content": "ã$\\displaystyle S_n=\\sum_{k=0}^{F_n-1}f(k)$ ãšå®ããã°, ããã¯æŒžååŒ $S_{n}=S_{n-1}+S_{n-2}+F_{n-2}$ ãã¿ãããã, ããã解ã㊠\r\n$$S_n=\\dfrac{1}{5}\\left((n-2)F_{n}+nF_{n-2}\\right)\\quad (n=2,3,\\cdots)$$\r\nãã㧠$2021=F_{17}+F_{14}+F_{9}+F_{7}$ ã§ãããã, 以äžã®ããã«åºéãåå²ããŠèšç®ããã°ããïŒ\r\n- $0\\leq k\\lt F_{17}$ ã«ã€ããŠ, $S_{17}=6865$.\r\n- $F_{17}\\leq k\\lt F_{17}+F_{14}$ ã«ã€ããŠ, $S_{14}+F_{14}=1685$.\r\n- $F_{17}+F_{14}\\leq k\\lt F_{17}+F_{14}+F_{9}$ ã«ã€ããŠ, $S_9+2F_9=139$.\r\n- $F_{17}+F_{14}+F_{9}\\leq k\\lt F_{17}+F_{14}+F_{9}+F_{7}$ ã«ã€ããŠ, $S_7+3F_7=59$\r\n\r\n以äžãã, æ±ããã¹ãç·å㯠$6865+1685+139+59=\\textbf{8748}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc057/editorial/1709"
},
{
"content": "https:\\/\\/youtu.be\\/Ud3GTbNUKGI",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc057/editorial/1709/99"
}
] | ãæ°å $\\{F_{n}\\}$ ã¯ä»¥äžã®æ¡ä»¶ãã¿ãããŸãïŒ
$$F_0=0,\quad F_1=1,\quad F_{n}=F_{n-1}+F_{n-2}\ (n=2,3,\cdots)$$
éè² æŽæ° $k$ ã«å¯ŸããŠé¢æ° $f(k)$ ã $f(0)=0$ ããã³ä»¥äžã®èŠåã§å®ãããšã, $\displaystyle \sum_{k=0}^{2020}f(k)$ ãæ±ããŠãã ãã.
- $k\geq 1$ ã«ã€ããŠ, $F_n\leq k \lt F_{n+1}$ ã§ãããããªå¯äžã®éè² æŽæ°ã $n$ ãšããŠ, $f(k)=f(k-F_n)+1$. |
OMC057 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc057 | https://onlinemathcontest.com/contests/omc057/tasks/2193 | F | OMC057(F) | 700 | 10 | 32 | [
{
"content": "ã$N=1$ ã®å¯äžã¯æããã§ãããã, ä»¥äž $N\\geq 2$ ã§ãããšãã. ãŸãåºå®ããã $\\sigma\\in S_N$ ã«ã€ã㊠$\\prod$ ã®äžèº«ãèãã. $3$ ãåºãšãã察æ°ããšãã°, çµå± $\\textrm{inv}(\\tau)$ ã®ç·åãèããã°ãã, ããã¯åçµ $1\\leq i\\lt j\\leq N$ ã®å¯äžãèããããšã§èšç®ã§ãã. å
·äœçã«ã¯, ãããããšãã«å«ã $\\tau$ 㯠$2^{N-2}$ åãã, $\\sigma(i)\\gt\\sigma(j)$ ã§ãããšãã®ã¿åå®ããããã, \r\n$$\\sum_{\\tau\\subseteq \\sigma}\\textrm{inv}(\\tau)=2^{N-2}\\textrm{inv}(\\sigma)$$\r\nããã«, é·ãã $N$ ã®é åã§ãã£ãŠè»¢åæ°ã $k$ ã§ãããã®ã®ç·æ°ã¯\r\n$$1 \\times (1+x)\\times (1+x+x^2)\\times \\cdots \\times (1+x+\\cdots+x^{N-1})$$\r\nã® $x^k$ ã®ä¿æ°ã«äžèŽããããšã容æã«ããããã, ç·ç©ã§ $N$ ãé¢ããéšå $F(N)$ ã«ã€ããŠ\r\n$$F(N)=\\sum_{\\sigma \\in S_N}3^{2^{N-2}\\textrm{inv}(\\sigma)}=\\prod_{k=1}^{N}\\left(\\sum_{i=0}^{k-1}3^{2^{N-2}\\times i}\\right)=\\prod_{k=1}^{N}\\left(\\left(3^{2^{N-2}k}-1\\right)\\left(3^{2^{N-2}}-1\\right)^{-1}\\right)$$\r\nãã£ãŠ, $K$ ã $2$ ã§å²ãåããæ倧åæ°ã $v_2(K)$ ãšãããš,\r\n$$v_2(F(N))=\\sum_{k=1}^{N}\\left(v_2(3^{2^{N-2}k}-1)-v_2(3^{2^{N-2}}-1)\\right)$$\r\nããã§, å¶æ° $m$ ã«ã€ã㊠$v_2(3^m-1)=v_2(m)+2$ ã§ããããšã«æ³šæãããš, $N\\geq 3$ ã®ãšã\r\n$$v_2(F(N))=\\sum_{k=1}^{N}\\Bigl(\\bigl((N-2)+v_2(k)+2\\bigr)-\\bigl((N-2)+2\\bigr)\\Bigr)=\\sum_{k=1}^{N}v_2(k)=v_2(N!)$$\r\n$v_2(F(1))=v_2(1!)$ ããã³ $v_2(F(2))=v_2(2!)+1$ ãšäœµããã°\r\n$$v_2(X)=1+\\sum_{N=1}^{2^{2021}-1}v_2(N!)=1+\\sum_{N=1}^{2^{2021}-1}\\bigl(N-\\mathrm{popcount}(N)\\bigr)$$\r\nãã㧠$\\mathrm{popcount}(N)$ 㯠$N$ ãäºé²æ³ã§è¡šèšãããšãã®åæ¡ã®åã§ãã. 以äžãã, $2017$ ãæ³ãšããŠ\r\n$$\\begin{aligned}\r\nv_2(X) &= 1+(2^{2021}-1)\\times 2^{2020}-2021\\times 2^{2020} \\\\\\\\\r\n&\\equiv 1+(2^5-1)\\times2^4-4\\times2^4 \\\\\\\\\r\n&\\equiv \\textbf{433}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc057/editorial/2193"
},
{
"content": "https:\\/\\/youtu.be\\/ZbBoBYZnNJg",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc057/editorial/2193/102"
}
] | ã以äžã§å®ãŸã $X$ ã«ã€ããŠ, ã$2$ ã§å²ãåããæ倧åæ°ããçŽ æ° $2017$ ã§å²ã£ãäœããæ±ããŠãã ãã.
$$X=\prod_{N=1}^{2^{2021}-1}\sum_{\sigma \in S_N}\prod_{\tau\subseteq \sigma}3^{\textrm{inv}(\tau)}$$
ãã ã, ããããã®èšå·ã®å®çŸ©ã¯ä»¥äžã®éãã§ã.
- æ£ã®æŽæ° $N$ ã«å¯Ÿã, $S_N$ 㯠$1$ ãã $N$ ãŸã§ãã¡ããã©äžã€ãã€çŸããæ°å $N!$ åå
šäœã®éåã§ãã.
- $\tau\subseteq \sigma$ ã®ç·ç©ãšã¯, $\tau$ ã $\sigma$ ã®**é£ç¶ãããšã¯éããªã**éšåå $2^{N}$ åãã¹ãŠãèµ°ããšãã®ç·ç©ã§ãã. äŸãã°, æ°å $(1,2,3)$ ã®éšåå㯠$(),(1),(2),(3),(1,2),(1,3),(2,3),(1,2,3)$ ã® $8$ ã€ã§ãã.
- $\textrm{inv}(\tau)$ ã¯æ°å $\tau$ ã®è»¢åæ°ã§ãã. ããã§, (éè€ããèŠçŽ ãå«ãŸãªã) æ°å $a_1,\ldots,a_n$ ã®**転åæ°**ãšã¯, $i\lt j$ ã〠$a_i\gt a_j$ãªãçµ $(i,j)$ ã®ç·æ°ã®ããšã§ãã, ãŸã空æ°åã®è»¢åæ°ã¯ $0$ ã§ãããšãã. |
OMC056 | https://onlinemathcontest.com/contests/omc056 | https://onlinemathcontest.com/contests/omc056/tasks/230 | A | OMC056(A) | 100 | 205 | 206 | [
{
"content": "ã$P,Q$ ã® $x$ 座æšã $a$ ãšããã°, ç·å $PQ$ ã®é·ãã¯\r\n$$|(a^2+100)-(6a-700)|=|(a-3)^2+791|$$\r\nãã£ãŠ, æ±ããæå°å€ã¯ $\\textbf{791}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc056/editorial/230"
}
] | ã$xy$ å¹³é¢å
ã®ã°ã©ã $y=x^2+100$ äžã«ç¹ $P$ ã, ã°ã©ã $y=6x-700$ äžã«ç¹ $Q$ ããã, çŽç· $PQ$ ã $y$ 軞ã«å¹³è¡ãªãšã, ç·å $PQ$ ã®é·ããšããŠããåŸãæå°å€ãæ±ããŠãã ãã. |
OMC056 | https://onlinemathcontest.com/contests/omc056 | https://onlinemathcontest.com/contests/omc056/tasks/291 | B | OMC056(B) | 300 | 185 | 199 | [
{
"content": "ãæ¡ä»¶ã¯ $27a+3c=9b+d$ ãšåå€ã§ãã. ãã®ãšã $d=3d^\\prime\\ (d^\\prime=1,2)$ ãšãããŠ, $9a+c=3b+d^\\prime$ ã§, ç¹ã« $c=d^\\prime$ ãŸã㯠$c=d^\\prime+3$ ã§ãã. $c=d^\\prime$ ã®ãšã $(a,b)=(1,3),(2,6)$, $c=d^\\prime+3$ ã®ãšã $(a,b)=(1,4)$ ãšå®ãŸããã, æ±ãã確ç㯠$6\\/6^4=1\\/216$ ã§ãã, 解çãã¹ãå€ã¯ $\\textbf{217}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc056/editorial/291"
}
] | ã$1$ ãã $6$ ã®ç®ãç確çã§åºããµã€ã³ãã $4$ åæ¯ã, ãã®åºç®ãé ã« $a,b,c,d$ ãšãããšã, å€é
åŒ $ax^3+bx^2+cx+d$ ã $x+3$ ã§å²ãåãã確çãæ±ããŠãã ãã. ãã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $p,q$ ã«ãã£ãŠ $\dfrac{p}{q}$ ãšè¡šããã®ã§, $p+q$ ã解çããŠãã ãã. |
OMC056 | https://onlinemathcontest.com/contests/omc056 | https://onlinemathcontest.com/contests/omc056/tasks/1239 | C | OMC056(C) | 300 | 123 | 171 | [
{
"content": "ãããããã®å¯Ÿè§ç·ã«ã€ããŠ, $101$ åã®æ°ã®ç·åã¯æäœã«ããã $515201$ ã§äžå®ã§ããããšã容æã«ããã. ãããã£ãŠ, $2$ æ¬ã®å¯Ÿè§ç·ãéè€ããäžå€®ã®ãã¹ã $10201$ ãšãªãå Žåãæå°ã§, ãããã¿ããæäœã¯æããã«ååšãããã, ãã®å€ã¯ $2\\times 515201-10201=\\textbf{1020201}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc056/editorial/1239"
}
] | ã$101$ è¡ $101$ åã®ãã¹ç®ã«, 次ã®ããã« $1$ ãã $10201$ ãŸã§ã®æŽæ°ãäžã€ãã€æžã蟌ã¿ãŸãïŒ
- $i$ è¡ç® $j$ åç®ã®ãã¹ã«ã¯ $101(i-1)+j$ ãæžã蟌ã.
äŸãã°, $1$ è¡ç®ã«ã¯ $1,2,\cdots,100,101$ ãå·Šããé ã«æžã蟌ãŸããŸã.\
ãããã«, 以äžã®äºçš®é¡ã®æäœã, ä»»æã®é åºã§ä»»æã®åæ° ($0$ åã§ããã) è¡ããŸã.
- ä»»æã«è¡ãäºã€éžã³, ããããè¡ããšãã¹ãŠå
¥ãæ¿ãã.
- ä»»æã«åãäºã€éžã³, ããããåããšãã¹ãŠå
¥ãæ¿ãã.
ãã®ãšã, æçµçã«åºæ¥äžãã£ããã¹ç®ã«ã€ããŠ, ãã®å¯Ÿè§ç·äžã®æ°ã®ç·åãšããŠèããããæå°å€ãæ±ããŠãã ãã.\
ãããã§, **察è§ç·äžã®æ°**ãšã¯, 以äžã®æ¡ä»¶ãã¿ãããã¹ã«æžã蟌ãŸããæ°ã®ããšãæããŸãïŒ
- $i=j$ ãŸã㯠$i+j=102$ ãªã $i,j$ ã«ã€ããŠ, $i$ è¡ç® $j$ åç®ã«äœçœ®ãã. |
OMC056 | https://onlinemathcontest.com/contests/omc056 | https://onlinemathcontest.com/contests/omc056/tasks/304 | D | OMC056(D) | 400 | 39 | 64 | [
{
"content": "ã$G,H$ ã¯ãããã $AD,ED$ ã $2:1$ ã«å
åããç¹ã§ãããã, äžè§åœ¢ $FGH$ ã®é¢ç©ã¯ $DGH$ ã®é¢ç©ã«çãã, ããã«ãã㯠$ADE$ ã®é¢ç©ã® $1\\/9$ ã«ããã. ãããã£ãŠ, äžè§åœ¢ $ADE$ ã®é¢ç©ãæ倧åããã°ãã, $AC$ ãçŽåŸãšããåãš $AD$ ã®äº€ç¹ã $D^\\prime$ ãšããã°, ãã®æ倧å€ã¯ $E$ ãåªåŒ§ $AD^\\prime$ ã®äžç¹ $M$ ã«äžèŽããå Žåã«éæããã.\\\r\nãããã§äžç·å®çãã $AD=2\\sqrt{7}$, äžå¹³æ¹ã®å®çãã $DD^\\prime=3\\/\\sqrt{7}$ ã§ãã, $AC=7$ ãšäœµããŠèããããšã§äžè§åœ¢ $ADM$ ã®é¢ç©ã¯ $\\dfrac{3\\sqrt{6}+7\\sqrt{7}}{2}$ ãšå®¹æã«èšç®ã§ã, 解çãã¹ãå€ã¯ $3+6+7+7+2\\times 9=\\textbf{41}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc056/editorial/304"
}
] | ã$AB=5,BC=6,CA=7$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠ, 蟺 $BC$ ã®äžç¹ã $D$ ãšããŸã. ããã« $AC$ ãçŽåŸãšããååšäžã®ç¹ $E$ ã«ã€ããŠ, $2\overrightarrow{AE}=\overrightarrow{DF}$ ãªãç¹ $F$ ããšã, äžè§åœ¢ $ABC,EBC$ ã®éå¿ããããã $G,H$ ãšãããŸã. ãã®ãšã, äžè§åœ¢ $FGH$ ã®é¢ç©ãšããŠããåŸãæ倧å€ã¯, æ£æŽæ° $a,b,c,d,e$ ã«ãã£ãŠ $\dfrac{a\sqrt{b}+c\sqrt{d}}{e}$ ãšè¡šããŸã. ãã ã, $b,d$ 㯠$1$ ãã倧ããå¹³æ¹æ°ã§å²ãåãã, $a,c,e$ ã¯äºãã«çŽ ã§ã. $a+b+c+d+e$ ã解çããŠäžãã. |
OMC056 | https://onlinemathcontest.com/contests/omc056 | https://onlinemathcontest.com/contests/omc056/tasks/268 | E | OMC056(E) | 500 | 95 | 167 | [
{
"content": "ã$x$ ã®äºæ¬¡æ¹çšåŒ $x^2-ax+b=0,x^2-bx+a=0$ ã®å€å¥åŒããããã $D_1,D_2$ ãšãã. ããªãã¡\r\n$$ D_1=a^2-4b,\\ \\ D_2=b^2-4a $$\r\næ¡ä»¶ãã, ãã®ãã¡å°ãªããšãäžæ¹ã¯éè² ã§ãã. ããã§äžæ¹ãæ£ã§äžæ¹ãè² ã®ãšã, ããªãã¡ä»¥äžã®ãããããæãç«ã€ãšã, æ¡ä»¶ã¯åžžã«æç«ãã.\r\n\r\n- $a^2\\gt 4b$ ã〠$b^2\\lt 4a$\r\n- $a^2\\lt 4b$ ã〠$b^2\\gt 4a$\r\n\r\nããããã£ãŠ, ä»¥äž $D_1,D_2$ ããšãã«éè² ã§ããå Žåã«ã€ããŠèããã°ãã. ãã®ãšã, äžããããå次æ¹çšåŒã¯ããå®æ° $\\alpha\\neq\\beta$ ã«ãã£ãŠä»¥äžã®åœ¢åŒã«è¡šãã.\r\n$$(x-\\alpha)^2(x-\\beta)^2=0\\ \\text{ãŸãã¯}\\ (x-\\alpha)^3(x-\\beta)=0$$\r\nã$(x-\\alpha)^2(x-\\beta)^2=0$ ã®ãšã, 以äžã®ããããã®åœ¢åŒã§ãã.\r\n\r\n- $x^2-ax+b=(x-\\alpha)(x-\\beta)=x^2-bx+a$\r\n- $x^2-ax+b=(x-\\alpha)^2$ ã〠$x^2-bx+a=(x-\\beta)^2$\r\n\r\nãåè
ã®ãšã $a=b$ ã§, $D_1\\gt 0$ ãšäœµã㊠$a \\gt 4$ ãŸã㯠$a\\lt 0$ ã§ãã.\\\r\nãåŸè
ã®ãšã $D_1=D_2=0$ ãã $a=b=0,4$ ã§ããã, ãã®ãšã $\\alpha=\\beta$ ã§äžé©ã§ãã.\r\n\r\nã$(x-\\alpha)^3(x-\\beta)=0$ ã®ãšã, 以äžã®ããããã®åœ¢åŒã§ãã.\r\n\r\n- $x^2-ax+b=(x-\\alpha)^2$ ã〠$x^2-bx+a=(x-\\alpha)(x-\\beta)$\r\n- $x^2-ax+b=(x-\\alpha)(x-\\beta)$ ã〠$x^2-bx+a=(x-\\alpha)^2$\r\n\r\nãåè
ã®ãšã, ä¿æ°ãæ¯èŒããŠé©åœã«è§£ãã°\r\n$$(a,b,\\alpha,\\beta)=(0,0,0,0),(4,4,2,2),(-2,1,-1,2)$$\r\nãåŸãŠ, $(a,b)=(-2,1)$ ã®ã¿ãé©ãã. åæ§ã«åŸè
ã«ã€ããŠã $(a,b)=(1,-2)$ ãåŸã.\r\n\r\nã以äžãã, æ¡ä»¶ãæºããç¹ $(a,b)$ ã®ç¯å²ã $ab$ å¹³é¢äžã«å³ç€ºãããšä»¥äžã®å³ã®ããã«ãªã.\\\r\nãç¹ã«ãã®å
éšã® $-6\\leq a,b\\leq 6$ ãªãæ Œåç¹ã®æ°ãæ°ããããšã§, æ±ããå Žåã®æ°ã¯ $\\textbf{82}$ ã§ãããšããã.\r\n\r\n![figure 1](\\/images\\/dbwcK6vtCsrJ5khel97vXCZ0Lj5p2LeqhQsByjRI)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc056/editorial/268"
}
] | ã$x$ ã®å次æ¹çšåŒ
$$(x^2 - ax + b)(x^2 - bx + a) = 0$$
ãçžç°ãªãå®æ°è§£ãã¡ããã© $2$ åãã€ãããª, $-6$ ä»¥äž $6$ 以äžã®**æŽæ°**ã®çµ $(a,b)$ ã¯ããã€ãããŸããïŒ |
OMC056 | https://onlinemathcontest.com/contests/omc056 | https://onlinemathcontest.com/contests/omc056/tasks/1735 | F | OMC056(F) | 500 | 37 | 56 | [
{
"content": "ã$4997-k$ ã $p$ ã§å²ã£ãåã $x$ ãšãã, $4997+k$ ã $p+2$ ã§å²ã£ãåãšã®å·®ã«ãã£ãŠå Žååããè¡ã.\r\n\r\n- å·®ã $0$ ã§ãããšã, $x=k$ ã§ããã, ãã®ãšã $4997=(p+1)k$ ããå¶å¥ãèããã°äžé©ã§ãã.\r\n- å·®ã $1$ ã§ãããšã, $px$ ããã³ $(p+2)(x\\pm 1)$ ã®å¶å¥ãäžèŽããããšãããã¯ãäžé©ã§ãã.\r\n\r\nã以äž, å·®ã $2$ ã§ããå Žåã«ã€ããŠèãã. ãŸã\r\n$$4997-k=px,\\quad 4997+k=(p+2)(x+2)$$\r\nãšæžãããšãã. ãã®ãšã, $k$ ãæ¶å»ããã° $4996=(p+1)(x+1)$ ã§ãã, $4996=2^2\\times1249$ ãã $p=3$ ã«éãããããšãåãã. ãã®ãšã $x=1248$ ã§, $k=1253$ ãåŸã. åæ§ã«ããŠ\r\n$$4997-k=px,\\quad 4997+k=(p+2)(x-2)$$\r\nãšè¡šãããšã, $k$ ãæ¶å»ããã° $4998=(p+1)(x-1)$ ã§ãã, $4998=2\\times3\\times7^2\\times 17$ ã«çæããŠèª¿ã¹äžããã°\r\n$$(p,x,k)=(5,834,827),(41,120,77)$$\r\nãé©ããããšãåãããã, 以äžãã解çãã¹ãç·å㯠$\\textbf{2206}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc056/editorial/1735"
}
] | ã$4997$ æªæºã®æ£æŽæ° $k$ ããã³çŽ æ° $p$ ã, 以äžã®æ¡ä»¶ãã¿ãããŸãïŒ
- $p+2$ ãçŽ æ°ã§ãã, $4997-k,4997+k$ ã¯ãããã $p,p+2$ ã§å²ãåãã.
ãã®ãããªçµã§ $\left\lvert \dfrac{4997-k}{p} - \dfrac{4997+k}{p+2} \right\rvert$ ãæå°å€ããšããã®ãã¹ãŠã«ã€ããŠ, $k+p$ ã®ç·åãæ±ããŠãã ãã.\
ããªã, [**ãã¡ã**](https:\/\/www.mathsisfun.com\/numbers\/prime-numbers-to-10k.html)ã®çŽ æ°è¡šãçšããŠãæ§ããŸãã. |
OMC055 (for beginners) | https://onlinemathcontest.com/contests/omc055 | https://onlinemathcontest.com/contests/omc055/tasks/300 | A | OMC055(A) | 100 | 209 | 211 | [
{
"content": "ã$3^{45}$ ã®äžã®äœãæ±ããã°ãã. ãã㧠$3^n$ ã®äžã®äœã¯ $3\\to 9\\to 7\\to 1$ ã®åšæãç¹°ãè¿ãããšã«çæããã°, æ±ããããŸã㯠$\\textbf{3}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc055/editorial/300"
}
] | ã$123^{45}$ ã $10$ ã§å²ã£ãäœãã¯ããã€ã§ããïŒ |
OMC055 (for beginners) | https://onlinemathcontest.com/contests/omc055 | https://onlinemathcontest.com/contests/omc055/tasks/199 | B | OMC055(B) | 200 | 154 | 197 | [
{
"content": "ã$ABCD$ ã«å¯Ÿãã $P,Q$ ã®äœçœ®é¢ä¿ã¯ $2$ éãããåŸãã, ãã®ãã¡ $BP$ ãš $CQ$ ã亀ããæ¹ãæå°å€ãå®çŸãã. äžèŸºã®é·ãã $k$ ãšã, $P$ ãã $BC$ ã«ããããåç·ã®è¶³ã $H$ ãšããã°, äžè§åœ¢ $BHP$ ã«ãããäžå¹³æ¹ã®å®çãã\r\n$$\\left(\\dfrac{k}{2}+1\\right)^2+\\left(\\dfrac{k}{2}\\right)^2=3^2$$\r\nããã解ããŠ$k\\gt 0$ ãã $k=\\sqrt{17}-1$ ãåŸããã, 解çãã¹ãå€ã¯ $\\textbf{16}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc055/editorial/199"
}
] | ãæ£æ¹åœ¢ $ABCD$ ã®å
éšã« $2$ ç¹ $P,Q$ ããã, 以äžã®æ¡ä»¶ãã¿ãããŸã.
$$AP=BP=CQ=DQ=3,\ \ PQ=2$$
ãã®ãšã, $ABCD$ ã®äžèŸºã®é·ããšããŠããåŸãæå°å€ãæ±ããŠäžãã.\
ããã ãçãã¯æŽæ° $p,q$ ã«ãã£ãŠ $p+\sqrt{q}$ ãšè¡šãããã®ã§, $p+q$ ã解çããŠãã ãã. |
OMC055 (for beginners) | https://onlinemathcontest.com/contests/omc055 | https://onlinemathcontest.com/contests/omc055/tasks/222 | C | OMC055(C) | 200 | 134 | 162 | [
{
"content": "ãåœé¡ã¯ã$1$ ä»¥äž $N^2$ æªæºã®æŽæ°ã®ç·å㯠$9N^3+9N^2$ ã§ããããšè¡šçŸã§ãããã, æ¹çšåŒ\r\n$$\\dfrac{1}{2}(N^2-1)N^2=9N^3+9N^2$$\r\nã解ã㊠$N=\\textbf{19}$ ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc055/editorial/222"
}
] | ãã$1$ ä»¥äž $100$ **æªæº**ã®æŽæ°ã®ç·å㯠$9900$ ã§ããããšããåœé¡ã $N$ é²æ³è¡šèšã§è§£éãããšçã§ãããšã, $N$ ãšããŠããåŸã $10$ 以äžã®æŽæ°ã®ç·åãæ±ããŠãã ãã.\
ããã ã, èšæ°ã®å²ãåœãŠé åºã¯äžè¬çãªãã® ($0,1,\cdots,9,a,b,\cdots$) ã«åŸããŸã. |
OMC055 (for beginners) | https://onlinemathcontest.com/contests/omc055 | https://onlinemathcontest.com/contests/omc055/tasks/258 | D | OMC055(D) | 300 | 111 | 160 | [
{
"content": "ãäžè¬ã«æ£ã®é·ããå¥æ° $n$ ã§ããå Žåãèã, æ£ã®å·Šç«¯ã $O$, å³ç«¯ã $O^\\prime$ ãšãã. $OA=a,AB=b$ ãšããŠå·ŠåŽããç¯ç® $A,B$ ãéžæãããšã, ãããæ¡ä»¶ãã¿ããããšã¯ä»¥äžã®ããã«è¡šçŸã§ããïŒ\r\n$$a\\leq\\dfrac{n-1}{2},\\quad b\\leq\\dfrac{n-1}{2},\\quad a+b\\geq\\dfrac{n+1}{2}$$\r\nããã㧠$a$ ãåºå®ããã°, $b$ ãšããŠããåŸããã®ã¯ $\\dfrac{n+1}{2}-a$ ä»¥äž $\\dfrac{n-1}{2}$ ãŸã§ $a$ åã§ãããã, æ±ããå Žåã®æ°ã¯\r\n$$1+2+\\cdots+\\dfrac{n-1}{2}= \\frac{(n-1)(n+1)}{8}$$\r\nç¹ã« $n=2021$ ã®ãšã, ãã㯠$\\textbf{510555}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc055/editorial/258"
},
{
"content": "ãæ£ã巊端ããé ã«é·ã $a,b,c$ ã® $3$ ã€ã®åºéã«åãããšããïŒ\\\r\nãæ±ããã¹ã㯠$a+b+c=2021$ ã〠$a,b,c$ ã $1010$ 以äžã®æ£ã®æŽæ°ã§ãããããªæŽæ°ã®çµ $(a,b,c)$ ã®åæ°ïŒããã¯ïŒ $x=1010-a, ~ y=1010-b, ~ z=1010-c$ ãªã眮ãæãã«ãã $x+y+z=1009$ ã®éè² æŽæ°è§£ã®åæ°ã«äžèŽããããšããããïŒ\\\r\nã以äžããïŒæ±ããåæ°ã¯ ${}\\_{3}\\mathrm{H}\\_{1009}=\\textbf{510555}$ïŒ",
"text": "x+y+z=nåã®éè² æŽæ°è§£ã®åæ°åé¡ã«åž°çããã",
"url": "https://onlinemathcontest.com/contests/omc055/editorial/258/34"
}
] | ãé·ã $2021$ ã®æ£ããããŸã. ãã®æ£ã«ã¯ç«¯ããé·ã $1$ ã®ééã§ç¯ç®ãä»ããŠãã, ãããã§æ£ãèªç±ã«æãæ²ããããšãã§ããŸã. 次ã®æ¡ä»¶ãã¿ãããã㪠$2$ åã®ç¯ç®ã®éžã³æ¹ã¯ããã€ãããŸããïŒ
- æ¡ä»¶ïŒ$2$ åã®ç¯ç®ã§æ£ãæãæ²ãããšã, æ£ã®äž¡ç«¯ç¹ãåãããŠäžè§åœ¢ãäœãããšãã§ãã.
ããã ã, ç¯ç®ã¯ãã¹ãŠåºå¥ã§ã, ç¯ç®ã®éšåã®é·ãã¯ç¡èŠã§ããã»ã©çããã®ãšããŸã. |
OMC055 (for beginners) | https://onlinemathcontest.com/contests/omc055 | https://onlinemathcontest.com/contests/omc055/tasks/259 | E | OMC055(E) | 300 | 38 | 80 | [
{
"content": "ã$B$ ãéã $AC$ ã«å¹³è¡ãªçŽç· $\\ell$ ã«ã€ããŠ, $AP,AQ$ ãšã®äº€ç¹ããããã $D,E$ ãšã, $A$ ããããããåç·ã®è¶³ã $F$ ãšããã°, 以äžã®ããã«ããããã®é·ããèšç®ã§ããïŒ\r\n$$AF=BF=1,\\quad BD=DF-BF=\\sqrt{3}-1,\\quad DE=AD=2$$\r\nãããã, $BP:PC=(\\sqrt{3}-1):\\sqrt{3}$ ããã³ $BQ:QC=(\\sqrt{3}+1):\\sqrt{3}$ ã§ãããã\r\n$$BP:PQ:QC=(5-\\sqrt{3}):2\\sqrt{3}:(6-\\sqrt{3})$$\r\n$ABC$ ã®é¢ç©ã $\\sqrt{3}\\/2$ ã§ããããšãã, $APQ$ ã®é¢ç©ã¯ $3\\/11$ ã§ãã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{14}$ ã§ãã.\\\r\nããªã $\\sin 15^\\circ=(\\sqrt{6}-\\sqrt{2})\\/4$ ãå©çšããã°,\r\n$$BP:PC=\\triangle ABP:\\triangle APC=\\sqrt{2}\\/2\\times AP\\sin15^\\circ:\\sqrt{3}\\/2\\times AP\\sin30^\\circ=(\\sqrt{3}-1):\\sqrt{3}$$\r\nãªã©ãšããããšã§åæ§ã« $BP:PQ:QC$ ãèšç®ããããšãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc055/editorial/259"
}
] | ã$AB=\sqrt{2},AC=\sqrt{3},\angle A=45^\circ$ ãªãäžè§åœ¢ã«ãããŠ, 蟺 $BC$ äžã®ç¹ $P,Q$ã
$$\angle BAP = \angle PAQ = \angle QAC = 15^\circ $$
ãã¿ãããšã, äžè§åœ¢ $APQ$ ã®é¢ç©ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§, $a+b$ ãæ±ããŠãã ãã. |
OMC055 (for beginners) | https://onlinemathcontest.com/contests/omc055 | https://onlinemathcontest.com/contests/omc055/tasks/305 | F | OMC055(F) | 400 | 17 | 50 | [
{
"content": "ãåãã¹ã«å¯ŸããŠå¿
èŠãªæäœã®æå°åæ°ã¯, å·Šäžããé 次å®ãŸã, 以äžã®ãããªååž°çæ§é ã確èªã§ããïŒ\r\n$$\\begin{matrix}\r\n15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 \\\\\\\\\r\n15 & 14 & 14 & 15 & 15 & 14 & 14 & 15 & 15 & 14 & 14 & 15 & 15 & 14 & 14 & 15 \\\\\\\\\r\n15 & 14 & 13 & 13 & 13 & 13 & 14 & 15 & 15 & 14 & 13 & 13 & 13 & 13 & 14 & 15 \\\\\\\\\r\n15 & 15 & 13 & 12 & 12 & 13 & 15 & 15 & 15 & 15 & 13 & 12 & 12 & 13 & 15 & 15 \\\\\\\\\r\n15 & 15 & 13 & 12 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 12 & 13 & 15 & 15 \\\\\\\\\r\n15 & 14 & 13 & 13 & 11 & 10 & 10 & 11 & 11 & 10 & 10 & 11 & 13 & 13 & 14 & 15 \\\\\\\\\r\n15 & 14 & 14 & 15 & 11 & 10 & 9 & 9 & 9 & 9 & 10 & 11 & 15 & 14 & 14 & 15 \\\\\\\\\r\n15 & 15 & 15 & 15 & 11 & 11 & 9 & 8 & 8 & 9 & 11 & 11 & 15 & 15 & 15 & 15 \\\\\\\\\r\n7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 8 & 9 & 11 & 11 & 15 & 15 & 15 & 15 \\\\\\\\\r\n7 & 6 & 6 & 7 & 7 & 6 & 6 & 7 & 9 & 9 & 10 & 11 & 15 & 14 & 14 & 15 \\\\\\\\\r\n7 & 6 & 5 & 5 & 5 & 5 & 6 & 7 & 11 & 10 & 10 & 11 & 13 & 13 & 14 & 15 \\\\\\\\\r\n7 & 7 & 5 & 4 & 4 & 5 & 7 & 7 & 11 & 11 & 11 & 11 & 12 & 13 & 15 & 15 \\\\\\\\\r\n3 & 3 & 3 & 3 & 4 & 5 & 7 & 7 & 15 & 15 & 13 & 12 & 12 & 13 & 15 & 15 \\\\\\\\\r\n3 & 2 & 2 & 3 & 5 & 5 & 6 & 7 & 15 & 14 & 13 & 13 & 13 & 13 & 14 & 15 \\\\\\\\\r\n1 & 1 & 2 & 3 & 7 & 6 & 6 & 7 & 15 & 14 & 14 & 15 & 15 & 14 & 14 & 15 \\\\\\\\\r\n0 & 1 & 3 & 3 & 7 & 7 & 7 & 7 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15\r\n\\end{matrix}$$\r\nãããã, å¿
èŠãªæäœã®æå°åæ°ã $n$ ã§ãããããªãã¹ã®æ° $f(n)$ ã«ã€ããŠ,\r\n$$f(n)=3^{b(n)}$$\r\nã®æç«ã確èªã§ãã. ãã㧠$b(n)$ ã¯, $n$ ãäºé²æ°ã§è¡šèšãããšãã®æ¡åã§ãã. ãã£ãŠ,\r\n$$b(2^{2021}-2021)=b((2^{2021}-1)-2020)=2021-b(2020)=2014$$\r\nãã, $M=f(2^{2021}-2021)=3^{2014}$ ã¯æ£ã®çŽæ°ã $\\textbf{2015}$ åãã€.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc055/editorial/305"
}
] | ãå³1ã«ç€ºã $3$ ãã¹ãããªãå³åœ¢ã**ã¿ã€ã«**ãšåŒã³ãŸã. ã㟠$2^{2021}\times2^{2021}$ ã®ãã¹ç®ããã, å·Šãã $i$ çªç®, äžãã $j$ çªç®ã®ãã¹ã $(i,j)$ ã§è¡šããŸã. Noyaåã¯, ãã®ã¿ã€ã«ãšãã¹ç®ãçšããŠæ¬¡ã®ãããªã²ãŒã ãè¡ããŸã.\
ããŸãNoyaåã¯æºåãšããŠ, ãã®ãã¹ç®ã«ã¿ã€ã«ãé
眮ããŸã. ããã§ã¿ã€ã«ã®é
眮ã¯, 以äžã§å®ãŸã $2$ èŠåã«ãã£ãŠååž°çã«å®çŸ©ãããŸã. ããããã®èŠåã¯éšåãã¹ç®ã«å¯ŸããŠé©çšãã, ãŸãåãã«ãã¹ç®å
šäœã«èŠå1ãé©çšããŸã.
- èŠå1ïŒæ£æ¹åœ¢ã®é åã«é©çšããã. é åã $1\times 1$ ã®ãšã, äœãããªã.\
ããã ãã以å€ã®ãšã, ãã¹ $(1,1)$ ãå«ã¿çžäŒŒæ¯ $\dfrac{1}{2}$ ã®æ£æ¹åœ¢é åã«èŠå1ã, æ®ãã®é åã«èŠå2ãé©çšãã.
- èŠå2ïŒLååã®é åã«é©çšããã. é åã $3$ ãã¹ãããªããšã, ããã«ã¿ã€ã«ã眮ã.\
ããã ãã以å€ã®ãšã, å³2ã«ç€ºãããã«é åã $4$ åå²ã, ããããã«èŠå2ãé©çšãã.
ãå³3ã«, å·Šäžã«äœçœ®ããéšåãã¹ç® $4\times 4$ ã«ã€ããŠ, æçµçãªã¿ã€ã«ã®é
眮ã瀺ããŸã.\
ãç¶ããŠNoyaåã¯, 以äžã®**æäœ**ã奜ããªã ãè¡ããŸã.
- é©åœãªã¿ã€ã« $1$ æã眮ããªãã. ããã§, 眮ããªãããã¿ã€ã«ã¯æäœã®ååŸã§åã $2\times 2$ ã®éšåãã¹ç®ã«åãŸããã°ãªããªã. ãŸã, ã¿ã€ã«å士ã¯éãªã£ãŠã¯ãªãã, ãã¹ç®ããã¯ã¿åºããŠã¯ãªããªã.
ãNoyaåã®ç®æšã¯, ãã¹ $(i,j)$ ã«ã¿ã€ã«ã眮ãããŠããªãç¶æ
ã«ããããšã§ã. ãã®ãšã, å¿
èŠãªæäœã®æå°åæ°ã $2^{2021}-2021$ ã§ãããããªãã¹ $(i,j)$ 㯠$M$ åãããŸã. $M$ ããã€æ£ã®çŽæ°ã®åæ°ã解çããŠäžãã.
![figure 1](\/images\/oDUlsmNatCyZuVpLmyEPvUNQDCmKrUgflgFuhIxW) |
OMC054 | https://onlinemathcontest.com/contests/omc054 | https://onlinemathcontest.com/contests/omc054/tasks/1479 | A | OMC054(A) | 200 | 135 | 184 | [
{
"content": "ã$(a-2021)(b-2021)=2021^2$ ãšäžåŒãå€åœ¢ããã°, $2021^2$ ã®çŽæ° (è² ãèš±ã) ã®åæ°ãæ±ããããšãšåé¡ã¯ç䟡ã§ãã, $2021^2=43^2\\times47^2$ ãšçŽ å æ°å解ã§ãããããã㯠$2\\times 3^2=18$ åã§ãã. ãã ã $(a,b)=(0,0)$ ãé€å€ããããšã«çæããã°, æ±ããã¹ãå€ã¯ $\\textbf{17}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc054/editorial/1479"
}
] | ã$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{2021}$ ãã¿ããé åºä»ãã®**æŽæ°**ã®çµ $(a,b)$ ã¯ããã€ãããŸããïŒ ãã ã $2021=43\times 47$ ã§ã. |
OMC054 | https://onlinemathcontest.com/contests/omc054 | https://onlinemathcontest.com/contests/omc054/tasks/2070 | B | OMC054(B) | 200 | 140 | 161 | [
{
"content": "ãäžããããç«äœãäžèŸºã®é·ãã $4$ ã®æ£åé¢äœã®å
éšã«é©åã«åã蟌ãããšãèããã°, 貌ãåããã«ãã£ãŠé£ãåã£ãé¢ã¯åäžå¹³é¢äžã«ãã. ãã£ãŠé¡æã®äžè§åœ¢ã¯èŸºã®é·ãã $2\\sqrt{3}, 2\\sqrt{3}, 2$ ã®äºç蟺äžè§åœ¢ã§, ãã®é¢ç©ã¯ $\\sqrt{\\textbf{11}}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc054/editorial/2070"
}
] | ãäžèŸºã®é·ãã $2$ ã®æ£åé¢äœãš, ãã¹ãŠã®èŸºã®é·ãã $2$ ã®æ£åè§éããããŸã. ããããããé©åœã«æ£äžè§åœ¢ã®é¢ãéžã³, ãããã«æ²¿ã£ãŠ $2$ ç«äœãå€åŽã« (é¢ãé€ããŠå
±ééšåããããªãããã«) 貌ãåããããšã, 貌ãåããã«çšããªãã£ã $3$ é ç¹ãããªãäžè§åœ¢ã®é¢ç©ã® $2$ ä¹ãæ±ããŠãã ãã. |
OMC054 | https://onlinemathcontest.com/contests/omc054 | https://onlinemathcontest.com/contests/omc054/tasks/1912 | C | OMC054(C) | 300 | 105 | 153 | [
{
"content": "ã$X=2^x3^y5^z7^w$ ãšè¡šã, $y+z+w\\leq 3$ ã§ãã. 以äž, $y+z+w$ ã®å€ã«å¿ããŠå Žååããè¡ã.\r\n\r\n(i) $y+z+w=0$ ã®ãšã, $s,b,l$ 㯠$1,2,4,8$ ã®ããããã§ãã, $x$ 㯠$0$ ä»¥äž $9$ 以äžã®æŽæ°å€ããšãåŸã.\r\n\r\n(ii) $y+z+w=1$ ã®ãšã, åºæ¬çã«äžãšåæ§ã« $x$ 㯠$0$ ä»¥äž $6$ 以äžã®æŽæ°å€ããšãåŸãã, $y=1$ ã®å Žåã«éã $3$ ã $6$ ã«çœ®ãæããããšã§ $x=7$ ãšã§ãã. ããªãã¡, $7\\times 3+1=22$ éãã§ãã.\r\n\r\n(iii) $y+z+w=2$ ã®ãšã, åºæ¬çã«äžãšåæ§ã« $x$ 㯠$0$ ä»¥äž $3$ 以äžã®æŽæ°å€ããšãåŸãã, $y=1,y=2$ ã®å Žå㯠$3$ ã $6$ ã«çœ®ãæããããšã§ãããã $x=4,x=4,5$ ãšã§ãã. ããªãã¡, $4\\times 6+4=28$ éãã§ãã.\r\n\r\n(iv) $y+z+w=3$ ã®ãšã, $s,b,l$ ã« $6$ ãå«ãŸããå Žåã«éã $x\\geq 1$ ã§ãã, $20$ éãã§ããããšãåæ§ã«ããã.\r\n\r\nã以äžã®åããã£ãŠ, $X$ ãšããŠããåŸãæ£æŽæ°å€ã¯å
šéšã§ $\\textbf{80}$ éãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc054/editorial/1912"
}
] | ãããã¹ããŒãçš®ç®ã¯ $S,B,L$ ã® $3$ éšåãããªã, åéžæã¯ããããã¹ãŠã«åå ããŸã. $S,B,L$ ã«ãããããéžæã®é äœããããã $s,b,l$ ãšãããšã, ãã®éžæã®ç²åŸãããã€ã³ã $X$ 㯠$X=sbl$ ãšå®çŸ©ãããŸã. ãã®çš®ç®ã« $8$ 人ã®éžæãåå ãããšã, ããéžæãç²åŸãããã€ã³ã $X$ ãšããŠããåŸãæ£æŽæ°å€ã¯ããã€ãããŸããïŒ\
ããã ã, åéšåã®é äœã¯ $1$ äœãã $8$ äœãŸã§ã®æ£æŽæ°å€ãéè€ãªãä»ããã®ãšããŸã. |
OMC054 | https://onlinemathcontest.com/contests/omc054 | https://onlinemathcontest.com/contests/omc054/tasks/2009 | D | OMC054(D) | 400 | 64 | 78 | [
{
"content": "ã$T$ ã®åé
ã«ã€ããŠ,\r\n$$ \\frac{n^3}{n^4+4} =\\frac{1}{2}\\left(\\frac{n-1}{(n-1)^2+1}+\\frac{n+1}{(n+1)^2+1}\\right) $$\r\nãšæŽçã§ãããã,\r\n$$\\begin{aligned}\r\nS-T &=\\frac{1}{2}\\left(\\frac{1}{1^2+1}+\\frac{99}{99^2+1}\\right)-\\frac{1}{2}\\left(\\frac{0}{0^2+1}+\\frac{100}{100^2+1}\\right) \\\\\\\\\r\n&= \\frac{50^2}{99^2+1} - \\frac{50}{100^2+1}=\\dfrac{12256200}{49014901}\r\n\\end{aligned}$$\r\nããã¯æ¢çŽåæ°ã§ãããã, 解çãã¹ãå€ã¯ $\\textbf{61271101}$ ã§ãã.\\\r\nããªã, å®éã«æ¢çŽã§ããããšã確ãããæ¹æ³ã®äžã€ãšããŠ, äžè¬ã« $99$ ã $n$ ãšãããŠèãããšãã. ãã®ãšã\r\n$$S-T=\\dfrac{n(n+1)(n^2+n+4)}{4(n^2+1)(n^2+2n+2)}=\\dfrac{1}{2}\\left(\\dfrac{1}{2}+\\dfrac{n^2-n+1}{(n^2+1)(n^2+2n+2)}\\right)$$\r\nãªã©ãšè¡šãããã, åè¡šçŸã«ã€ããŠååãšåæ¯ã®æ倧å
¬çŽæ°ãå€é
åŒã®èšç®ã«ãã£ãŠèšç®ããããšãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc054/editorial/2009"
}
] | ã以äžã® $2$ çš®é¡ã®åæ°ã®å $S,T$ ã«ã€ããŠ, ãã®å·®ã®çµ¶å¯Ÿå€ãæ±ããŠãã ããïŒ
$$ S = \frac{1}{2}+\frac{2}{5}+\frac{3}{10}+\cdots+\frac{n}{n^2+1}+\cdots+\frac{99}{99^2+1} $$
$$ T=\frac{1}{5}+\frac{8}{20}+\frac{27}{85}+\cdots+\frac{n^3}{n^4+4}+\cdots+\frac{99^3}{99^4+4} $$
ãã ã, æ±ããå·®ã®çµ¶å¯Ÿå€ã¯äºãã«çŽ ãªæ£æŽæ° $p,q$ ãçšã㊠$\dfrac{p}{q}$ ãšè¡šãããã®ã§, $p+q$ ã解çããŠãã ãã. |
OMC054 | https://onlinemathcontest.com/contests/omc054 | https://onlinemathcontest.com/contests/omc054/tasks/1942 | E | OMC054(E) | 500 | 92 | 130 | [
{
"content": "ã$3^n$ ã®äžã®äœã¯ $n$ ã $4$ ã§å²ã£ãŠ $2$ äœããšãã« $9$ ãšãªããã, $3^{4m+2}$ ã®æé«äœã $9$ ã§ãããããªæå°ã® $m$ ãæ±ããã°ãã. ãã®ããšã¯, $3^{4m}$ ãš $3^{4m+2}$ ã®æ¡æ°ãçããããš, ããªãã¡ $4m\\log_{10}3$ ãš $(4m+2)\\log_{10}3$ ã®æŽæ°éšåãçããããšãšåå€ã§ãã. ãã®æŽæ°éšåã $i$ ãšãããš, æ¡ä»¶ã¯ããã«æ¬¡ã®ããã«æžãããšãã§ããïŒ\r\n$$ \\frac{i}{2m}\\lt 2\\log_{10}3 \\lt \\frac{i+1}{2m+1} $$\r\nããã㧠$\\alpha=2\\log_{10}3$ ãšããã°, ããããã®æ£æŽæ° $j$ ã«ã€ããŠä»¥äžãã¿ãã $p$ ãäžæã«ååšããïŒ\r\n$$ \\frac{p-j}{p}\\lt\\alpha\\lt\\frac{p-j+1}{p+1} \\quad\\iff\\quad \\frac{j}{1-\\alpha}-1\\lt p\\lt\\frac{j}{1-\\alpha} $$\r\nãã®ãããªå¶æ° $p$ ãšããŠããåŸãæå°ã®ãã®ãæ±ããã°ãã, $j$ ãå°ããæ¹ããè©Šãã° $j=7$ 㧠$p=152$ ãåŸã. ãããã£ãŠæ±ããæå°ã® $m$ 㯠$76$ ã§ãããã, æå°ã® $n$ ã«çŽãã° $4\\times76+2=\\textbf{306}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc054/editorial/1942"
}
] | ã$10$ 以äžã®æŽæ° $x$ ã«ã€ããŠ, $f(x)$ 㧠$x$ ã® (åé²æ°è¡šèšã§ã®) æé«äœã®æ°åãšäžã®äœã®æ°åã®ç©ãè¡šããŸã. äŸãã° $f(2021)=2$ ã§ã. $n$ ã $3$ 以äžã®æŽæ°ãšãããšã, $f(3^n)$ ãæ倧å€ããšããã㪠$n$ ã®ãã¡, æå°ã®ãã®ãæ±ããŠãã ãã.\
ããã ãå¿
èŠã§ããã°, $\log_{10}3=0.4771212547\cdots$ ãå©çšããŠãæ§ããŸãã. |
OMC054 | https://onlinemathcontest.com/contests/omc054 | https://onlinemathcontest.com/contests/omc054/tasks/2305 | F | OMC054(F) | 500 | 19 | 44 | [
{
"content": "ã$N=54$ ãšãã, ããã§ã¯ã«ãŒãããã±ããã®çªå·ã $0$ ããå§ããŠæ°ãããã®ãšãã.\\\r\nããããã®äžãã $n$ æç®ã®ã«ãŒãã, äžåºŠã® $d$-ã·ã£ããã«ã§äžãããããã®äžãã $g(n)$ æç®ã«ç§»åãããšãã. $n$ ã® $d$ ã«ããå²ãç®ã $n=jd+k$ ãšè¡šããš, ååã®æé ã§ãã±ãã $k$ ã®äžãã $j$ æç®ã«ç§»ããã, \r\n$$g(n)= N-k\\times\\dfrac{N}{d}-j-1\\equiv -\\dfrac{N}{d}\\times n \\pmod{N-1} $$\r\nãã㧠$0$ æç®ãš $N-1$ æç®ã¯äžåã®ã·ã£ããã«ã§å
¥ãæ¿ãããã, $1$ æç®ãã $N-2$ æç®ã«ã€ããŠçããæ±ã, ãããš $2$ ãšã®æå°å
¬åæ°ãåãã°ãã. çµå±, ä»»æã® $n=1,2,\\cdots,N-2$ ã«å¯Ÿã,\r\n$$ \\left(-\\dfrac{N}{d}\\right)^x\\times n\\equiv n \\pmod{N-1}$$\r\nããªãã¡ $(-N\\/d)^x\\equiv 1$ ãªãæå°ã® $x=x(d)$ ãããããã® $d$ ã«ã€ããŠèããããšã«åž°çããã. Fermatã®å°å®çãã $x(d)$ ã¯åžžã« $\\varphi(53)=52$ ã®çŽæ°ã§ããããšã«çæããã°, ããã¯ä»¥äžã®ããã«èšç®ã§ãã.\r\n$$x(1)=x(54)=2,\\quad x(6)=x(9)=13,\\quad x(2)=x(3)=x(18)=x(27)=52$$\r\nå¥æ°ã®å Žåã®åŠçã«æ³šæããã°, 解çãã¹ãå€ã¯ $2\\times2+26\\times2+52\\times4=\\textbf{264}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc054/editorial/2305"
}
] | ãçžç°ãªãå
š $54$ æã®ã«ãŒããéãããã®ã**ããã**ãšåŒã³, ããããããã€ãã«åå²ãããã®ã**ãã±ãã**ãšåŒã³ãŸã. ãŸã, ãããã«å¯ŸããŠä»¥äžã§å®çŸ©ãããäžé£ã®æäœã **$d$-ã·ã£ããã«**ãšå®çŸ©ããŸã.
- æäœåã«ãããã«éããããã«ãŒãã**äžãã**é ã« $1$ æç®, $2$ æç®, ... , $54$ æç®ãšãã.
- ãããããã±ãã $1$ ãããã±ãã $d$ ã«åå²ãã. ãã±ãã $i$ 㯠$i$ æç®, $i+d$ æç®, ... ãããªã.
- åãã±ããå
ã®äžäžããã¹ãŠå
¥ãæ¿ã, ãã±ãã $i$ ã®äžã«ãã±ãã $i+1$ ãç©ãèŠé ã§, ããããåæ§æãã.
ã$d$-ã·ã£ããã«ãç¹°ãè¿ãè¡ã£ããšã, ããããäžåºŠç®ã® $d$-ã·ã£ããã«ãè¡ãåã®é åºã«ã¯ãããŠæ»ã $d$-ã·ã£ããã«ã®åæ°ã $f(d)$ ãšãããšã, ãã¹ãŠã® $54$ ã®æ£ã®çŽæ° $d$ ã«ã€ã㊠$f(d)$ ã®ç·åãæ±ããŠãã ãã. \
ã以äžã«, ããããå
š $12$ æã§ããå Žåã® $3$-ã·ã£ããã«ã®æ§åã瀺ããŸã (äžäžãå·Šå³ã«çœ®ãæããŠããŸã)ïŒ
$$1,2,3,4,5,6,7,8,9,10,11,12 \to 12,9,6,3,11,8,5,2,10,7,4,1$$ |
OMC053 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc053 | https://onlinemathcontest.com/contests/omc053/tasks/292 | A | OMC053(A) | 200 | 147 | 177 | [
{
"content": "ããŸã以äžã®ããã«å€æ°å€æãè¡ãïŒ\r\n$$a=2x,\\ \\ b=3y,\\ \\ c=5z,\\ \\ d=7p,\\ \\ e=11q,\\ \\ f=13r$$ \r\nãã®ãšã, äžæ¹çšåŒã®ä¿æ°ã«ã¯Pascalã®äžè§åœ¢ãçŸããïŒ\r\n$$\\begin{aligned}\r\n|a|+|b|+|c|+|d|+|e|+|f|&=32 \\\\\\\\\r\n1a+1b+1c+1d+1e+1f&=0 \\\\\\\\\r\n5a+4b+3c+2d+1e&=0 \\\\\\\\\r\n10a+6b+3c+1d&=0 \\\\\\\\\r\n10a+4b+1c&=0 \\\\\\\\\r\n5a+1b&=0\r\n\\end{aligned}$$\r\nãããã£ãŠ, ããã®ç¬¬2åŒä»¥äžã¯æ¬¡ã® $k$ ã«ã€ããŠã®æçåŒã«éçŽãããïŒ\r\n$$ak^5=a(k+1)^5+b(k+1)^4+c(k+1)^3+d(k+1)^2+e(k+1)+f$$\r\näžæ¹ã§, $ak^5=a((k+1)-1)^5$ ãšã¿ãªãããšã§\r\n$$ak^5=a(k+1)^5-5a(k+1)^4+10a(k+1)^3-10a(k+1)^2+5a(k+1)-a$$\r\nãããã $(a,b,c,d,e,f)=(a,-5a,10a,-10a,5a,-a)$ ãšè¡šã, 第1åŒãã $a=\\pm 1$ ã§ãã. ãã£ãŠ,\r\n$$|x|+|y|+|z|+|p|+|q|+|r|=2\\times\\left(\\dfrac{1}{2}+\\dfrac{5}{3}+\\dfrac{10}{5}+\\dfrac{10}{7}+\\dfrac{5}{11}+\\dfrac{1}{13}\\right)=\\dfrac{36797}{3003}$$\r\nç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{39800}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc053/editorial/292"
}
] | ã以äžã®é£ç«æ¹çšåŒ
$$\begin{aligned}
|2x|+|3y|+|5z|+|7p|+|11q|+|13r|&=32 \\\\
2x+3y+5z+7p+11q+13r&=0 \\\\
10x+12y+15z+14p+11q&=0 \\\\
20x+18y+15z+7p&=0 \\\\
20x+12y+5z&=0 \\\\
10x+3y&=0
\end{aligned}$$
ã®å®æ°è§£ $(x,y,z,p,q,r)$ ãã¹ãŠã«ã€ããŠ, 以äžã®å€ã®ç·åãæ±ããŠãã ãã.
$$|x|+|y|+|z|+|p|+|q|+|r|$$
ããã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $u,v$ ã«ãã£ãŠ $\dfrac{u}{v}$ ãšè¡šããã®ã§, $u+v$ ã解çããŠãã ãã. |
OMC053 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc053 | https://onlinemathcontest.com/contests/omc053/tasks/1641 | B | OMC053(B) | 500 | 56 | 119 | [
{
"content": "ãä»¥äž $A_{i+1024}=A_i$ ãšãã. ãŸã, $\\displaystyle \\sum_{i=1}^{1024} f(A_i,A_{i+1})$ ã®æå°å€ãæ±ããã°ãã. ãªããšãªãã°, æ·»åãé©åœã«å·¡åãã㊠$A_1$ ãå
šäœéåãšããã°, æ±ããæå°å€ã¯ãããã $55$ ãæžãããã®ãšããŠåŸãããããã§ãã.\\\r\nãããŸ, $A_i$ ã«å«ãŸããã $A_j$ ã«ã¯å«ãŸããªãã«ãŒãã«æžãããæ°ã®åèšã $g(A_i,A_j)$ ãšããã°,\r\n$$\\displaystyle \\sum_{i=1}^{1024} f(A_i,A_{i+1})=55 \\times 512 + \\displaystyle \\sum_{i=1}^{1024} g(A_i,A_{i+1})$$\r\nããã«, $A_i,A_j$ ã®ããããã«ã®ã¿å«ãŸããã«ãŒãã«æžãããæ°ã®åèšã $G(A_i,A_j)$ ãšãããš\r\n$$\\displaystyle \\sum_{i=1}^{1024} G(A_i,A_{i+1}) = 2\\times\\displaystyle \\sum_{i=1}^{1024} g(A_i,A_{i+1})$$\r\n以äžãã, çµå± $\\displaystyle \\sum_{i=1}^{1024} G(A_i,A_{i+1})$ ã®æå°åãèããã°ãã.\\\r\nãããã§, $A_i,A_{i+1}$ ã®ãã¡ $k$ ãæžãããã«ãŒããçæ¹ã®ã¿ãå«ããã㪠$i$ ã®åæ°ã $B_k$ ãšããã°, $k$ 以äžã®æ°ã®ã¿ãæžãããã«ãŒããããªãéå㯠(空å«ã) $2^{11-k}$ åååšãããã, $\\displaystyle \\sum_{j=k}^{10} B_j$ 㯠$2^{11-k}$ 以äžã§ãã. ãããã£ãŠ,\r\n$$\\displaystyle \\sum_{i=1}^{1024} G(A_i,A_{i+1}) = \\displaystyle \\sum_{k=1}^{10} (B_k \\times k)=\\sum_{k=1}^{10} \\sum_{j=k}^{10} B_j\\geq\\sum_{k=1}^{10} 2^{11-k} = 2046$$\r\nãããšã¯çå·ãã¿ããéåã®äžŠã¹æ¹ãæ§ç¯ããã°ãã. 䟿å®äž, éåã®åã®æ·»åã $A_0,A_1,...,A_{1023}$ ãšæ¯ããªããã°, ã«ãŒã $k\\\\,(k \\neq 10)$ ã«å¯Ÿã㊠$2^{k-1} \\leq i \\bmod{2^{k+1}} \\lt 2^{k+1}-2^{k-1}$ ã§ãããšããã€ãã®ãšãã«éã $A_i$ 㯠$k$ ãå«ã¿, ã«ãŒã $10$ ã«å¯ŸããŠã¯ $i \\lt 512$ ã®ãšããã€ãã®ãšãã«éã $A_i$ 㯠$10$ ãå«ããã®ãšããã°, æ¡ä»¶ãã¿ãã.\\\r\nããã£ãŠ, åæåã«ã€ããŠæå°å€ãé 次èšç®ããããšã§, æçµçã«æ±ããæå°å€ã¯ $\\textbf{29128}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc053/editorial/1641"
}
] | ã$1$ ãã $10$ ã®æŽæ°ãã€ããã«ãŒãããããã $1$ æãã€, èš $10$ æãããŸã. ãããã®ã«ãŒãããäœæããéžãã éå (空ãèš±ã) 㯠$1024$ åãããŸãã, ããããé©åœã«äžŠã¹æ¿ã㊠$A_1,A_2,\cdots,A_{1024}$ ã§è¡šããŸã. $A_i$ ããã³ $A_j$ ã®å°ãªããšãäžæ¹ã«å«ãŸããŠããã«ãŒãã«æžãããæ°ã®åèšã $f(A_i,A_j)$ ãšãããŸã. äŸãã°
$$f(\lbrace 1,4,5 \rbrace,\lbrace 3,4,5,9 \rbrace)=1+3+4+5+9=22$$
ã§ã. ãã®ãšã, $\displaystyle \sum_{i=1}^{1023} f(A_i,A_{i+1})$ ã®ãšãåŸãæå°å€ãæ±ããŠãã ãã. |
OMC053 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc053 | https://onlinemathcontest.com/contests/omc053/tasks/1259 | C | OMC053(C) | 500 | 24 | 53 | [
{
"content": "ãæäœã¯ä»¥äžã®ããã«èšãæããŠãç䟡ã§ãã.\r\n\r\n- $a_i=a_{i+1}$ ãŸã㯠$b_i=b_{i+1}$ ãªã $i$ ãéžæã, $a_i$ ãš $a_{i+1}$ ããã³ $b_i$ ãš $b_{i+1}$ ã®å€ããããã亀æãã. \r\n\r\nããã®ãšã $(a_i,b_i)$ ã¯åžžã«é£åããŠåããã, ãã¢ãšããŠèããã°ãã. ã㢠$(0,0)$ ãš $(1,1)$ ããã³ã㢠$(0,1)$ ãš $(1,0)$ ã¯äº€æã§ããªãã, ãã以å€ã¯äº€æã§ããããšã«çæããã°, 以äžã®æ§è³ªãåŸã.\r\n\r\n- $a_i=b_i$ ãªããã¹ãŠã®ãã¢ã®çžå¯Ÿçãªé çªã¯äžå€ã§ãã.\r\n- $a_i\\neq b_i$ ãªããã¹ãŠã®ãã¢ã®çžå¯Ÿçãªé çªã¯äžå€ã§ãã.\r\n- éã«ããããã¿ãããã€ããªåã®çµã¯ãã¹ãŠåŸããã.\r\n\r\nããã£ãŠ, $a_i=b_i$ ãªã $i$ ã®åæ°ãåããã°ããã. ããã¯äžåœå°äœå®çã«ãã $26 \\times 29 + 47 \\times 42 = 2728$ ãšèšç®ã§ãã. 以äžãã $M={}\\_{5183}{\\mathrm{C}}\\_{2728}$ ã§ãã, 解çãã¹ãå€ã¯ $5179 \\times 2719 = \\textbf{14081701}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc053/editorial/1259"
}
] | ãããã§ã¯**ãã€ããªå**ã§åé
ã $0$ ãŸã㯠$1$ ã§ãããããªæéåãæããã®ãšããŸãïŒ\
ãé·ãã $5183(=71 \times 73)$ ã§ããäºã€ã®ãã€ããªå $a,b$ ãããïŒåãã¯ãããã以äžã®ããã«å®çŸ©ãããŸãïŒ
- $a$ ã¯ã'$0$' ãé£ç¶ã㊠$26$ åç¶ããããš '$1$' ãé£ç¶ã㊠$47$ åç¶ãåäœãã $71$ åç¹°ãè¿ããåã§ããïŒ
- $b$ ã¯ã'$0$' ãé£ç¶ã㊠$29$ åç¶ããããš '$1$' ãé£ç¶ã㊠$42$ åç¶ãåäœãã $73$ åç¹°ãè¿ããåã§ããïŒ
ãsiosioåã¯ãããã®ãã€ããªåã«ïŒä»¥äžã® $2$ æäœã奜ããªé åºã§ $0$ å以äžæœããŸãïŒ
- $a_i=a_{i+1}$ ãªã $i$ ãéžæãïŒ$b_i$ ãš $b_{i+1}$ ã®å€ã亀æããïŒ
- $b_i=b_{i+1}$ ãªã $i$ ãéžæãïŒ$a_i$ ãš $a_{i+1}$ ã®å€ã亀æããïŒ
ããã®ãšãïŒæäœåŸã®äºã€ã®ãã€ããªåã®çµ $(a,b)$ ãšããŠããåŸããã®ã¯ $M$ éããããŸãïŒ$M$ ã®æ倧ã®çŽ å æ°ã $x$ ãšãïŒ$x$ æªæºã®çŽ æ°ã§ãã£ãŠ $M$ ã®çŽ å æ°ã§ãªãæ倧ã®ãã®ã $y$ ãšããŸãïŒ$x \times y$ ã解çããŠãã ããïŒ\
ããã ãïŒ[**ãã¡ã**](https:\/\/www.mathsisfun.com\/numbers\/prime-numbers-to-10k.html)ã®çŽ æ°è¡šãçšããŠãæ§ããŸããïŒ |
OMC053 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc053 | https://onlinemathcontest.com/contests/omc053/tasks/1419 | D | OMC053(D) | 700 | 16 | 42 | [
{
"content": "ãäžåŒãé©åœã«å€åœ¢ããããšã§\r\n$$(f(y)-(f^2(x)+1))^2+(x-z)((f(x)-x)-(f(z)-z))\\geq 1$$\r\nç¹ã«ããã« $z=x$ ã代å
¥ããã°\r\n$$(f(y)-(f^2(x))+1))^2\\geq 1$$\r\n$y=f(x)$ ã代å
¥ãããš,\r\n$$(x-z)((f(x)-x)-(f(z)-z))\\geq 0$$\r\néã«ããããæç«ããã°äžåŒãæç«ãããã, æ¡ä»¶ã¯ããã $2$ åŒã«åé¢ããã. ããã«,\r\n\r\n- $(f(y)-(f^2(x))+1))^2\\geq 1$ 㯠$f^2(x)+1 \\neq f(y)$ ãšåå€ã§ãã.\r\n- $(x-z)((f(x)-x)-(f(z)-z))\\geq 0$ 㯠$f(x+1)\\gt f(x)$ ãšåå€ã§ãã.\r\n\r\nãããã§æ°å $a_{n}=f^n(2)-f^{n-1}(2)$ ã«ã€ããŠèå¯ããã. ãã®ãšã, $f^{n}(2) \\lt t \\leq f^{n+1}(2)$ ãªãæ£æŽæ° $t$ ã $a_{n+1}$ åååšããããšãã, 以äžãã¿ããæ£æŽæ° $f(t)$ ã $a_{n+1}$ åååšããïŒ\r\n$$f^{n+1}(2)\\lt f(t)\\leq f^{n+2}(2)$$\r\nåæ§ã«ããŠ, 以äžãã¿ããæ£æŽæ° $f^2(r)+1$ ã $a_{n}$ åååšããïŒ\r\n$$f^{n+1}(2)\\lt f^{2}(r)+1\\leq f^{n+2}(2)$$\r\nããã, æ¡ä»¶ãããããã¯éè€ããªããã, äžçåŒ $a_{n}+a_{n+1}\\leq a_{n+2}$ ãåŸã.\\\r\nãäžæ¹ã§, $f(1)\\gt 1$ ã®ãšãæããã« $f(2)\\gt 2$ ã§, $f(1)=1$ ã®ãšãã $f(2)\\neq f^2(1)+1=2$ ãšäœµã㊠$f(2)\\gt 2$ ã§ãããã, çµå±åžžã« $a_{1}\\geq 1$ ã§ãã, ããããããã« $a_2\\geq 1$ ã§ãã. ããªãã¡ $a_{n}$ ã¯Fibonacciæ°ã§äžããè©äŸ¡ã§ããããšãããã£ã. å
·äœçã«ã¯, èããã¹ãå€ã«ã€ã㊠$f^{16}(2)=2+a_1+a_2+\\cdots a_{16}\\geq2585$ ãåŸã.\\\r\nãéã«, æ¡ä»¶ãã¿ããããã« $x$ ã®å°ããã»ããã $f(x)$ ã®å€ãå®ããŠããã°, ãã¹ãŠã®çå·ãæç«ããããããªæ§æãåŸããã. å
·äœçã«ã¯, ããããŠåŸããã $f$ 㯠$\\varphi=(1+\\sqrt{5})\\/2$ ã«ã€ã㊠$f(x)=[\\varphi x]$ ãšè¡šç€ºã§ããããšã蚌æã§ãã. 以äžãã, æ±ããæå°å€ã¯ $\\textbf{2585}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc053/editorial/1419"
}
] | ãæ£æŽæ°å
šäœã§å®çŸ©ãã, æ£æŽæ°å€ãåãé¢æ° $f$ ã¯, ä»»æã®æ£ã®æŽæ° $x,y,z$ ã«ã€ããŠ
$$\begin{aligned}
&f^2(x)^2+2f^2(x)+f(y)^2+xf(x)+zf(z) \\\\
\geq ~ &2f^2(x)f(y)+2f(y)+xf(z)+zf(x)+(x-z)^2
\end{aligned}$$
ãã¿ãããŸã. ãã®ãšã $f^{16}(2)$ ãšããŠããåŸãæå°å€ãæ±ããŠäžãã. ãã ã, æ£æŽæ° $n$ ã«å¯Ÿã $f^{n}$ 㯠$f$ ã® $n$ ååæã§ã. ããªãã¡ $f^1(x)=f(x),\\, f^{n}(x)=f(f^{n-1}(x))$ ã§ã. |
OMC053 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc053 | https://onlinemathcontest.com/contests/omc053/tasks/1414 | E | OMC053(E) | 700 | 4 | 11 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã®å
å¿ã $Z$, å
æ¥åã $O^{\\prime}$ ãšãã. æåäºå®ãšã㊠$D$ ã¯äžè§åœ¢ $ABC$ ã®è§ $A$ å
ã®åæ¥åã $BC$ ãšæ¥ããç¹ã§ãã.ãŸã, $E$ ãã $BC$ ã«ããããåç·ã®è¶³ã $P$ ãšãããš, $AB-AC=BP-CP$ ãã $P$ 㯠$O^{\\prime}$ ã $BC$ ãšæ¥ããç¹ã§ãã, æåäºå®ãšã㊠$E$ ã¯å
æ¥åã«ãã㊠$P$ ã®å¯Ÿè¹ ç¹ãšãªã. ç¹ã« $O^{\\prime}$ 㯠$FG$ ãšæ¥ãããã, å $O$ äžã« $RFG$ ã®å
æ¥åã $O^{\\prime}$ ãšãªããããªç¹ $R$ ãååšãã. ããã¯Ponceletã®é圢å®çã®åž°çµã ã, $Z$ãå
å¿ãšãããã㪠$F$ ãé ç¹ã«æã€äžè§åœ¢ãèã, Eulerã®å®çã䜿ãããšã«ãã£ãŠã蚌æã§ãã. ãã®ãšã $EF-EG=RF-RG$ ãæç«ã, $H$ ã¯ç¹åŸŽä»ãããäžæã«å®ãŸãããšã«çæããã°, $R$ 㯠$H$ ã«äžèŽãã. æ¥ç·ã®é·ãã«çç®ããã°\r\n$$154=(BI+BJ+IJ)-(CK+CL+KL)=2BP-2PC=2(HF-HG)$$\r\nãŸã $FH$ ãš $O^{\\prime}$ ã®æ¥ç¹ã $S$ ãšãããš $494=HJ+JL+LH=2HS$ ã§ãã, ãã®ããšãã\r\n$$HF+HG=2HS+FG=949$$\r\nãã£ãŠããããé£ç«ãããããšã§ $HF=513,HG=436$ ã§ãã, Helonã®å
¬åŒãªã©ã«ãã£ãŠ $O^{\\prime},O$ ã®çŽåŸã¯ãããã $266,545$ ãšèšç®ããããã, çèå°åœ¢ $BCGF$ ã«æ³šç®ããããšã§ $BC^2=\\textbf{243201}$ ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc053/editorial/1414"
}
] | ãå€æ¥åã $O$ ãšããéè§äžè§åœ¢ $ABC$ ã®èŸº $BC$ äžã«ç¹ $D$ ã, ç·å $AD$ äžã«ç¹ $E$ ããã, $E$ ãéã $BC$ ã«å¹³è¡ãªçŽç·ã $m$ ãšããŸã. $m$ ãš $O$ ã®å£åŒ§ $AB,AC$ ã®äº€ç¹ããããã $F,G$ ãšã, å£åŒ§ $BC$ äžã«ç¹ $H$ ããšããš, $FGH$ ã¯éè§äžè§åœ¢ãšãªããŸãã. ããã« $AB,BC$ ãš $FH$ ã®äº€ç¹ããããã $I,J$, $AC,BC$ ãš $GH$ ã®äº€ç¹ããããã $K,L$ ãšãããš, äžè§åœ¢ $HJL$ ã®åšé·ã¯ $494$ ã§, äžè§åœ¢ $BIJ$ ã®åšé·ã¯äžè§åœ¢ $CKL$ ã®åšé·ãã $154$ é·ã, å ããŠ
$$AB-AC=CD-BD=EF-EG=HF-HG \neq 0$$
ãæç«ããŸãã. $FG=455$ ã®ãšã, $BC^2$ ãæ±ããŠãã ãã. |
OMC053 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc053 | https://onlinemathcontest.com/contests/omc053/tasks/1446 | F | OMC053(F) | 700 | 0 | 4 | [
{
"content": "ãäžåã§ç§»åã§ããæ£æŽæ°ã®çµã«æå蟺ã匵ããš, 以äžã®ãããªã°ã©ããåŸã (èªå·±èŸºãå€é蟺ã¯é©åœã«é€å»).\r\n![figure 1](\\/images\\/sslBjEvefjMEoeD0mOUXS83t9c8uSmGNrIh30w8b)\r\n\r\nã$50000005000000$ ã¯äžè§æ°ã§ãããã, äžãã $10^7$ 段ã®ã¿èããã°ãã. 蟺ã®åŸã㯠$3$ çš®é¡ååšããã, æççµè·¯ãšããŠé©ãããã®ã§ã¯é«ã
$2$ çš®é¡ããçšããªã. ãã®ãã¡,察称æ§ãã暪åãã®èŸºã䜿ãã, äžããäžãžåãããã®ãæ°ããã°ãã. ãã®ãšã, äžãã $n$ 段ç®ã®ããåºå®ãããæ°ããäžãã $m$ 段ç®ãžã®æççµè·¯ã®æ°ã¯ $2^{n-m}$ éãã§ãããã, ããããã¹ãŠã® $m$ ã«ã€ããŠè¶³ãåãããã° $2^n-2$ éãã§ãã. ãããã£ãŠ, èããŠããçµè·¯ã®ç·æ°ã¯\r\n$$\\begin{aligned}\r\n&\\quad\\\\,\\\\, (2^{10000000}-2) \\times 1+(2^{9999999}-2) \\times 2+\\cdots+(2^1-2) \\times 10000000\\\\\\\\\r\n&=(2^{10000001}-2 \\times 10000001)+(2^{10000000}-2 \\times 10000000)+\\cdots +(2^2-2 \\times 2)\\\\\\\\\r\n&=2^{10000002}-100000030000004\r\n\\end{aligned}$$\r\nãä»ã® $2$ æ¹åãåæ§ã§ããã, $1$ çš®é¡ã®åããã䜿ããªãçµè·¯ãéè€ã§ã«ãŠã³ããããŠãããã,\r\n$$\\begin{aligned}\r\n&\\quad\\\\,\\\\, 3 \\times(2^{10000002}-100000030000004)-3\\times\\sum_{i=1}^{10^7}\\dfrac{n(n-1)}{2}\\\\\\\\\r\n&=3 \\times 2^{10000002}-500000300000085000012\r\n\\end{aligned}$$\r\n以äžãã, 解çãã¹ãå€ã¯ $\\textbf{300000095000017}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc053/editorial/1446"
}
] | ãæ°çŽç·äžã®æ£æŽæ° $a$ ã®äœçœ®ã«ããsimasimaåã¯, æ£æŽæ° $b$ ã®äœçœ®ã«ããPCTåã«äŒãããã§ã.\
ãsimasimaåãäœçœ® $x$ ã«ãããšã, 以äžã® $6$ æ¡ä»¶ã®ãã¡ $1$ ã€ä»¥äžãã¿ãã**æ£æŽæ°**ã®äœçœ®ã«äžåã§ç§»åã§ããŸãïŒ
- $x+1$
- $x-1$
- $x$ **æªæº**ã§æ倧ã®äžè§æ° $y$ ã«ã€ããŠ, $2y-x+2$ã($x=1$ ã§ã¯èããªã)
- $x$ **以äž**ã§æ倧ã®äžè§æ° $z$ ã«ã€ããŠ, $2z-x+1$
- $x$ **以äž**ã§æå°ã®äžè§æ° $s$ ã«ã€ããŠ, $2s-x+1$
- äžãšåã $s$ ã«ã€ããŠ, $2s-x+2$
ããã®ãšã, simasimaåãäœçœ® $b$ ãŸã§æå°åæ°ã§ç§»åããçµè·¯ã $f(a,b)$ çš®é¡ååšãããšããŸã. äŸãã°
$$f(20,21)=1$$
ã§ã. ããã§, äžã§è¿°ã¹ãæ¡ä»¶ã®ãã¡è€æ°ããåæã«åãæ£æŽæ°ãåŸãããå Žåã§ã, ãããã¯çµè·¯ãšããŠåäžèŠããŸã. ãã®ãšã, 以äžãã¿ããæ£æŽæ°ã®çµ $(a,b)$ ãã¹ãŠã«ã€ããŠ, $f(a,b)$ ã®ç·å $M$ ãæ±ããŠãã ãã.
$$a\lt b\leq 50000005000000=\dfrac{10^7\times(10^7+1)}{2}$$
ããã ã, å¥æ° $i$ ããã³æ£æŽæ° $j\geq 1000$, $k\leq 10^{100}$ ã«ãã£ãŠ
$$M=i\times2^j-k$$
ãšäžæã«è¡šãããã®ã§, $i+j+k$ ã $10^{15}$ ã§å²ã£ãäœãã解çããŠäžãã. \
ãããã§**äžè§æ°**ãšã¯, ããæ£æŽæ° $n$ ã«ã€ã㊠$1+2+\cdots+n$ ã®åœ¢åŒã«è¡šããæ£æŽæ°ã®ããšãæããŸã. |
OMC053 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc053 | https://onlinemathcontest.com/contests/omc053/tasks/216 | G | OMC053(G) | 900 | 3 | 10 | [
{
"content": "ã$k\\equiv 2\\pmod 4$ ãã $x^k+y^k$ ã $x^2+y^2$ ã§å²ãåããããšã«çæããã°, LTEã®è£é¡ãã\r\n$$n=v_{p}(x^k+y^k)=v_{p}(x^2+y^2)+v_{p}(k\\/2)$$\r\nãããã£ãŠç¹ã« $x^k+y^k\\leq k\\/2\\times (x^2+y^2)$ ã§ãã, ãã®ãšã $k=2$ ãå¿
èŠã§ããããšã容æã«ããã.\\\r\nãããã§well-known factãšã㊠$p\\equiv 1 \\pmod 4$ ã§ãã, ããã« $x^2+y^2=p^n$ ãã¿ããæ£æŽæ° $x\\leq y$ ã®çµã¯ $\\lfloor (n+1)\\/2 \\rfloor$ åãããã, ãããš $n-2$ ã®å Žåãæ¯èŒããããšã§, ç¹ã« $\\gcd(x,y)=1$ ã§ãããã®ã¯ã¡ããã©äžã€ååšããããšãããã. ãã®ãããªçµã $n$ ã«ããã**è¯ã**çµãšåŒã¶ããšãšãã.\\\r\nã以äž, è¯ãçµã«ã€ã㊠$v_{2}(xy)$ ãèå¯ãã. ãã®è°è«ã«ãããŠã¯, $x$ ãš $y$ ã®å¶å¥ã®ã¿ãèã, é åºãæ£è² ã«ã€ããŠã¯èæ
®ããªã. $n=1$ ã«ã€ããŠè¯ãçµã $(q,s)$ ãšãã. ãã ã $q$ ãå¶æ°ã§ãããšãã. \r\n\r\n----\r\n**è£é¡1.**ãæ°å $x_{n},y_{n}$ ã, $x_{1}=q,\\ y_{1}=s$ ããã³æŒžååŒ $$x_{n+1}=sx_{n}+qy_{n},\\ \\ y_{n+1}=-qx_{n}+sy_{n}$$\r\nã§å®ããã°, $(x_{n},y_{n})$ 㯠$n$ ã«ã€ããŠã®è¯ãçµã§ãã.\\\r\n**蚌æ.**ã$x_{n}^2+y_{n}^2=p^n$ ã¯å®¹æã«ç¢ºèªã§ãããã, $\\gcd(x_{n},y_{n})\\neq 1$ ãšä»®å®ããŠççŸãå°ãã°ãã. ãã®ãšã, \r\n$$(x^\\prime_{n},y^\\prime_{n})=(-sx_{n-1}+qy_{n-1},-qx_{n-1}-sy_{n-1})$$\r\n㯠$n$ ã«ãããè¯ãçµã§ãã. ãã®ãšã, $i$ ãèæ°åäœãšããã°, 以äžã®ããã«è¡šçŸã§ããããšãããã.\r\n$$x^\\prime_{n}i+y^\\prime_{n}=(qi+s)^{n-1}(qi-s)=p(qi+s)^{n-2}$$\r\nãã㯠$x^\\prime_{n}$ ããã³ $y^\\prime_{n}$ ã $p$ ã®åæ°ã§ããããšãè¡šããã, ããã¯ççŸã§ãã.\r\n\r\n----\r\nãè£é¡1ã®èšŒæãã $x_{n}i+y_{n}=(qi+s)^n$ ã§ãããã, ãã®ãã¡å¶æ°ã§ããæ¹ $x_{n}$ ã«ã€ããŠä»¥äžãåŸã.\r\n$$x_{n}=\\sum_{j=1}^{\\lceil n\\/2\\rceil}(-1)^{j+1}{}\\_{n}\\mathrm{C}\\_{2j-1}\\times q^{2j-1}s^{n-2j+1}$$\r\n\r\n----\r\n**è£é¡2.**ã$b$ ãå¥æ°ã®ãšã, $v_{2}({}\\_{a}\\mathrm{C}\\_{b})\\geq v_{2}(a)$ ã§ãã.\\\r\n**蚌æ.**ã$a$ ãå¥æ°ã®ãšãã¯æãã. å¶æ°ã®ãšã, çåŒ $(a-b)\\times {}\\_{a}\\mathrm{C}\\_{b}=a\\times{}\\_{a-1}\\mathrm{C}\\_{b}$ ããæããã«æç«ãã.\r\n\r\n----\r\nãè£é¡2ãã, $v_{2}(x_{n})=v_{2}(qn)$ ã§ãã. $p=5,13$ ã®ãšã $v_{2}(q)=1$, $p=17$ ã®ãšã $v_2(q)=2$ ã§ããããšã«çæããã°, $\\gcd(x,y)=1$ ã解é€ããå Žåãå«ããããšã§, çµå±ã®ãšãã以äžã® $S$ ãèšç®ããåé¡ã«åž°çããã.\r\n$$S=\\sum_{n=1}^{2^{1000}} (v_{2}(n)+v_{2}(n-2)+v_{2}(n-4)+\\cdots+v_{2}(1\\ {\\rm or}\\ 2))$$\r\nãã㧠$d$ ã«çããé
㯠$(2^{998}+1)2^{999-d}$ åçŸããããšãããããã(ãã ã $d=1000$ 㯠$1$ å),\r\n$$\\begin{aligned}\r\nS&=\\sum_{d=1}^{999}d\\times (2^{998}+1)2^{999-d}+1000\\\\\\\\\r\n&=(2^{998}+1)(2^{1000}-1001)+1000\\ \\ \\ \\ \\left(\\because\\ \\ \\sum_{d=1}^{a} d\\times 2^{a-d}=2^{a+1}-a-2 \\right)\\\\\\\\\r\n&\\equiv -994 \\pmod{2^{998}-1}\r\n\\end{aligned}$$\r\nãããã£ãŠ, $q$ ã®å¯äžãèæ
®ããŠæ±ããã¹ãå€ $Q$ ãèšç®ããã°,\r\n$$\\begin{aligned}\r\nQ&=3S+2^{999}(2^{999}+1)\\times(1+1+2) \\\\\\\\\r\n&\\equiv 3\\times(-994) + 2\\times3\\times4 \\pmod{2^{998}-1}\\\\\\\\\r\n&\\equiv -\\textbf{2958}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc053/editorial/216"
}
] | ãæ£ã®æŽæ°ã®çµ $(k,n,p,x,y)$ ã¯ä»¥äžã®æ¡ä»¶ãã¿ãããŸã.
- $k$ 㯠$4$ ã§å²ã£ãŠ $2$ äœã
- $n\leq 2^{1000}$
- $p$ 㯠$3\leq p\leq 19$ ãªãçŽ æ°
- $x\leq y$
- $x^k+y^k=p^n$
ãã®ãããªçµãã¹ãŠã«ã€ã㊠$xy$ ã®**ç·ç©**ãèã, ããã $2$ ã§å²ãåããåæ°ã $Q$ ãšããŸã.\
ã$Q$ ã $2^{998}-1$ ã§å²ã£ãäœãã $R$ ãšãããšã, $(2^{998}-1)-R$ ãæ±ããŠãã ãã. |
OMC052 (for beginners) | https://onlinemathcontest.com/contests/omc052 | https://onlinemathcontest.com/contests/omc052/tasks/1726 | A | OMC052(A) | 100 | 177 | 185 | [
{
"content": "ã$\\angle{BCP}=108^\\circ-67^{\\circ}=\\angle PAB$ ãã, äžè§åœ¢ $ABP$ ãš $CBP$ ã¯ååã§ããããšãããã. ãã£ãŠæ±ããè§åºŠã¯ $108^\\circ\\/2=\\textbf{54}^\\circ$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc052/editorial/1726"
}
] | ãæ£äºè§åœ¢ $ABCDE$ ã®å
éšã«ç¹ $P$ ããã, 床æ°æ³ã§ $\angle{PAB}=41^{\circ}$ ããã³ $\angle{PCD}=67^{\circ}$ ãã¿ãããŸã. ãã®ãšã, $\angle PBC$ ã®å€§ããã床æ°æ³ã§æ±ããŠãã ãã. |
OMC052 (for beginners) | https://onlinemathcontest.com/contests/omc052 | https://onlinemathcontest.com/contests/omc052/tasks/2066 | B | OMC052(B) | 200 | 183 | 188 | [
{
"content": "ãé©åœã«ãã¿ã³ãæŒãããšã§æ°ãã«è¿œå ã§ããããããã€ãã®æ倧éã¯, ãã®æç¹ã§å®¹åšã«å
¥ã£ãŠããããããã€ãã®éã«å¯ŸããŠå調ã«å¢å ãã. ãããã£ãŠ, ããæç¹ã§å®¹åšã«å
¥ã£ãããããã€ãã®éã $a\\\\,\\textrm{ml}$ ãšãããš, $a+40\\gt 1.1a$ ããªãã¡ $a\\lt 400$ ã®ãšãã¯èµ€ããã¿ã³ã, ããã§ãªããšãã¯ç·ã®ãã¿ã³ãæŒãã®ãæåã®æŠç¥ãšãªã\\\r\nã ã€ãŸã, åãã«èµ€ããã¿ã³ã $10$ åç¶ããŠæŒããŠããç·ã®ãã¿ã³ã $5$ åç¶ããŠæŒããç¶æ³ãèããã°ãã,\r\n$$\\displaystyle [N]=\\left[(40\\times 10)\\times {1.1}^{5}\\right]=\\textbf{644}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc052/editorial/2066"
}
] | ãMasaåã¯**ããããã€ããµãŒããŒ**ã䜿ã£ãŠ $1\\,\textrm{L}$ ã®ç©ºã®å®¹åšã«ããããã€ããå
¥ããããšããŠããŸã. ããããã€ããµãŒããŒã«ã¯ $40\textrm{ml}$ ã®ããããã€ãã容åšã«è¿œå ããèµ€ããã¿ã³ãš, 容åšã«æ¢ã«å
¥ã£ãŠããéã® $0.1$ åã®éã®ããããã€ããè¿œå ããç·ã®ãã¿ã³ããããŸã. Masaåãåèšã§ $15$ åãã¿ã³ãæŒããšã, 容åšã«å
¥ããããããããã€ãã®æ倧å€ã¯å®æ° $N$ ã«ãã£ãŠ $N\textrm{ml}$ ãšè¡šããã®ã§, $N$ 以äžã®æ倧ã®æŽæ°ãæ±ããŠãã ãã. |
OMC052 (for beginners) | https://onlinemathcontest.com/contests/omc052 | https://onlinemathcontest.com/contests/omc052/tasks/1837 | C | OMC052(C) | 300 | 117 | 162 | [
{
"content": "ãæ£æ¹åœ¢ã®é¢ã« $8$ 以äžãæžã蟌ãŸããããšã¯ç¡ããã, æ£æ¹åœ¢ã®é¢ã«ã¯ã¡ããã© $2$ çš®é¡ã®æ°ãæžã蟌ãŸããŠãã. ãã㧠$5$ ããã³ $7$ ãæžã蟌ãŸããé¢ãåãæ£æ¹åœ¢ã®é¢ã«é£æ¥ããŠãããšã, æããã«æ£æ¹åœ¢ã®é¢ã«ã¯ $3$ çš®é¡ä»¥äžã®æ°ãæžã蟌ãŸããããšã«çæããã°, é©åœã«äžè§åœ¢ã®åé¢ã«æåãå²ãæ¯ãããšã§, æ¡ä»¶ã¯ä»¥äžã®ããã«è¡šçŸã§ããïŒ\r\n$$X=abc=ade=cdf,\\quad Y=abe=bcf=def$$\r\nãã㧠$X,Y$ 㯠$\\textrm{lcm}(1,2,3,4,6,8)=24$ ã®åæ°ã§ãã, $XY=abcdef=2\\times 24^2$ ãšäœµããŠããåŸãçµã¯\r\n$$(X,Y)=(24,48),(48,24)$$\r\nãããã, æžã蟌ãŸããæ°ã¯é«ã
$7\\times 48=\\textbf{336}$ ã§ãã, ããã¯ç¢ºãã«ä»¥äžã®ããã«å®çŸã§ããïŒ\r\n$$(a,b,c,d,e,f)=(1,6,4,3,8,2)$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc052/editorial/1837"
}
] | ã**ç«æ¹å
«é¢äœ**ãšã¯, ç«æ¹äœã®åé ç¹ã«ã€ããŠä»¥äžã®æäœãè¡ãããšã§åŸãããç«äœã§ãïŒ
- åé ç¹ã«ã€ããŠ, ããã端ç¹ãšãã $3$ 蟺ã®äžç¹ãéãå¹³é¢ãèã, ããã«æ²¿ã£ãŠé ç¹åŽãåãèœãšã.
ãMasaåã¯ç«æ¹å
«é¢äœã®ãµã€ã³ãã«æ°ãæžã蟌ã¿ããã§ã. 圌ã¯ãŸãæ£äžè§åœ¢ã®é¢ã« $1$ ãã $8$ ãŸã§ã®æŽæ°ãäžã€ãã€æžã蟌ã¿, ããããã®æ£æ¹åœ¢ã®é¢ã«é£æ¥ããæ£äžè§åœ¢ã®é¢ã«æžã蟌ãŸãã $4$ æ°ã®ç©ãæžã蟌ã¿ãŸãã. ãããš, ãµã€ã³ãã«ã¯ã¡ããã© $10$ çš®é¡ã®æŽæ°ãæžã蟌ãŸããŠããŸãã. æžã蟌ãŸããæŽæ°ãšããŠããåŸãæ倧å€ãæ±ããŠãã ãã. |
OMC052 (for beginners) | https://onlinemathcontest.com/contests/omc052 | https://onlinemathcontest.com/contests/omc052/tasks/1901 | D | OMC052(D) | 300 | 45 | 86 | [
{
"content": "ã$X={}\\_{2021}\\mathrm{C}\\_{5}$ ãšãã, ${}\\_{2021}\\mathrm{C}\\_{6}=336X$ ã«çæãã. æ¡ä»¶ã¯ $3$ ã€ã®æåãªäºè±¡ã«åé¡ãããïŒ\r\n\r\n- ãŸã, åæèšåãã« $6$ ç¹ $ABCDEF$ ããšã, 察è§ç· $AD,BE,CF$ ãåŒãæ¹æ³ã¯ $336X$ éãã§ãã.\r\n- 次ã«, åæèšåãã« $6$ ç¹ $ABCDEF$ ããšã, 察è§ç· $AD,BF,CE$ ãåŒãæ¹æ³ã¯ $1008X$ éãã§ãã.\r\n- æåŸã«, åæèšåãã« $5$ ç¹ $ABCDE$ ããšã, 察è§ç· $AC,AD,BE$ ãåŒãæ¹æ³ã¯ $5X$ éãã§ãã.\r\n\r\n以äžãã, 解çãã¹ãå€ã¯ $336+1008+5=\\textbf{1349}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc052/editorial/1901"
}
] | ãæ£ $2021$ è§åœ¢ã $6$ å以äžã®é åã«åå²ãã察è§ç· $3$ æ¬ã®åŒãæ¹ã¯ $N$ éããããŸã. $\dfrac{N}{{}\_{2021}\mathrm{C}\_{5}}$ ãæ±ããŠãã ãã.\
ããã ã, æ£ $2021$ è§åœ¢ã®é ç¹ã¯ãã¹ãŠåºå¥ããŠèãããã®ãšããŸã. |
OMC052 (for beginners) | https://onlinemathcontest.com/contests/omc052 | https://onlinemathcontest.com/contests/omc052/tasks/1902 | E | OMC052(E) | 400 | 22 | 45 | [
{
"content": "ã$x=2^j$ ãšãããš $f(\\log_2x)$ 㯠$x$ ã® $99$ 次åŒãšãªã, æ¡ä»¶ãããããã®æ ¹ã¯ $2^0,2^1,\\cdots,2^{98}$ ã§ãã. ããªãã¡, \r\n$$f(j)=a_{99}(2^j-2^0)(2^j-2^1)\\cdots(2^j-2^{98})$$\r\nãããã, $f(100)$ ã«ã€ããŠä»¥äžã®ããã«å€åœ¢ã§ããïŒ\r\n$$\\frac{f(100)}{f(99)}=2^{98}\\times\\frac{2^{100}-2^0}{2^{99}-2^{98}}=2^{100}-1$$\r\nãã£ãŠ, $f(100)=99(2^{100}-1)$ ã§ãã, $\\lfloor \\log_2{f(100)}\\rfloor=\\textbf{106}$ ã§ããããšã容æã«ããã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc052/editorial/1902"
}
] | ã$a_0,a_1,\cdots,a_{99}$ ãå®æ°ãšã, éè² æŽæ° $j$ ã«å¯ŸããŠå®çŸ©ãããé¢æ° $f$ ã
$$f(j)=\sum_{i=0}^{99} a_i2^{ij}$$
ã§å®ãããš, 以äžãæç«ããŸãã. ãã®ãšã, $\log_2{f(100)}$ ã®æŽæ°éšåã解çããŠãã ãã.
$$f(0)=f(1)=\cdots=f(98)=0,\quad f(99)=99$$ |
OMC052 (for beginners) | https://onlinemathcontest.com/contests/omc052 | https://onlinemathcontest.com/contests/omc052/tasks/2067 | F | OMC052(F) | 400 | 28 | 59 | [
{
"content": "ã$B$ ã«é¢ã㊠$E$ ãšå¯Ÿç§°ãªç¹ã $F$ ãšããã°, $D,E,F$ 㯠$A$ ãäžå¿ãšããåäžååšäžã«ãã, $CD$ ã¯ããã«æ¥ãã. ãããã£ãŠ, æ£æŽæ° $a,b$ ãçšã㊠$BE=a, CE=b$ ãšè¡šãã°, æ¹ã¹ãã®å®çãã\r\n$$b(2a+b)=CE\\times CF=CD^2=2^{20}\\times 3^2$$\r\nãããã£ãŠ, $b$ ãšããŠããåŸããã®ã¯ $2^{20}\\times 3^{2}$ ã®çŽæ°ã§ãããã㪠$2^{10}\\times 3$ æªæºã®å¶æ°ã§ãã,\r\n$$2^{11}\\lt 2^{10}\\times 3\\lt 2^{12}, \\quad 2^{8}\\times 3^2\\lt 2^{10}\\times 3\\lt 2^{9}\\times 3^2$$\r\nãã, æ±ããç·åã¯ä»¥äžã®ããã«èšç®ã§ãã. \r\n$$\\sum_{k=1}^{11} 2^k+\\sum_{k=1}^{9} (2^k\\times 3)+\\sum_{k=1}^{8} (2^k\\times 3^2)=\\textbf{11750}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc052/editorial/2067"
},
{
"content": "ã[ $BE=a,CE=b$ ãšããããšãïŒ $b(2a+b)=3^2\\times2^{20}$ ãæãç«ã€ããšã®å¥èšŒ]\\\r\n ${AD}^2={AE}^2=x^2+{AB}^2$ ã«æ³šæããŠïŒ $({AC}^2=){AB}^2+{BC}^2={AD}^2+{CD}^2$ ããïŒ ${AB}^2+(a+b)^2=a^2+{AB}^2+{(3\\times2^{10})}^2$\\\r\n ãããæŽçããŠïŒ $b(2a+b)=3^2\\times2^{20}$ ãåŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc052/editorial/2067/147"
}
] | ã$\angle B,\angle D$ ããšãã«çŽè§ã§ããåžåè§åœ¢ $ABCD$ ã¯, $AB\lt AD$ ããã³ $CD=3\times 2^{10}$ ãã¿ãããŸã. ããã§èŸº $BC$ äžã« $AD=AE$ ãªãç¹ $E$ ããšããš, $BE,CE$ ã®é·ãã¯ãšãã«æ£æŽæ°å€ãšãªããŸãã.\
ããã®ãšã, $CE$ ã®é·ããšããŠããåŸãå€ã®ç·åãæ±ããŠãã ãã. |
OMC051 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc051 | https://onlinemathcontest.com/contests/omc051/tasks/307 | A | OMC051(A) | 100 | 189 | 194 | [
{
"content": "ãããã«ãã£ãå«ããæçµçãªæéã¯ãããã $60+6n$ å, $75.5+3n$ å, $98+n$ åãšè¡šãã. ãããã£ãŠ\r\n$$60+6n\\geq 75.5+3n,\\ \\ 98+n\\geq 75.5+3n$$\r\nã解ãã°ãã, ãããã $n=6,7,8,9,10,11$ ãåŸã. ç¹ã«ãããã®ç·å㯠$\\textbf{51}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc051/editorial/307"
}
] | ãããOMCäžã®ã³ã³ãã¹ãããã®ã³ã³ãã¹ããšåãã«ãŒã«ã§éå¬ãããŸãã. $A$ å, $B$ å, $C$ åã® $3$ 人ãSolverãšããŠåå ã, æçµçã«å
šå¡ãæéå
ã«å
šåã§CAãåºããŸãã. ããã«, WAãåºããåæ°ã¯ãããã $6$ å, $3$ å, $1$ åã§, æåŸã«CAãåºããŸã§ã®çµéæéã¯ãããã $60$ åã¡ããã©, $75$ å $30$ ç§, $98$ åã¡ããã©ã§ãã.\
ã$B$ åã¯ç«¶æã·ã¹ãã ã®Hackã«æåããã®ã§, ãã®ã³ã³ãã¹ãã®ããã«ãã£ãä»»æã®æ£æŽæ° $n$ ã«ã€ã㊠$n$ åã«èšå®ã§ããããã«ãªããŸãã. ãã®ãšã, $B$ åã $3$ 人ã®äžã§ããã(åçã§ãè¯ã) ã«ãªããã㪠$n$ ã®ç·åãæ±ããŠãã ãã. \
ããã ã, CAãäžåºŠåºããåé¡ã«å¯ŸããŠåã³æåºãè¡ãããããšã¯ãªããã®ãšããŸã. |
OMC051 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc051 | https://onlinemathcontest.com/contests/omc051/tasks/308 | B | OMC051(B) | 300 | 128 | 167 | [
{
"content": "ã$s=x+y, t=x-y$ ãšããã°, æäœã«ãã£ãŠ $s,t$ ã¯ããããç¬ç«ã«ç確çã« $\\pm1$ ããããã®ãšæãã. ãã®ãšã, $st=2021$ ãšãªã確çãæ±ããã°ãã. 察称æ§ãã $(s,t)=(43,47)$ ã«å°éããå Žåã®ã¿èããã°ãã. ãã®ãšã $s$ 㯠$57$ åã®ãã¡ $50$ å㧠$+1$, $t$ 㯠$57$ åã®ãã¡ $52$ å㧠$+1$ ãããå¿
èŠããããã, ãã®ãããªç¢ºçã¯ä»¥äžã§äžãããã. ç¹ã«, å
šäœã§æ±ãã確çã¯ããã® $4$ åã§ãã.\r\n$$\\frac{{}\\_{57}\\mathrm{C}\\_{50}}{2^{57}} \\times\\frac{{}\\_{57}\\mathrm{C}\\_{52}}{2^{57}}$$\r\nããã㧠${}\\_{57}\\mathrm{C}\\_{50}$ ããã³ ${}\\_{57}\\mathrm{C}\\_{52}$ ã¯ãããã $2$ ã§ã¡ããã© $2$ å, $1$ åå²ãåããããšãã, $b=\\textbf{109}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc051/editorial/308"
}
] | ãèç«ãªã¬ãŒã®æçµã©ã³ããŒã§ããããåã¯, ããŸåº§æšå¹³é¢ã®åç¹ã«ãã, 以äžã®è¡åã $57$ åç¶ããŠè¡ããŸãïŒ
- ãããã $U,D,L,R$ ãšæžããã $4$ æã®ã«ãŒããã $1$ æãåŒã, åŒããã«ãŒãã«æžãããæåã $U$ ãªãã° $y$ 座æšã $+1$ , $D$ ãªãã° $y$ 座æšã $-1$ , $R$ ãªãã° $x$ 座æšã $+1$ , $L$ ãªãã° $x$ 座æšã $-1$ ããå Žæã«ç§»åãã.
$57$ åã®è¡åã®åŸ, æ²ç· $x^2-y^2=2021$ äžã«ããã°ããåã¯èç«å°ãžç¹ç«ããããšãã§ããŸã.\
ãã©ã®ã«ãŒããåŒããã確çãåæ§ã«ç¢ºãããããã®ãšãããšã, ããåãç¡äºã«ç¹ç«ã§ãã確çã¯å¥æ° $a$ ãšæ£æŽæ° $b$ ãçšã㊠$\dfrac a{2^b}$ ãšè¡šããã®ã§, $b$ ã解çããŠäžãã. |
OMC051 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc051 | https://onlinemathcontest.com/contests/omc051/tasks/310 | C | OMC051(C) | 400 | 81 | 140 | [
{
"content": "ã$CF=EF, \\angle CFE=108^\\circ$ ãã, æ£äºè§åœ¢ $CFEGH$ ããšãã. ãã®ãšã, $CE=EH=FH$ ãã $B$ 㯠$H$ ã«äžèŽããããšãããã. ããã« $\\angle AEG=60^\\circ,AE=GE$ ãã $\\triangle AEG$ ã¯æ£äžè§åœ¢ã§ãã. ãã£ãŠ, $G$ ã¯äžè§åœ¢ $ABE$ ã®å€å¿ã§ãã, $\\angle ABE=\\angle AGE\\/2=30^\\circ$ ãåŸããã, $\\angle EBC=72^\\circ$ ãšäœµã㊠$\\angle ABC=\\textbf{102}^\\circ$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc051/editorial/310"
}
] | ãåžåè§åœ¢ $ABCD$ ã«ãããŠ, 蟺 $BC$ ã®åçŽäºçåç·ãšèŸº $AD$ ã®äº€ç¹ã $E$, 蟺 $CE$ ã®åçŽäºçåç·ãšèŸº $CD$ ã®äº€ç¹ã $F$ ãšããã°, 以äžã®æ¡ä»¶ãæãç«ã¡ãŸããïŒ
$$AE=BC,\ \ BE=BF,\ \ \angle CDE=96^\circ,\ \ \angle DEF=12^\circ$$
ãã®ãšã, è§ $ABC$ ã®å€§ããã床æ°æ³ã§æ±ããŠãã ãã. |
OMC051 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc051 | https://onlinemathcontest.com/contests/omc051/tasks/309 | D | OMC051(D) | 500 | 65 | 95 | [
{
"content": "ã$\\Delta$ ã¯è€æ°ã®éåã«å¯ŸããŠã¡ããã©å¥æ°åã«å±ããå
ãããªãéåãè¿ããã, ç¹ã«çµåçã«ã§ããããšã«çæãã.\\\r\nã以äž, $S_n$ ã¯ã$n$ ã®çŽæ° $x$ ã§ãã£ãŠ $n\\/x$ ãå¹³æ¹å åããããªããã®ãå
šäœãããªãéåã§ããããšãåž°çŽæ³ã§ç€ºã. ããæ£æŽæ° $n\\geq 2$ ã«ã€ããŠ, $n$ æªæºã§æç«ãä»®å®ã, $n$ ã§ã®æç«ã瀺ãã°ãã. $n$ èªèº«ããã³ $n$ ã®çŽæ°ã§ãªãæ°ã«ã€ããŠã¯æããã§ãã. $n$ ã®çŽæ° $x\\lt n$ ãäžã®æ¡ä»¶ãã¿ãããšã, ä»»æã® $x$ ã§å²ãåãã $n$ ã®çŽæ° $d\\lt n$ ã«ã€ããŠåžžã« $d\\in S_d$ ã§ãã, ãã®ãã㪠$d$ ã¯å¥æ°åã§ããããæç«ãã. $x$ ãæ¡ä»¶ãã¿ãããªããšããåæ§ã«ç¢ºèªã§ãã.\\\r\nã$2021 = 43 \\times 47$ ãã $a = 43^{2020} \\times 47^{2020}$ ãšã㊠$S_{2021^{2021}} = \\\\{a,43a,47a,2021a\\\\}$ ãšãªã, å
ã®ç·åã¯\r\n$$ 2112a = 2^6 \\times 3 \\times 11 \\times 43^{2020} \\times 47^{2020}$$\r\nãã£ãŠ, 解çãã¹ãå€ã¯ $2 \\times 6 + 3 + 11 + 43 \\times 2020 + 47 \\times 2020 = \\textbf{181826}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc051/editorial/309"
},
{
"content": "ã$\\Delta$ ã¯è€æ°ã®éåã«å¯ŸããŠã¡ããã©å¥æ°åã«å±ããå
ãããªãéåãè¿ãïŒç¹ã«ã亀ææ³åããã³çµåæ³åãæºããïŒ \r\nã以äžïŒæ£ã®æŽæ° $i$ ã«å¯ŸãïŒ$i$ ã®ãã¹ãŠã®æ£ã®çŽæ°ã $d_1\\lt d_2\\lt\\cdots\\lt d_n$ ãšãïŒ$S_{d_1}\\Delta S_{d_2}\\Delta\\cdots\\Delta S_{d_n}$ ã $T_i$ ãšããïŒ \r\nãã§ã¯ïŒçžç°ãªãçŽ æ° $p,q$ ããã³éè² æŽæ° $a,b$ ã«å¯Ÿãã$S_{p^aq^b}$ ãæ±ãããïŒ \r\n $T_{p^aq^b}=\\\\{ p^aq^b \\\\}$ ããïŒ$T_{p^aq^b}\\Delta T_{p^{a-1}q^{b-1}}=\\\\{ p^aq^b \\\\}\\Delta T_{p^{a-1}q^{b-1}}$ ãªã®ã§ïŒ$T_{p^{a-1}q^b}\\Delta T_{p^aq^{b-1}}\\Delta S_{p^aq^b}=\\\\{ p^aq^b \\\\}\\Delta T_{p^{a-1}q^{b-1}}$ ãšãªãïŒ \r\n ãã£ãŠïŒ$T_{i}=\\\\{i\\\\}$ ããïŒ$\\\\{p^{a-1}q^b\\\\}\\Delta \\\\{p^aq^{b-1}\\\\}\\Delta S_{p^aq^b}=\\\\{ p^aq^b \\\\}\\Delta \\\\{p^{a-1}q^{b-1}\\\\}$ ãšãªãã®ã§ïŒ$\\Delta$ ã¯è€æ°ã®éåã«å¯ŸããŠã¡ããã©å¥æ°åã«å±ããå
ãããªãéåãè¿ãããšã«æ³šæããŠïŒ$S_{p^aq^b}=\\\\{p^aq^b,p^{a-1}q^b,p^aq^{b-1},p^{a-1}q^{b-1}\\\\}$ \r\nããã£ãŠïŒ $S_{2021^{2021}}=\\\\{43^{2021}47^{2021},43^{2020}47^{2021},43^{2021}47^{2020},43^{2020}47^{2020}\\\\}$ ãšãªãïŒç¹ã«ïŒè§£çãã¹ãæ°å€ã¯ $\\textbf{181826}$ ïŒ",
"text": "åŒå€åœ¢ã§éåãçŽæ¥æ±ãã",
"url": "https://onlinemathcontest.com/contests/omc051/editorial/309/193"
}
] | ãäºã€ã®éå $A, B$ ã«å¯Ÿã $A, B$ ã®ã¡ããã©äžæ¹ã®ã¿ã«å«ãŸããèŠçŽ å
šäœã®éåã $A \Delta B$ ã§è¡šããŸã. å³å¯ã«ã¯
$$A\Delta B=(A \cap \overline B) \cup (\overline A \cap B)$$
ã§ã. ãã®ãšã, ããããæ£æŽæ°ãããªãæééå $S_1,S_2,\cdots$ ã, ä»»æã®æŽæ° $i\geq 2$ ã«å¯Ÿã以äžãã¿ãããŸããïŒ
- $i$ ã®ãã¹ãŠã®æ£ã®çŽæ°ã $d_1\lt d_2\lt \cdots\lt d_n$ ãšããã°, $(\cdots((S_{d_1} \Delta S_{d_2}) \Delta S_{d_3})\cdots \Delta S_{d_n}) = \\{i\\}$.
ãã ã $S_1=\\{1\\}$ ãšããŸã. ãã®ãšã, $S_{2021^{2021}}$ ãšããŠããåŸããã®ã«ã€ããŠ, 以äžã®å€ã®ç·åãæ±ããŠäžããïŒ
- ãã¹ãŠã®å
ã®ç·åã«ã€ããŠ, ãããçŽ å æ°å解ããæã®ãçŽ å æ°ãšææ°ã®ç©ãã®ç·å
äŸãã°ããåŸãéåã $\\{10,30\\}$ ããã³ $\\{25,50\\}$ ãªãã°, $(2 \times 3 + 5) + (3 + 5 \times 2) = 24$ ã解çããŠãã ãã. |
OMC051 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc051 | https://onlinemathcontest.com/contests/omc051/tasks/311 | E | OMC051(E) | 600 | 21 | 41 | [
{
"content": "**解æ³1.**ãäžåŒãå©çšããŠé©åœã«å æžãè¡ãããšã§, å€é
åŒ\r\n$$P(x)=x(x-1)(x-2)(x-333)(x-335)\\cdots (x-2021)$$\r\nã«ã€ããŠä»¥äžãæç«ãã.\r\n$$ S=\\sum_{k=0}^{2021} P(k)a_k = -(334!)\\times(2021-334)!\\times a_{334}$$\r\nãããã£ãŠ, æ±ãã $m$ ã¯çµå± $334!\\times(2021-334)!$ ã $5$ ã§å²ãåããåæ° $\\textbf{500}$ ã§ãã.\r\n\r\n**解æ³2.** ãäžåŒãå©çšããŠé©åœã«å æžãè¡ãããšã§, $0 \\leq i \\lt 2021$ ãªãæŽæ° $i$ ã«å¯Ÿã以äžã®æç«ãåããïŒ\r\n$${}\\_0\\mathrm{P}\\_i \\times a_0 + {}\\_1\\mathrm{P}\\_i \\times a_1 + \\cdots + {}\\_{2021}\\mathrm{P}\\_{i} \\times a_{2021} = 0\\quad \\cdots\\cdots (1)$$\r\nãã ã ${}\\_0\\mathrm{P}\\_0 = 1$, $n \\lt r$ ã®ãšã ${}\\_n\\mathrm{P}\\_r = 0$ ãšãã. ãããçšããŠ, $0 \\leq i \\leq 2021$ ãªãä»»æã®æŽæ° $j$ ã«å¯Ÿã,\r\n$$a\\_j = (-1)^{2021-j}{}\\_{2021}\\mathrm{C}\\_{j}\\times a\\_{2021}\\quad \\cdots\\cdots (2)$$\r\nã§ããããšãåž°çŽæ³ã«ãã£ãŠç€ºã. ãã ãéåžžã®åž°çŽæ³ãšéé ã«èŸ¿ããã®ãšãã. ããªãã¡, ããæŽæ° $k\\lt 2021$ ã«å¯Ÿã, $j\\gt k$ ã§æç«ãä»®å®ã, $j=k$ ã§ã®æç«ã瀺ã. ãã㧠$j = 2021$ ã®å Žåã¯æããã§ããããšã«çæãã.\\\r\nãã$(1)$ 㧠$i=k$ ãšãããã®ããå§ã, åž°çŽæ³ã®ä»®å®ããã³ ${}\\_{s}\\mathrm{C}\\_{t} \\times {}\\_{t}\\mathrm{P}\\_{u} = {}\\_{s-u}\\mathrm{C}\\_{t-u} \\times {}\\_{s}\\mathrm{P}\\_{u}$ ãå©çšããããšã§\r\n$$\\begin{aligned}\r\nk! \\times a_k &= -\\left({}\\_{k+1}\\mathrm{P}\\_{k} \\times a_{k+1} + \\cdots + {}\\_{2021}\\mathrm{P}\\_{k} \\times a_{2021}\\right) \\\\\\\\\r\n&= -\\left\\\\{(-1)^{2021-k-1}{}\\_{k+1}\\mathrm{P}\\_{k} \\times {}\\_{2021}\\mathrm{C}\\_{k+1}+ \\cdots + (-1)^0{}\\_{2021}\\mathrm{P}\\_{k} \\times {}\\_{2021}\\mathrm{C}\\_{2021}\\right\\\\}a_{2021} \\\\\\\\\r\n&= -\\left\\\\{(-1)^{2021-k-1}{}\\_{2021-k}\\mathrm{C}\\_{1} + \\cdots + (-1)^0{}\\_{2021-k}\\mathrm{C}\\_{2021-k}\\right\\\\}{}\\_{2021}\\mathrm{P}\\_{k} \\times a_{2021} \\\\\\\\\r\n&= (-1)^{2021-k}{}\\_{2021}\\mathrm{P}\\_{k} \\times a_{2021}\r\n\\end{aligned}$$\r\nãã ãæåŸã¯äºé
å®çã§ãã. ããããæç«ã瀺ãã, ç¹ã«\r\n$$-334!\\times(2021-334)!\\times a_{334}=2021\\times a_{2021}$$\r\nã«çæããã°, 以äžã®ããã«å€åœ¢ã§ãã.\r\n$$\\begin{aligned}\r\nS&=\\sum_{k=0}^{2021} k^{2021}a_k \\\\\\\\\r\n&= a_{2021} \\sum_{k=0}^{2021} k^{2021}(-1)^{2021-k}{}\\_{2021}\\mathrm{C}\\_{k}\\\\\\\\\r\n&=2021!\\times a_{2021}=-(334!)\\times(2021-334)!\\times a_{334}\r\n\\end{aligned}$$\r\nãã ã, éäžã®çå·ã¯å
é€åçã®çºæ³ã«ãã. ãããã£ãŠ, 解æ³1ãšåæ§ã«æ±ãã $m$ 㯠$\\textbf{500}$ ã§ãã.\r\n\r\n**è£è¶³.**ã$A$ ã®æ¯é¢æ° $f$ ããšã. ããªãã¡\r\n$$f=a_0x^0+a_1x^1+\\cdots+a_{2021}x^{2021}$$\r\nãã®ãšã, äžæ¡ä»¶ã¯ãæŽæ° $0 \\leq i \\lt 2021$ ã«å¯Ÿã $f^{(i)}(1) = 0$ããšèšãããããã. ããªãã¡ $1$ 㯠$f$ ã® $2021$ éæ ¹ã§ãããã, $f$ ãé«ã
$2021$ 次ã§ããããšãšäœµã㊠$f=a_{2021}(x-1)^{2021}$ ãšè¡šã, ç¹ã« $(2)$ ãæç«ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc051/editorial/311"
},
{
"content": "ãäžè¬ã« $2021$ ã $N$ ãšããïŒéè² æŽæ° $j,\\ell$ ã«å¯ŸãïŒç¬¬äºçš® Stirling æ°ã $\\mathscr S(j,\\ell)$ ãšè¡šããšïŒ$0^0=1$ ãšã¿ãªãã°\r\n$$ \\mathscr S(j,\\ell) = \\frac1{\\ell!}\\sum_{k=0}^\\ell(-1)^{\\ell-k}\\mathinner{{}\\_\\ell\\mathrm C\\_k}k^j $$\r\nã§ããïŒãŸã $\\mathscr S(j,j) = 1$ ããã³ $j \\lt \\ell$ 㧠$\\mathscr S(j,\\ell) = 0$ ãæãç«ã€ïŒ\\\r\nã$S$ ãåºå®ãããš $A$ ã¯äžéãã«å®ãŸãããïŒä»®å®ã®åŒãš $\\mathscr S(i,N)$ ãç
§ããåãããããšã§ïŒå $k$ ã«å¯ŸããŠ\r\n$$ a_k = \\frac{S\\mathinner{(-1)^{N-k}}{}\\_N\\mathrm C\\_k}{N!} \\implies S = (-1)^{N-k}\\mathinner{k!}\\mathinner{(N-k)!}a_k $$\r\nãåããïŒãã£ãŠ $N$ ãå
ã«æ»ã $k = 334$ ãšããããšã§ïŒæ±ãã $m$ ãšããŠïŒ$334!\\mathinner{(2021-334)!}$ ã $5$ ã§å²ãåããåæ° $\\mathbf{500}$ ãåŸãïŒ",
"text": "第äºçš® Stirling æ°",
"url": "https://onlinemathcontest.com/contests/omc051/editorial/311/5"
},
{
"content": "ã$c = 5^m \\times n$ ãšããïŒäžããããæ¡ä»¶åŒããïŒ$(a_i)\\_{0 \\leq i \\leq 2021}$ ã¯æ¬¡ã®äžæ¬¡é£ç«æ¹çšåŒãæºããïŒ\r\n$$\r\n\\begin{pmatrix}\r\n0^0 & 1^0 & \\cdots & 334^0 & \\cdots & 2021^0 \\\\\\\\\r\n0^1 & 1^1 & \\cdots & 334^1 & \\cdots & 2021^1 \\\\\\\\\r\n\\vdots & \\vdots & \\ddots & \\vdots & \\ddots & \\vdots \\\\\\\\\r\n0^{2020} & 1^{2020} & \\cdots & 334^{2020} & \\cdots & 2021^{2020} \\\\\\\\\r\n0^{2021} & 1^{2021} & \\cdots & 334^{2021}-c & \\cdots & 2021^{2021} \\\\\\\\\r\n\\end{pmatrix}\r\n\\begin{pmatrix}\r\na_0 \\\\\\\\\r\na_1 \\\\\\\\\r\n\\vdots \\\\\\\\\r\na_{2020} \\\\\\\\\r\na_{2021} \\\\\\\\\r\n\\end{pmatrix}\r\n=\r\n\\begin{pmatrix}\r\n0 \\\\\\\\\r\n0 \\\\\\\\\r\n\\vdots \\\\\\\\\r\n0 \\\\\\\\\r\n0 \\\\\\\\\r\n\\end{pmatrix}\r\n$$\r\n\r\n巊蟺ã®ä¿æ°è¡åã $A$ ãšããïŒ\r\n$S \\neq 0$ ãã $a_{334} \\neq 0$ ãªã®ã§ïŒãã®é£ç«æ¹çšåŒã«ã¯éèªæãªè§£ãååšããïŒ\r\nãã£ãŠïŒ$\\det(A) = 0$ ãæãç«ã€ïŒ\r\nè¡ååŒã®å€éç·åæ§ãšå±éå
¬åŒãçšããŠïŒ\r\n$$\r\n\\begin{aligned}\r\n\\det(A) &= \\det\r\n\\begin{pmatrix}\r\n0^0 & \\cdots & 333^0 & 334^0 & 335^0 & \\cdots & 2021^0 \\\\\\\\\r\n0^1 & \\cdots & 333^1 & 334^1 & 335^1 & \\cdots & 2021^1 \\\\\\\\\r\n\\vdots & \\ddots & \\vdots & \\vdots & \\vdots & \\ddots & \\vdots \\\\\\\\\r\n0^{2020} & \\cdots & 333^{2020} & 334^{2020} & 335^{2020} & \\cdots & 2021^{2020} \\\\\\\\\r\n0^{2021} & \\cdots & 333^{2021} & 334^{2021} & 335^{2021} & \\cdots & 2021^{2021} \\\\\\\\\r\n\\end{pmatrix} \\\\\\\\\r\n& \\quad\\quad+\\det\r\n\\begin{pmatrix}\r\n0^0 & \\cdots & 333^0 & 0 & 335^0 & \\cdots & 2021^0 \\\\\\\\\r\n0^1 & \\cdots & 333^1 & 0 & 335^1 & \\cdots & 2021^1 \\\\\\\\\r\n\\vdots & \\ddots & \\vdots & \\vdots & \\vdots & \\ddots & \\vdots \\\\\\\\\r\n0^{2020} & \\cdots & 333^{2020} & 0 & 335^{2020} & \\cdots & 2021^{2020} \\\\\\\\\r\n0^{2021} & \\cdots & 333^{2021} & -c & 335^{2021} & \\cdots & 2021^{2021} \\\\\\\\\r\n\\end{pmatrix} \\\\\\\\\r\n&= \\det\r\n\\begin{pmatrix}\r\n0^0 & \\cdots & 333^0 & 334^0 & 335^0 & \\cdots & 2021^0 \\\\\\\\\r\n0^1 & \\cdots & 333^1 & 334^1 & 335^1 & \\cdots & 2021^1 \\\\\\\\\r\n\\vdots & \\ddots & \\vdots & \\vdots & \\vdots & \\ddots & \\vdots \\\\\\\\\r\n0^{2020} & \\cdots & 333^{2020} & 334^{2020} & 335^{2020} & \\cdots & 2021^{2020} \\\\\\\\\r\n0^{2021} & \\cdots & 333^{2021} & 334^{2021} & 335^{2021} & \\cdots & 2021^{2021} \\\\\\\\\r\n\\end{pmatrix} \\\\\\\\\r\n& \\quad\\quad +c\\det\r\n\\begin{pmatrix}\r\n0^0 & \\cdots & 333^0 & 335^0 & \\cdots & 2021^0 \\\\\\\\\r\n0^1 & \\cdots & 333^1 & 335^1 & \\cdots & 2021^1 \\\\\\\\\r\n\\vdots & \\ddots & \\vdots & \\vdots & \\ddots & \\vdots \\\\\\\\\r\n0^{2020} & \\cdots & 333^{2020} & 335^{2020} & \\cdots & 2021^{2020} \\\\\\\\\r\n\\end{pmatrix}\r\n\\end{aligned}\r\n$$\r\nãåŸãïŒãã㧠Vandermonde ã®è¡ååŒãçšããŠããã«èšç®ãé²ãããšïŒ\r\n$$\r\n\\det(A) = \\prod_{0 \\leq i \\lt j \\leq 2021} (j-i) + c \\prod_{\\substack{0 \\leq i \\lt j \\leq 2021 \\\\\\\\ i,j \\neq 334}} (j-i)\r\n$$\r\nãšãªãã®ã§ïŒ$\\det(A) = 0$ ããïŒ\r\n$$\r\nc = -\\prod_{i = 0}^{333}(334-i) \\times \\prod_{j = 335}^{2021}(j-334) = -334! \\times (2021-334)!\r\n$$ \r\nãåŸãïŒ\r\n$c$ 㯠$5$ ã§æ倧 $500$ åå²ãåããã®ã§ïŒæ±ããçã㯠$\\textbf{500}$ ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc051/editorial/311/15"
}
] | ãããæ°å $A=\\{a_0,a_1,\cdots,a_{2021}\\}$ ã«ã€ããŠ, 以äžã®æ¡ä»¶ãæç«ããŸãã. ãã ã, $0^0=1$ ãšããŸã.
$$ \sum_{k=0}^{2021} k^{i}a_{k}= \begin{cases}
0 & (i=0,1,\cdots,2020) \\\\
S\neq 0 & (i=2021)
\end{cases}$$
ç¹ã« $S$ ãæŽæ° $m,n$ ãçšã㊠$S=5^m \times n\times a_{334}$ ãšè¡šãããšã, $m$ ãšããŠããåŸãæ倧ã®å€ãæ±ããŠäžãã. |
OMC051 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc051 | https://onlinemathcontest.com/contests/omc051/tasks/312 | F | OMC051(F) | 700 | 1 | 28 | [
{
"content": "ãã¹ã³ã¢ãæ倧åãã $X$ ã«ã€ããŠèããïŒããæŽæ° $a$ ãåé²æ³è¡šèšãããšã $a = \\overline{a_1a_2 \\cdots a_{2021}}$ ãšè¡šãããšãã. ããã« $b_i = 9 - a_i$ ãšããã°ïŒ$a \\in X$ ãšãªãããã®å¿
èŠååæ¡ä»¶ã¯ $\\oplus$ ãæä»çè«çåãšããŠ\r\n$$b_1 \\oplus b_2 \\oplus \\cdots \\oplus b_{2021} = 0 \\tag{1}$$\r\nãšãªãããšã瀺ãïŒã¹ã³ã¢ã®å®çŸ©ããïŒ$S$ ã®å
ã倧ããæ¹ããé ã«èŠãŠïŒ$X$ ã®å
ãšãªãåŸããã®ã貪欲ã«éžæããŠããã®ãæåã§ããïŒãããã£ãŠïŒ$a \\gt k$ ã§ã®åå€æ§ãä»®å®ãïŒ$a = k$ ã§æç«ã瀺ãã°ããïŒ\\\r\nã$k$ ã $(1)$ ãã¿ãããšãïŒ$k$ ãšã¡ããã© $2020$ æ¡ãäžèŽããæ°ã¯ïŒ$(1)$ ã®å·ŠèŸºã«ãã㊠$k$ ããäžæåã®ã¿ãå€åããããïŒ$(1)$ ãã¿ãããªãïŒä»®å®ãããã®ãããªæ°ã¯ $X$ ã«å«ãŸããªãããïŒ$k\\in X$ ã§ããïŒ\\\r\nãéã« $k$ ã $(1)$ ãã¿ãããªããšãïŒ$(1)$ ã®å·ŠèŸºã®å€ãäºé²æ³ã§è¡šãããšãã«ïŒ$1$ ãšãªãæ¡ã®äžã§æãäœã®å€§ããªãã®ããšããïŒ$b_i$ ã®äžããåãæ¡ã $1$ ãšãªããã®ãäžã€ä»»æã«ãšãïŒ$(1)$ ãæç«ãããã㪠$b^\\prime_i$ ã«å€æŽããŠã§ããæ°ã $a^\\prime$ ãšããã°ïŒ$b_i \\gt b^\\prime_i$ ãã $a \\lt a^\\prime$ ã§ïŒããã« $a^\\prime \\in X$ ã§ããããïŒ$a \\notin X$ ãåŸãïŒ\\\r\nããããã£ãŠïŒä»¥äž $(1)$ ãã¿ããçµ $(b_1, \\ldots, b_{2021})$ ãæ°ãäžããã°ãã. $b_1, \\ldots , b_{2021}$ ã®äžã§ $8$ ã®äœã $0$ ã§ãããã®ãååšããããïŒãã®äžã§æãæ·»åã®å€§ãããã®ã§ $1, 2, 4$ ã®äœã調æŽããããšãèããã°ïŒæ±ããå€ã¯\r\n$$\\begin{aligned}\r\n\\lvert X \\rvert &= \\sum_{n=0}^{1010} \\Bigl({}\\_{2021}\\mathrm{C}\\_{2n} \\times 8^{2021-2n-1}\\times 2^{2n}\\Bigr) \\\\\\\\\r\n&= 2^{2017}\\times2\\sum_{n=0}^{1010} \\Bigl({}\\_{2021}\\mathrm{C}\\_{2n} \\times 4^{2021-2n}\\Bigr) \\\\\\\\\r\n&= 2^{2017}((4+1)^{2021}+(4-1)^{2021}) = 2^{2017}(5^{2021} + 3^{2021})\r\n\\end{aligned}$$\r\nFermatã®å°å®çãªã©ããããã $1009$ ã§å²ã£ãäœã㯠$\\textbf{682}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc051/editorial/312"
}
] | ã$S = \\{0, 1, 2, \ldots,10^{2021}-1\\}$ ãšãïŒ$S$ ã®éšåéå $\\{a_1, a_2, \ldots, a_n\\}$ ã«å¯Ÿããã®**ã¹ã³ã¢**ã以äžã§å®ããŸãïŒ
$$2^{a_1} + 2^{a_2} + \cdots + 2^{a_n}$$
ã以äžã®æ¡ä»¶ãã¿ãã $S$ ã®éšåéå $X$ ã§ãã£ãŠïŒãã®ã¹ã³ã¢ãæ倧ã«ãªããã®ã¯äžæã«ååšããããšãä¿èšŒãããŸãïŒãã®å
ã®åæ°ãçŽ æ° $1009$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ
- ä»»æã® $a,b \in X$ ã«å¯ŸããŠïŒ$a,b$ ã®åé²æ³è¡šèšã§åæ¡ãæ¯èŒãããšïŒã¡ããã© $2020$ ãµæãäžèŽããããšã¯ãªãïŒ
ããã ã, äžã®æ¡ä»¶ã«ãã㊠$a,b$ ãåé²æ³è¡šèšã§ $2021$ æ¡ã«æºããªãå Žåã¯ïŒäŸãã° $1$ ãªãã° $000 \cdots 001$ ã®ããã«ïŒå
é ã« $0$ ãé©åœã«è£ãããšã§ $2021$ æ¡ã®æ°ãšã¿ãªããŠèãããã®ãšããŸãïŒ |
OMCå¬é«æ¯2 | https://onlinemathcontest.com/contests/omckoukou2 | https://onlinemathcontest.com/contests/omckoukou2/tasks/2127 | A | OMCå¬é«æ¯2(A) | 200 | 37 | 45 | [
{
"content": "ã$2$ ç¹ $(x_s,y_s,z_s), (x_t,y_t,z_t)$ ã«å¯Ÿã, ãããã $33:4$ ã«å
éšããç¹\r\n$$\\left(\\dfrac{4x_s+33x_t}{37},\\dfrac{4y_s+33y_t}{37},\\dfrac{4z_s+33z_t}{37}\\right)\\$$\r\nãæ Œåç¹ãšãªãæ¡ä»¶ã¯, $2$ ç¹ã®åº§æšã $37$ ãæ³ãšããŠäžèŽããããšã ãã, æ±ããæå°å€ã¯ $37^3+1=\\textbf{50654}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omckoukou2/editorial/2127"
}
] | ã$xyz$ 空éå
ã«çžç°ãªã $k$ å ($k\geq2$) ã®æ Œåç¹ $P_1,P_2,\cdots,P_k$ ããšããŸã. $1\leq i \lt j \leq k$ ãªãæŽæ°ã®çµ $(i,j)$ ãã¹ãŠã«å¯ŸããŠ, ç·å $P_iP_j$ ã $33:4$ ã«å
åããç¹ããšã, ãããã®ç¹ã®éåã $N$ ãšããŸã. $P_1,P_2,\cdots,P_k$ ã®ãšãæ¹ã«ããã, $N$ ã«æ Œåç¹ãå«ãŸãããã㪠$k$ ã®æå°å€ãæ±ããŠãã ãã. |
OMCå¬é«æ¯2 | https://onlinemathcontest.com/contests/omckoukou2 | https://onlinemathcontest.com/contests/omckoukou2/tasks/2126 | B | OMCå¬é«æ¯2(B) | 300 | 34 | 38 | [
{
"content": "$$\\begin{aligned}\r\n\\sum_{k=1}^{2032}a_{4k-3}=a_{1}+a_{5}+\\cdots+a_{8125}=A\\\\\\\\\r\n\\sum_{k=1}^{2032}a_{4k-2}=a_{2}+a_{6}+\\cdots+a_{8126}=B\\\\\\\\\r\n\\sum_{k=1}^{2032}a_{4k-1}=a_{3}+a_{7}+\\cdots+a_{8127}=C\\\\\\\\\r\n\\sum_{k=1}^{2032}a_{4k}=a_{4}+a_{8}+\\cdots+a_{8128}=D\\\\\\\\\r\n\\end{aligned}$$\r\nãšãã. ããã§æ±ãããã®ã¯ $A+B+C+D$ ã§ãã. ããã§\r\n$$\r\n\\begin{aligned}\r\nx&=(a_{1}-a_{3})+(a_{5}-a_{7})+\\cdots+(a_{8125}-a_{8127})\\\\\\\\\r\n &=-a_{2}-a_{6}-\\cdots-a_{8126}\\\\\\\\\r\n &=-B\r\n\\end{aligned}\r\n$$\r\nåæ§ã« $C=-y$ ãåŸã. ãŸã, ç°¡åãªèšç®ã«ãã $A=C-B$ , $D=B+C$ ã§ããããšãåãã. ãã£ãŠ\r\n$$\r\n\\begin{aligned}\r\nA+B+C+D&=(C-B)+B+C+(B+C)\\\\\\\\\r\n&=B+3C\\\\\\\\\r\n&=-x-3y\\quad \r\n\\end{aligned}\r\n$$\r\nãšãªããã, 解çãã¹ãå€ã¯ $\\textbf{4}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omckoukou2/editorial/2126"
}
] | ãå®æ° $a_1,a_2,\cdots,a_{8128}$ 㯠$1\leq n\leq 8126$ ãªãä»»æã®æŽæ° $n$ ã«å¯Ÿã㊠$a_{n+2}=a_{n+1}+a_n$ ãã¿ãããŸã.
$$\begin{aligned} x&=a_1-a_3+\cdots +a_{8125}-a_{8127}\\\\ y&=a_2-a_4+\cdots+a_{8126}-a_{8128}\end{aligned}$$
ãšãããšã, $a_1+a_2+\cdots+a_{8128}$ ã¯æŽæ° $a,b$ ãçšã㊠$ax+by$ ãšåžžã«è¡šããã®ã§, $|a+b|$ ã解çããŠãã ãã. |
OMCå¬é«æ¯2 | https://onlinemathcontest.com/contests/omckoukou2 | https://onlinemathcontest.com/contests/omckoukou2/tasks/2201 | C | OMCå¬é«æ¯2(C) | 400 | 38 | 42 | [
{
"content": "ã$n$ ãçŽ å æ°å解ã㊠$n={p_1}^{\\alpha_1}{p_2}^{\\alpha_2}\\cdots{p_m}^{\\alpha_m}$ ãšããã°, äžåŒã¯\r\n$$\\dfrac{n}{{(T(n^2)})^2}=\\dfrac{{p_1}^{\\alpha_1}{p_2}^{\\alpha_2}\\cdots{p_m}^{\\alpha_m}}\r\n{\\left\\\\{\r\n(2{\\alpha_1}+1)(2{\\alpha_2}+1)\\cdots(2{\\alpha_m}+1)\r\n\\right\\\\}^2\r\n}$$\r\nãã㧠${f_p}(x)=\\dfrac{p^x}{({2x+1})^2}$ ãšããã°, ãã㯠$\\displaystyle\\prod_{i=1}^{m}f_{p_i}(\\alpha_i)$ ã§ãããã, $f_p(x)$ ã®æå°å€ã«ã€ããŠèãããš,\r\n\r\n- $p=2$ ã®ãšã $x=2$ ãæå°.\r\n- $p=3,5,7$ ã®ãšã $x=1$ ãæå°.\r\n- $p\\geq 11$ ã®ãšã $x=0$ ãæå°.\r\n\r\n以äžãã, æ±ããæå°å€ã¯ $f_2(2)f_3(1)f_5(1)f_7(1)=\\dfrac{28}{1215}$ ã§ãããã, 解çãã¹ãå€ã¯ $1215+28=\\textbf{1243}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omckoukou2/editorial/2201"
}
] | ãæ£æŽæ° $n$ ã«å¯Ÿã, $T(n)$ 㧠$n$ ã®ãã€æ£ã®çŽæ°ã®åæ°ãè¡šããŸã. ãã®ãšã,
$$\dfrac{n}{(T(n^2))^2}$$
ã®ãšãããæå°å€ã¯, äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMCå¬é«æ¯2 | https://onlinemathcontest.com/contests/omckoukou2 | https://onlinemathcontest.com/contests/omckoukou2/tasks/2196 | D | OMCå¬é«æ¯2(D) | 500 | 12 | 16 | [
{
"content": "ãæ£æŽæ° $k$ ã«å¯ŸããŠ, 以äžã $n$ ã«é¢ããæçåŒã«ãªããããªå®æ° $b_1,\\cdots,b_k$ ãèãã.\r\n$$n^k={b_1}\\cdot{\\_n}\\mathrm{C}\\_1+{b_2}\\cdot{\\_n}\\mathrm{C}\\_2+\\cdots+{b_{k-1}}\\cdot{\\_n}\\mathrm{C}\\_{k-1}+{b_k}\\cdot{\\_n}\\mathrm{C}\\_k\r\n$$\r\nãã®ãã¡æ·»ãåã®å¶å¥ã $k$ ãšäžèŽãããã®ã®åã $C(k)$ ãšã, ããã§ãªããã®ã®åã $D(k)$ ãšãããš,\r\n$$\r\n\\begin{aligned}\r\nn^{k+1} &=nb_{1}\\cdot{\\_n}\\mathrm{C}\\_{1}+nb_{2}\\cdot{\\_n}\\mathrm{C}\\_{2}+\\cdots+nb_k\\cdot{\\_n}\\mathrm{C}\\_k \\\\\\\\\r\n&= b_1(1\\cdot{\\_n}\\mathrm{C}\\_1+2\\cdot{\\_n}\\mathrm{C}\\_2)+\\cdots+b_{k}(k\\cdot{\\_n}\\mathrm{C}\\_{k}+(k+1)\\cdot{\\_n}\\mathrm{C}\\_{k+1}) \\\\\\\\\r\n&= b_1\\cdot{\\_n}\\mathrm{C}\\_{1}+2(b_1+b_2)\\cdot{\\_n}\\mathrm{C}\\_{2}+\\cdots+k(b_{k-1}+b_{k})\\cdot {\\_n}\\mathrm{C}\\_{k}+(k+1)b_{k}\\cdot{\\_n}\\mathrm{C}\\_{k+1}\r\n\\end{aligned}$$\r\nãã $C(k+1)-D(k+1)=C(k)-D(k)$ ã§ãã, ç¹ã« $C(k)-D(k)=1$ ãæç«ãã.\\\r\nãã㟠$a_i=kb_i$ ã§ããããšãã, $A(k)-B(k)=k$ ãšãªã. ããã«çæããŠèšç®ãã.\r\n$$\r\n\\begin{aligned}\r\n\\sum_{k=1}^{2020} \\dfrac{A(k)^3-B(k)^3+2k^3}{A(k)^2+B(k)^2+k^2}&=\\sum_{k=1}^{2020}\\dfrac{(A(k)-B(k))^3+3A(k)B(k)(A(k)-B(k))+2k^3}{(A(k)-B(k))^2+2A(k)B(k)+k^2}\\\\\\\\\r\n&=\\sum_{k=1}^{2020}\\dfrac{3k^3+3kA(k)B(k)}{2k^2+2A(k)B(k)}\\\\\\\\\r\n&=\\sum_{k=1}^{2020}\\dfrac{3}{2}k\r\n\\end{aligned}\r\n$$ \r\n以äžãã解çãã¹ãå€ã¯ $\\dfrac{3}{2}\\cdot\\dfrac{2020\\cdot2021}{2}=\\textbf{3061815}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omckoukou2/editorial/2196"
},
{
"content": "ãæ£æŽæ° $m$ ã«å¯ŸããŠïŒ$m$ 次é¢æ° $f_m$ ã\r\n$$f_m(x)=\\dfrac{1}{m!}x(x-1)\\cdots(x-m+1)$$\r\nãšããŠå®çŸ©ãããšïŒ\r\n$$kn^k=a_1f_1(n)+a_2f_2(n)+\\cdots +a_kf_k(n) \\tag{1}$$\r\nã¯æ£æŽæ° $n$ ã«é¢ããæçåŒã§ããïŒããã§\r\n$$kn^k-a_1f_1(n)-a_2f_2(n)-\\cdots -a_kf_k(n)$$\r\n㯠$n$ ã«ã€ããŠé«ã
$k$ 次ã®å€é
åŒã§ããããïŒå æ°å®çããïŒããã¯æççã« $0$ ã§ããããšããããïŒåŸã£ãŠïŒ$(1)$ ã¯ä»»æã®å®æ° $n$ ã«é¢ããæçåŒã§ããïŒ\\\r\nãããã§ïŒ$n=-1$ ã代å
¥ãããšïŒ\r\n$$k(-1)^k=a_1(-1)+a_2(-1)^2+\\cdots+a_k(-1)^k.$$\r\nããã«ïŒ$k=A(k)-B(k)$ ã§ããããïŒããã«çæããŠèšç®ããïŒ\r\n$$\\begin{aligned}\r\n\\sum_{k=1}^{2020} \\dfrac{A(k)^3-B(k)^3+2k^3}{A(k)^2+B(k)^2+k^2}&=\\sum_{k=1}^{2020}\\dfrac{(A(k)-B(k))^3+3A(k)B(k)(A(k)-B(k))+2k^3}{(A(k)-B(k))^2+2A(k)B(k)+k^2}\\\\\\\\ &=\\sum_{k=1}^{2020}\\dfrac{3k^3+3kA(k)B(k)}{2k^2+2A(k)B(k)}\\\\\\\\\r\n&=\\sum_{k=1}^{2020}\\dfrac{3}{2}k. \\end{aligned}$$\r\n以äžãã解çãã¹ãå€ã¯ $\\dfrac{3}{2}\\times\\dfrac{2020\\times2021}{2}=\\textbf{3061815}$ ã§ããïŒ\r\n\r\nããªãïŒ$(1)$ ã« $n=1,2,\\ldots,k$ ã代å
¥ã㊠$a_1,a_2,\\ldots,a_k$ ãäžæã«åŸããïŒäžãšåæ§ã«å æ°å®çãçšããããšã«ããïŒãããåé¡ã®æ¡ä»¶ãã¿ããããšã確èªã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omckoukou2/editorial/2196/22"
}
] | ãä»»æã®æ£æŽæ° $k$ ã«å¯ŸããŠ,
$$kn^k={a_1}\cdot{\_n}\mathrm{C}\_1+{a_2}\cdot{\_n}\mathrm{C}\_2+\cdots+{a_{k-1}}\cdot{\_n}\mathrm{C}\_{k-1}+{a_k}\cdot{\_n}\mathrm{C}\_k
$$
ãæ£æŽæ° $n$ ã«é¢ããæçåŒãšãªããããªå®æ° $a_1,\cdots,a_k$ ãäžæã«å®ãŸããŸã. ãã®ãšã, $a_1,\cdots,a_k$ ã®ãã¡æ·»ãåã®å¶å¥ã $k$ ãšäžèŽãããã®ã®åã $A(k)$ ãšã, ããã§ãªããã®ã®åã $B(k)$ ãšããŠ, 以äžã®å€ãæ±ããŠãã ãã.
$$\sum_{k=1}^{2020} \dfrac{A(k)^3-B(k)^3+2k^3}{A(k)^2+B(k)^2+k^2}
$$ |
OMCå¬é«æ¯2 | https://onlinemathcontest.com/contests/omckoukou2 | https://onlinemathcontest.com/contests/omckoukou2/tasks/2205 | E | OMCå¬é«æ¯2(E) | 700 | 5 | 16 | [
{
"content": "ã$n=2^{2020}$ ãšãã. ç·åãå¥æ°ã®æ¡ä»¶ãç¡èŠããã° ${\\_{4n}}\\mathrm{C}\\_{2n}$ éãã§ãã. ãã®ãã¡, ãã¹ãŠãå¶æ°ã〠$a_{2i-1}=a_{2i}$ ãã¿ãããã® ${\\_{2n}}\\mathrm{C}\\_{n}$ éããé€ã, ç·åãå¶æ°ã®ãã®ãšå¥æ°ã®ãã®ãäžå¯Ÿäžã«å¯Ÿå¿ããããšã確èªããã. å®éã«, æ¡ä»¶ã$a_{2i-1}=a_{2i}$ ãã€ããããå¶æ°ã§ããããã¿ãããªãæå°ã® $i$ ããšãã°, 以äžã®ããã«å¯Ÿå¿ãåŸããã.\r\n\r\n- $a_{2i-1}$ ãå¥æ°ã®ãšã, $a_{2i-1} \\longmapsto a_{2k-1}-1$\r\n- $a_{2i-1}$ ãå¶æ°ã®ãšã, $a_{2i-1} \\longmapsto a_{2k-1}+1$\r\n\r\nã以äž, äžè¬ã« $\\dbinom{2^{m+1}}{2^m}-\\dbinom{2^m}{2^{m-1}}$ ã $2$ ã§ã¡ããã© $3m$ åå²ãåããããšã瀺ãã°, æ±ããå€ã¯ $\\textbf{6062}$ ãšãªãããšãããã. ããªãã¡, 瀺ãã¹ãããšã¯\r\n$$\\dbinom{2^{m+1}}{2^m}-\\dbinom{2^m}{2^{m-1}}\\equiv2^{3m}\\pmod{2^{3m+1}}$$\r\nãã㧠$x_i=2i-1$ ããã³ãã®ç© $X=x_1x_2\\cdots x_{2^{m-1}}$ ã«ã€ããŠ, $2^{2m-1}$ ãæ³ãšããŠ\r\n$$\r\n\\begin{aligned}\r\n\\displaystyle\\sum_{i=1}^{2^{m-1}}\\dfrac{X}{x_i}&=\\dfrac{1}{2} \\Biggl(\\displaystyle\\sum_{i=1}^{2^{m-1}}\\dfrac{X}{x_i}+\\dfrac{X}{x_{2^{m-1}-i+1}}\\Biggr) \\\\\\\\\r\n&=2^{m-1}\\displaystyle\\sum_{i=1}^{2^{m-1}}\\dfrac{X}{x_ix_{2^{m-1}-i+1}}\\\\\\\\\r\n&\\equiv -2^{m-1}X\\sum_{i=1}^{2^{m-1}}(x_i^{-1})^2 \\\\\\\\\r\n&\\equiv -2^{m-1}X \\sum_{i=1}^{2^{m-1}}x_i^2 \\\\\\\\\r\n&\\equiv -2^{m-1}X\\times\\dfrac{2^{m-1}(2^m-1)(2^m+1)}{3} \\\\\\\\\r\n&\\equiv 2^{2m-2}\\times\\text{å¥æ°} \\\\\\\\\r\n&\\equiv 2^{2m-2}\r\n\\end{aligned}\r\n$$\r\nãããå©çšãããš\r\n$$\\displaystyle2\\times\\Biggl(\\prod_{i=1}^{2^{m-1}}(2^m+x_i)-\\prod_{i=1}^{2^{m-1}}(2^m-x_i)\\Biggr)\\equiv 2^{3m}\\pmod{2^{3m+1}}$$\r\näžæ¹ã§ $\\displaystyle\\prod_{i=1}^k(2^i-1)!!=A_k$ ãšãããš, $(2^k)!=2^{2^k-1}\\times A_k$ ã§ãããã\r\n$$\\dbinom{2^{m+1}}{2^m}-\\dbinom{2^m}{2^{m-1}}=2\\times(2^m-1)!!\\times\\dfrac{\\displaystyle\\prod_{i=1}^{2^{m-1}}(2^m+x_i)-\\prod_{i=1}^{2^{m-1}}(2^m-x_i)}{A_m}$$\r\n以äžããææã®çµè«ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omckoukou2/editorial/2205"
},
{
"content": "ã$M$ ãæ±ããã話ã§ãïŒFPS (圢åŒçåªçŽæ°) ã䜿ãããã ã£ãã®ã§äœ¿ããŸããïŒ\r\n\r\n----\r\n\r\nããŸãïŒ$M$ ã¯ä»¥äžã§è¡šãããåŒãå±éãããšãã® $x^{2^{2021}}y^{å¥æ°}$ ã®ä¿æ°ã®ç·åã«çããïŒâ»ïŒïŒ\r\n$$f(x,y)=(1+x+x^2+\\cdots)(1+xy + x^2y^2+\\cdots)(1+xy^2 + x^2y^4 + \\cdots)\\cdots(1+xy^{2^{2021}}+x^2y^{2\\times 2^{2021}}+\\cdots)$$\r\nããã«ïŒå®éã«å±éããåŸã®æ§åãèããã°ïŒãã㯠$(f(x,1)-f(x,-1))\\/2$ ã® $x^{2^{2021}}$ ã®ä¿æ°ã«çããïŒä»¥äžãããæ±ããïŒ\r\n- $f(x,1)$ ã«ã€ããŠïŒ\r\n$$f(x,1)=(1+x+x^2+\\cdots)^{2^{2021}+1}$$\r\nã® $x^{2^{2021}}$ ã®ä¿æ°ãèããã°ããïŒããã¯ã $2^{2021}+1$ åã®é åºä»ããéè² æŽæ°ã®çµã§ãã£ãŠïŒãã®ç·åã $2^{2021}$ ã§ãããã®ã®ç·æ°ããšçããããšãã ${}\\_{2^{2022}} \\mathrm{C}\\_{2^{2021}}$ ãšæ±ããããïŒ\r\n\r\n\r\n- $f(x,-1)$ ã«ã€ããŠïŒ\r\n$$f(x,y)=\\frac{1}{1-x}\\times \\frac{1}{1-xy} \\times \\cdots \\frac{1}{1-xy^{2^{2021}}}$$\r\nããïŒç¹ã«\r\n$$f(x,-1)=\\left(\\frac{1}{1-x}\\times \\frac{1}{1+x}\\right)^{2^{2020}+1}(1+x) = (1+x^2+x^4+\\cdots)^{2^{2020}+1}(1+x)$$\r\nã€ãŸã $(1+x^2+x^4+\\cdots)^{2^{2020}+1}$ ã® $x^{2^{2021}}$ ã®ä¿æ°ãèããã°ããããïŒããã¯å
ã»ã©ãšåæ§ã« ${}\\_{2^{2021}} \\mathrm{C}\\_{2^{2020}}$ ãšæ±ããããïŒ\r\n\r\n以äžããïŒ\r\n$$M=\\frac{f(x,1)-f(x,-1)}{2} = \\frac{{}\\_{2^{2022}} \\mathrm{C}\\_{2^{2021}} - {}\\_{2^{2021}} \\mathrm{C}\\_{2^{2020}}}{2}$$\r\nãšæ±ããããïŒ\r\n\r\n----\r\n\r\nïŒâ»ïŒ\\\r\nãåå åã¯å·Šããé çªã« $0$ ã®åæ°ãšãã®ç·åãžã®å¯äžïŒ $1$ ã®åæ°ãšãã®ç·åãžã®å¯äžïŒ... ãæå³ããŠããŸãïŒããã§ïŒ$y$ 㯠$a_1+a_2+\\cdots$ ã«å¯Ÿå¿ããŸãïŒæ¬åã§ã¯ã$2^{2021}$ åã®éè² æŽæ°ãã®åãå¥æ°ãšãªãå Žåã®æ°ãæ±ããã®ã§ïŒæå $x$ ãå°å
¥ãïŒ$\\underline{{x^{2^{2021}}}} y^{å¥æ°}$ ã®ä¿æ°ïŒãšããçžããèšããŠå¯Ÿå¿ããŠããŸãïŒ\\\r\nããŸãïŒå®éã«ã¯ããæ°ã $a_1, a_2, \\cdots, a_{2^{2021}}$ã®äžã« $2^{2021}$ å以äžå«ãŸããããšã¯ãªãããïŒåå åã¯ç¡é次ã«ãªããªãã®ã§ã¯ïŒãšããçåããããããããŸãããïŒæçµçã«èŠãã®ã¯ $x^{2^{2021}}y^{å¥æ°}$ ã®ä¿æ°ã®ã¿ãªã®ã§ç¡é次ã«ãããšããã§çãã«ã¯åœ±é¿ããŸããïŒ\\\r\nããã®åŒã®ç«ãŠæ¹ã¯ [PCT æ°](https:\\/\\/onlinemathcontest.com\\/users\\/PCTprobability)ã® [Mathlog ã®èšäº](https:\\/\\/mathlog.info\\/articles\\/229)ãåèã«ããŸããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omckoukou2/editorial/2205/114"
}
] | ãç·åãå¥æ°ã§ããæŽæ°ã®çµ $0\leq a_1\leq a_2\leq\cdots\leq a_{2^{2021}}\leq 2^{2021}$ 㯠$M$ éããããŸã. $M$ ã $2$ ã§å²ãåããæ倧ã®åæ°ãæ±ããŠãã ãã. |
OMCå¬é«æ¯2 | https://onlinemathcontest.com/contests/omckoukou2 | https://onlinemathcontest.com/contests/omckoukou2/tasks/2202 | F | OMCå¬é«æ¯2(F) | 900 | 0 | 3 | [
{
"content": "ã以äžã®äž¡è£é¡ãæåäºå®ãšããŠèªããïŒ\r\n\r\n----\r\n**è£é¡1.**ã å
å¿ã $I$ ãšããäžè§åœ¢ $ABC$ ã«ãããŠ, $AB,AC$ ã«æ¥ãåæã« $\\Gamma$ ã«å
æ¥ããåã $C_A$ ãšã, $C_A$ ãš $AB,AC$ ã®æ¥ç¹ããããã $X,Y$ ãšãã.ãã®ãšã, $3$ ç¹ $X,I,Y$ ã¯åäžçŽç·äžã«ãã.\r\n\r\n----\r\n**è£é¡2.**ãè§ $A$ å
ã®åå¿ã $I_A$ ãšããäžè§åœ¢ $ABC$ ã«ãããŠ, $AB,AC$ ã«æ¥ãåæã« $\\Gamma$ ã«å€æ¥ããåã $D_A$ ãšã, $D_A$ ãš $AB,AC$ ã®æ¥ç¹ããããã $X^\\prime,Y^\\prime$ ãšãã.ãã®ãšã, $3$ ç¹ $X^\\prime,I_A,Y^\\prime$ ã¯åäžçŽç·äžã«ãã.\r\n\r\n----\r\nã$\\gamma$ ãš $AB,AC$ ã®äº€ç¹ããããã $B^\\prime,C^\\prime$ ãšãã. $\\triangle{AB^\\prime C^\\prime}$ ã®å
æ¥åã $C_1$ ãšãåæ¥åã $C_2$ ãšãããš, äžã®äž¡è£é¡ãã $C_1$ ãš $\\omega$ ã®ååŸæ¯ãš $C_2$ ãš $\\omega_A$ ã®ååŸæ¯ã¯çãã. ãã£ãŠ $C_1,C_2$ ã $\\omega,\\omega_A$ ã«åãçžäŒŒå€æãèããããšã«ãã, $BC\\parallel B^\\prime C^\\prime$ ãšãªã. ãã®ããšãã $\\gamma$ 㯠$\\Gamma$ ã«ç¹ $A$ ã§æ¥ãããšåãã.\\\r\nã$\\omega,\\omega_A$ ãš $BC$ ã®æ¥ç¹ããããã $P,Q$, $\\gamma$ ãš $\\omega,\\omega_A$ ã®æ¥ç¹ããããã $S,T$ ãšã, $\\gamma$ ã®äžå¿ã $O_A$ ãšãã.\r\n\r\n----\r\n**è£é¡3.**ã$AS$ ãš $AQ$, $AT$ ãš $AP$ ã¯ãããã $\\angle{A}$ ã®äºçåç·ã«é¢ããŠå¯Ÿç§°ã§ãã.\\\r\n**蚌æ.**ã$BC$ ã®äžç¹ã $M$ ãšã, $M$ ãã $\\omega,\\omega_A$ãžã®æ¥ç· ($BC$ ã§ãªãæ¹) ã«ã€ããŠ, ããããã®æ¥ç¹ã $D,E$ ãšãã. ãã㧠$\\angle{PDQ}=90$° ã§ããããšã«çæããã° $3$ ç¹ $A,D,Q$ ãåäžçŽç·äžã«ããããšãåãã. åæ§ã«ã㊠$3$ ç¹ $A,P,E$ ãåäžçŽç·äžã«ããã®ã§, $AS$ ãš $AD$, $AT$ ãš $AE$ ããããã $\\angle{A}$ ã®äºçåç·ã«é¢ããŠå¯Ÿç§°ã§ããããšã瀺ãã°ãã. ããã§ç°¡åãªè§åºŠèšç®ãã $3$ ç¹ $A,D,E$ ãéãå $\\gamma^\\prime$ ã¯ãããã $D,E$ 㧠$MD,ME$ ã«æ¥ãã, ã€ãŸã $\\omega,\\omega_A$ ã«æ¥ãããšåãã. $\\gamma,\\gamma$' ã¯ãšãã« $A$ ãéã $\\omega,\\omega_A$ ã«æ¥ãããã, $\\angle{A}$ ã®äºçåç·ã«é¢ããŠå¯Ÿç§°ã§ãã.\r\n\r\n----\r\nã$S,T$ ã«ããã $\\gamma$ ã®æ¥ç·ã®äº€ç¹ã $N$ ãšãããš, $SN=TN=PQ\\/2$ ãããã, $PQ=AC-AB=21$ ãã, $SN=21\\/2$ ãšãªã. è£é¡3ãã $\\angle{PAQ}=\\angle{SO_AN}$ ã§ãããã, $\\tan{\\angle{PAQ}}=21\\/40$ ãåŸã.\\\r\nãããã§, $\\angle{PAQ}=a$, $\\angle{AQP}=\\theta$ ãšãããš, $\\dfrac{r_A}{r}=\\dfrac{\\tan(\\theta+a)}{\\tan\\theta}$ ãšãªã, å æ³å®çããå€åœ¢ããŠ, \r\n$$\r\n\\dfrac{\\tan(\\theta+a)}{\\tan\\theta}=-\\dfrac{1}{\\tan a(\\tan a+\\tan\\theta)+\\dfrac{\\tan^3a+\\tan a}{\\tan a+\\tan\\theta}-2\\tan^2a-1}\r\n$$\r\nãšãªã. ãããã£ãŠ, çžå ã»çžä¹å¹³åã®é¢ä¿ãã\r\n$$\r\n\\dfrac{\\tan(\\theta+a)}{\\tan\\theta}\\geq -\\dfrac{1}{2\\tan a\\sqrt{\\tan^2a+1}-2\\tan^2 a-1}= \\left(\\dfrac{\\cos a}{1-\\sin a}\\right)^2=\\dfrac{1241+21\\sqrt{2041}}{800} \r\n$$\r\nãåŸã. éã«æ¡ä»¶ããã³äžã®çå·ããã¹ãŠã¿ãããããšã確èªã§ãããã, äžãæ±ããæå°å€ã§ãã, 解çãã¹ãå€ã¯ $1241+21+2041+800=\\textbf{4103}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omckoukou2/editorial/2202"
}
] | ãå
æ¥åã $\omega$, è§ $A$ ã®åæ¥åã $\omega_A$, å€æ¥åã $\Gamma$ ãšããäžè§åœ¢ $ABC$ ã«ãããŠ, $\omega$, $\omega_A$, $\Gamma$ ãã¹ãŠã«æ¥ããå $\gamma$ ãèããŸã. ãã ã $\omega$ ã $\gamma$ ã«å
æ¥ãããã®ãšããŸã. $\gamma$ ã®ååŸã $20$ ã§ãã, $AC-AB=21$ ãæãç«ã£ãŠãããšã, $\omega$, $\omega_A$ ã®ååŸããããã $r$,$r_A$ ãšããŠ, $\dfrac{r_A}{r}$ ã®ãšãããæå°å€ãæ±ããŠãã ãã. ãã ã, 解çãã¹ãå€ã¯æ£æŽæ° $a,b,c,d$ ($c$ ã¯å¹³æ¹å åãããã, $a,b,d$ ã¯äºãã«çŽ ) ãçšã㊠$\dfrac{a+b\sqrt{c}}{d}$ ãšè¡šãããã®ã§, $a+b+c+d$ ã解çããŠãã ãã. |
OMC050 | https://onlinemathcontest.com/contests/omc050 | https://onlinemathcontest.com/contests/omc050/tasks/1802 | A | OMC050(A) | 200 | 183 | 191 | [
{
"content": "ã解ãšä¿æ°ã®é¢ä¿ãã,\r\n$$x+y+z=-111,\\quad xy+yz+zx=222,\\quad xyz=-333$$\r\nã§ããããšã«çæããã°, æ±ããå€ã¯\r\n$$\\begin{aligned}\r\n\\frac{y+z}{x}+\\frac{z+x}{y}+\\frac{x+y}{z}&=\\left(\\frac{x+y+z}{x}-1\\right)+\\left(\\frac{x+y+z}{y}-1\\right)+\\left(\\frac{x+y+z}{z}-1\\right)\\\\\\\\\r\n&=(x+y+z)\\left(\\frac{1}{x}+\\frac{1}{y}+\\frac{1}{z}\\right)-3\\\\\\\\\r\n&=\\frac{(x+y+z)(xy+yz+zx)}{xyz}-3\\\\\\\\\r\n&=\\frac{(-111)Ã222}{-333}-3\\\\\\\\\r\n&=\\bm{71}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc050/editorial/1802"
}
] | ã$t$ ã«ã€ããŠã®äžæ¬¡æ¹çšåŒ
$$t^3+111t^2+222t+333=0$$
ã® $3$ ã€ã®è€çŽ æ°è§£ã $t=x,y,z$ ãšãããšã, 以äžã®åŒã®å€ãæ±ããŠãã ããïŒ
$$\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}$$ |
OMC050 | https://onlinemathcontest.com/contests/omc050 | https://onlinemathcontest.com/contests/omc050/tasks/251 | B | OMC050(B) | 300 | 117 | 152 | [
{
"content": "ãäžç¹é£çµå®çãã $PQRS$ ã¯å¹³è¡å蟺圢ã§ãã, æ¡ä»¶ã®å
±ç¹ã $T$ ãšããã°ããã¯ãã®äžå¿ã§ãã. $DT$ ãš $PQ$ ãå¹³è¡ã§ããããšãã $D$ 㯠$QR$ ã®äžç¹ã§ãã, ããªãã¡ $BC$ ã®äžç¹ã§ãã. ãã®ãšã, äžè§åœ¢ $ABC$ ã«ãããäžç·å®çãã $AD^2=31\\/4$ ã§ãããã, äžè§åœ¢ $TQR$ ã«ãããäžç·å®çãã\r\n$$PR^2+QS^2=4(QT^2+RT^2)=8(DT^2+DQ^2)=\\dfrac{1}{2}(AD^2+BC^2)=\\dfrac{707}{8}$$\r\nç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{715}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc050/editorial/251"
}
] | ãäžè§åœ¢ $ABC$ ããã³èŸº $BC$ äžã®ç¹ $D$ ã«ã€ããŠ, ç·å $AB,BD,DC,CA$ ã®äžç¹ããããã $P,Q,R,S$ ãšããã°, $AD,PR,QS$ ã¯äžç¹ã§äº€ãããŸãã. $AB=6,BC=13,CA=8$ ã§ãããšã, $PR^2+QS^2$ ãæ±ããŠãã ãã. ãã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC050 | https://onlinemathcontest.com/contests/omc050 | https://onlinemathcontest.com/contests/omc050/tasks/1943 | C | OMC050(C) | 300 | 102 | 129 | [
{
"content": "ãæ£å
è§åœ¢ã®é ç¹ã«æãè¿ãæ£äžè§åœ¢ (å³ã®é»è²) ã®åãæ¹ãèããã°é 次åšãããåãŸã, 䞡端㮠$2$ éãã®ã¿ãé©ãã. ããã«ãã£ãŠ, äžèŸºã®é·ãã $2$ å°ããå Žåã«åž°çããããã, æ±ããã¹ãå Žåã®æ°ã¯ $2^{20\\/2}=\\bm{1024}$ éãã§ãã.\r\n![figure 1](\\/images\\/d2jDsymYcCHaBFdMMzD5sW8hU0oHr8OziXXyP4bh)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc050/editorial/1943"
}
] | ãäžèŸºã®é·ãã $20$ ã®æ£å
è§åœ¢ã, 以äžã®èŠé ã§äžèŸºã®é·ãã $1$ ã®æ£äžè§åœ¢ã«åå²ãããŠããŸã. ãŸã, äžèŸºã®é·ãã $1$ ã®æ£äžè§åœ¢ $4$ ã€ã以äžã®ããã«çµã¿åããã**ã¿ã€ã«**ãç¡æ°ã«ãããŸã. æ£å
è§åœ¢ãééãéè€ãªãã¿ã€ã«ã§æ·ãè©°ããæ¹æ³ã¯äœéããããŸããïŒãã ã, å転ãããè£è¿ãããããŠäžèŽãããã®ãç°ãªããã®ãšããŠæ°ããŸã.
![figure 1](\/images\/2cZcjtku3kPuMIhlop79f32HKI8e6sSOcmnlfvJj) |
OMC050 | https://onlinemathcontest.com/contests/omc050 | https://onlinemathcontest.com/contests/omc050/tasks/282 | D | OMC050(D) | 400 | 92 | 150 | [
{
"content": "ã$f$ ã¯æŽæ°å€ã®ã¿ããšãããšãã, 以äžã®äžçåŒãš $f(10^6)=111222$ ã䜵ããã°ãã®æ倧å€ã¯ $111222$ ã§ãã.\r\n$$f(n)\\leq \\dfrac{111222444888}{n}\\times\\dfrac{n}{10^6}=111222.444888$$\r\nãããã£ãŠ, ä»¥äž $f(n)=111222$ ãªã $n$ ã«ã€ããŠèããã°ãã. $111222=2\\times3^2\\times37\\times 167$ ã«çæãã.\\\r\nããã®ãšã $m=[n\\/10^6](\\leq 111222)$ ã«ã€ããŠ, $m$ 㯠$111222$ ã®çŽæ°ã§,\r\n$$10^6m\\leq n\\lt 10^6(m+1)$$\r\näžæ¹ã§ $[111222444888\\/n]=111222\\/m$ ãã\r\n$$n \\leq (10^6+4)m \\lt n+\\dfrac{mn}{111222}$$\r\n$m$ ã®ç¯å²ã«çæããŠããããç·åããã° $10^6m \\leq n \\leq (10^6+4)m$ ã§ãã. ããªãã¡, æ±ããã¹ãå€ã¯\r\n$$\\sum_{m\\mid 111222}(4m+1)=\\textbf{995928}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc050/editorial/282"
},
{
"content": "ãå
¬åŒè§£èª¬ãã $f(n) = 111222$ ãªã $n$ ã«ã€ããŠèããã°ããããšãåããïŒ$n$ ã $10^6$ ã§å²ã£ãåã $a$ ïŒäœãã $b$ ãšããŠ\r\n$$\\left[ \\frac{111222444888}{10^6a + b} \\right] = \\frac{111222}{a}$$\r\nãšãªãã°ããããïŒ$a$ 㯠$111222$ ã®çŽæ°ã§ããïŒ$f(n)$ ã®å€ã¯ $111222$ ãè¶
ããªãããšã«æ³šæããã°\r\n$$\\frac{111222444888}{10^6a+b} \\geq \\frac{111222}{a} \\Leftrightarrow 4a \\geq b$$\r\nãæ¡ä»¶ãšãªãïŒ$4a \\leq 4 \\times 111222 \\lt 10^6$ ããå $a$ ã«å¯Ÿå¿ããäœã $b$ 㯠$4a + 1$ åã§ããïŒåŸã£ãŠïŒæ±ããã¹ãå€ã¯\r\n$$\\sum _{a|111222} (4a + 1) = 4 \\times 248976 + 24 = \\bm{995928}$$\r\n---\r\nè£è¶³ïŒæçµè¡ã®èšç®ã§ã¯ $111222$ ã®çŽ å æ°å解ãå¿
èŠã«ãªããïŒåãã«$111222 = 111 \\times 1002$ ãšå€åœ¢ãããšèšç®ããããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc050/editorial/282/275"
}
] | ãæ£æŽæ°ã«å¯ŸããŠå®çŸ©ãããé¢æ° $f$ ã¯, ä»»æã®æ£æŽæ° $n$ ã«å¯ŸããŠä»¥äžãã¿ãããŸãïŒ
$$f(n)=\biggl[\dfrac{111222444888}{n}\biggr]\biggl[\dfrac{n}{10^6}\biggr]$$
ãã®ãšã, $f(n)$ ãæ倧å€ããšããããªæ£æŽæ° $n$ ã¯ããã€ãããŸããïŒ\
ããã ã, å®æ° $x$ ã«å¯Ÿã $[x]$ 㧠$x$ ãè¶
ããªãæ倧ã®æŽæ°ãè¡šããŸã. |
OMC050 | https://onlinemathcontest.com/contests/omc050 | https://onlinemathcontest.com/contests/omc050/tasks/1583 | E | OMC050(E) | 500 | 39 | 61 | [
{
"content": "ã$ABD$ ããã³ $BCD$ ã«ããããäœåŒŠå®çãé©çšã㊠$BD^2$ ã $2$ éãã«è¡šçŸããããšã§ $AD=7$ ãåŸã. ãã®ãšã $XAD$ ãš $XCB$ ã¯çžäŒŒæ¯ $1:2$ ã®é¢ä¿ã«ããããšãã, $XA=15,XD=13$ ã容æã«åŸã.\\\r\nããã㧠$\\Gamma,\\Omega_{B},\\Omega_{C}$ ã®äžå¿ããããã $O,O_B,O_C$, $XB$ ã®äžç¹ã $M$, $\\Gamma$ ã«ããã $B$ ã®å¯Ÿè¹ ç¹ã $B^\\prime$ ãšããã°, $O_B$ 㯠$BX$ ã®åçŽäºçåç·ãš $BO$ ã®äº€ç¹ã§ãã, $\\angle BAB^\\prime=\\angle BMO_B=90^\\circ$ ãšäœµã㊠$\\Gamma$ ã®çŽåŸ $d$ ã«ã€ããŠ\r\n$$BO_B=BB^\\prime\\times\\dfrac{BM}{BA}=\\dfrac{13}{11}d$$\r\nåæ§ã«ããŠ, $CO_C=\\dfrac{15}{17}d$ ãåŸããã, $BO_B:CO_C=221:165$ ã§ãã, 解çãã¹ãå€ã¯ $\\textbf{386}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc050/editorial/1583"
}
] | ã$AB=11,BC=14,CD=17,\angle C=60^\circ$ ãªãåè§åœ¢ $ABCD$ ãå $\Gamma$ ã«å
æ¥ããŠããŸã. $2$ çŽç· $AB,CD$ ã®äº€ç¹ $X$ ãéã, ããããç¹ $B,C$ 㧠$\Gamma$ ã«æ¥ããåã $\Omega_{B},\Omega_{C}$ ãšããã°, ãããã®ååŸæ¯ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $a:b$ ãšè¡šãããŸã. $a+b$ ã解çããŠãã ãã. |
OMC050 | https://onlinemathcontest.com/contests/omc050 | https://onlinemathcontest.com/contests/omc050/tasks/1752 | F | OMC050(F) | 500 | 24 | 78 | [
{
"content": "ã$\\alpha=\\cos\\theta_0 +2$ ãªãå®æ° $2\\pi\\/3\\leq\\theta_0\\leq\\pi$ ãäžæã«ååšããããšã«çæãã. ããã« $x_n=\\cos\\theta+2$ ã«ã€ããŠ,\r\n$$\\begin{aligned}\r\nx_{n+1}=2(\\cos\\theta+2)^2-8(\\cos\\theta+2)+9=2\\cos^2\\theta+1=\\cos2\\theta+2\r\n\\end{aligned}$$\r\nãããã£ãŠ, $\\cos2^{10}\\theta_0=\\cos\\theta_0$ ãªã $\\theta_0$ ã®åæ°ãæ±ããã°ãã. ããã¯åç©å
¬åŒãã\r\n$$\\sin\\dfrac{1023}{2}\\theta_0\\sin\\dfrac{1025}{2}\\theta_0=0$$\r\nãšåå€ã§ããããšã«çæããã°, 以äžã§è¡šããã $\\textbf{342}$ åã§ãã.\r\n$$\\theta_0=\\dfrac{2}{3}\\pi,\\dfrac{684\\pi}{1023},\\cdots,\\dfrac{1022\\pi}{1023},\\dfrac{684\\pi}{1025},\\dfrac{686\\pi}{1025},\\ldots,\\dfrac{1024\\pi}{1025}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc050/editorial/1752"
}
] | ã$1$ ä»¥äž $3\/2$ 以äžã®å®æ° $\alpha$ ã§ãã£ãŠ, 以äžã§å®ãŸãå®æ°å $\\{x_n\\}$ ã $x_{10}=x_0$ ãã¿ãããã®ã¯ããã€ãããŸããïŒ
$$\begin{aligned}
x_0=\alpha,\quad x_{n+1}=2x_n^2-8x_n+9\quad (n=0,1,\cdots)
\end{aligned}$$ |
OMCå¬é«æ¯1 | https://onlinemathcontest.com/contests/omckoukou1 | https://onlinemathcontest.com/contests/omckoukou1/tasks/2125 | A | OMCå¬é«æ¯1(A) | 100 | 94 | 96 | [
{
"content": "ã$AB=3a$ ãšããã°, å³1ããã³å³3ã«ã€ããŠæç·éšã®åšé·ã¯ãããã $30a,50a$ ã§ãã, 解çãã¹ãå€ã¯ $\\textbf{8}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omckoukou1/editorial/2125"
}
] | ãéé«çã®Birdyåã¯, 次ã«ç€ºãæ¹æ³ã§å³3ã®ãããªé岡é«æ ¡ã®æ ¡ç« ãæãããšã«ããŸãã.
- æ£äºè§åœ¢ $ACEGI$ ããå³1ã®åè§åœ¢ $ABCDEFGHIJ$ ãäœã.
- 蟺 $AB, BC, CD, DE, EF, FG, GH, HI, IJ, JA$ ããããã $3$ çåããç¹ããšã.
- å³2ã®ããã«, ãããã®ç¹ãéãæ£äºè§åœ¢ã $2$ ã€äœã.
ãã®ãšã, å³1ã®æç·éšåã®åšã®é·ããšå³3ã®æç·éšåã®åšã®é·ãã®æ¯ã¯, äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$a:b$ ãšè¡šããã®ã§, $a+b$ ã解çããŠäžãã.
![figure 1](\/images\/KHnqDBrxH8YzShJEh0ff2eipYs8AvqVbhnD7vlX2) |
OMCå¬é«æ¯1 | https://onlinemathcontest.com/contests/omckoukou1 | https://onlinemathcontest.com/contests/omckoukou1/tasks/2197 | B | OMCå¬é«æ¯1(B) | 300 | 62 | 79 | [
{
"content": "ã$(A_s,A_t,A_u)$ ãåºå®ã, ãã®ç·åãžã®å¯äžãèããããšã§, 以äžã®æç«ã容æã«ããã.\r\n$$M=\\binom{2021}{3}\\times\\binom{2021}{3}\\times 2018!=\\dfrac{1}{6^2}\\times 2019\\times 2020\\times 2021\\times 2021!$$\r\nLegendreã®å®çãã, ããã $2$ ã§å²ãåããåæ°ã¯ $\\textbf{2013}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omckoukou1/editorial/2197"
}
] | ã$(1,2,\cdots,2021)$ ã®çœ®æãšããŠåŸãããçµ $(A_1,A_2,\cdots,A_{2021})$ ãã¹ãŠã«å¯Ÿã, 以äžã®å€ã®ç·åã $M$ ãšããŸã.
- $s\lt t\lt u$ ã〠$A_s\gt A_t\gt A_u$ ãªãçµ $(s,t,u)$ ã®åæ°
ãã®ãšã, $M$ ã $2$ ã§å²ãåããæ倧ã®åæ°ãæ±ããŠãã ãã. |
OMCå¬é«æ¯1 | https://onlinemathcontest.com/contests/omckoukou1 | https://onlinemathcontest.com/contests/omckoukou1/tasks/1365 | C | OMCå¬é«æ¯1(C) | 300 | 60 | 72 | [
{
"content": "ã$x+y+z=p,xy+yz+zx=q,xyz=r$ ãšããã°, æ¡ä»¶ãæŽçããããšã§ä»¥äžãåŸãïŒ\r\n$$ r-2q+3p=4,\\quad r-3q+8p=20,\\quad r-4q+15p=54 $$\r\nããã解ããš $p=9,q=29,r=35$ ãåŸã. åæ§ã« $f(4)$ ã«ãããŠãåæ¯ãæãã°\r\n$$f(4)(r-4q+16p-64)=4(q-8p+48)$$\r\nãããã $|f(4)|=|-20|=\\textbf{20}$ ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omckoukou1/editorial/1365"
}
] | ããããã $1,2,3,4$ ã§ãªãè€çŽ æ° $x,y,z$ ã«ã€ããŠ,
$$f(k)=\dfrac{k}{x-k}+\dfrac{k}{y-k}+\dfrac{k}{z-k}$$
ãšãããš, $f(1)=1,f(2)=2,f(3)=3$ ãæç«ããŸãã. ãã®ãšã, $|f(4)|$ ãæ±ããŠãã ãã. |
OMCå¬é«æ¯1 | https://onlinemathcontest.com/contests/omckoukou1 | https://onlinemathcontest.com/contests/omckoukou1/tasks/2194 | D | OMCå¬é«æ¯1(D) | 400 | 56 | 61 | [
{
"content": "ã${\\dfrac{1}{s_i}+\\dfrac{1}{s_{2021-i}}=1}$ ãå€åœ¢ã㊠$(s_i-1)(s_{2021-i}-1)=1$ ãåŸããã,\r\n\r\n$$\r\n\\begin{aligned}\r\n\\sum_{i=1}^{2021}\\dfrac{1}{{s_i}^3-3{s_i}^2+3{s_i}}&=\\sum_{i=1}^{2021}\\dfrac{1}{(s_i-1)^3+1}\\\\\\\\\r\n&=1+\\sum_{i=1}^{1010}\\left(\\frac{1}{(s_i-1)^3+1}+\\frac{1}{(s_{2021-i}-1)^3+1}\\right)\\\\\\\\\r\n&=1+\\sum_{i=1}^{1010}\\left(\\frac{1}{(s_i-1)^3+1}+\\cfrac{1}{\\cfrac{1}{(s_i-1)^3}+1}\\right)\\\\\\\\\r\n&=1+\\sum_{i=1}^{1010}1 = \\textbf{1011}\r\n\\end{aligned}\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omckoukou1/editorial/2194"
}
] | ã$s_i=\dfrac{2021}{i}$ ã«ã€ããŠ, 以äžã®ç·åãæ±ããŠãã ããïŒ
$$\displaystyle\sum_{i=1}^{2021}\frac{1}{{s_i}^3-3{s_i}^2+3{s_i}}$$ |
OMCå¬é«æ¯1 | https://onlinemathcontest.com/contests/omckoukou1 | https://onlinemathcontest.com/contests/omckoukou1/tasks/2142 | E | OMCå¬é«æ¯1(E) | 400 | 32 | 50 | [
{
"content": "ãä»»æã®äººã«ã€ããŠ, çµã¿æãã«ãããå±ããã°ã«ãŒãã®å¶å¥ã¯äžå®ã§ãããã, æ¡ä»¶ã¯ã¯ããããªããå¥æ°åã®ã°ã«ãŒãã«å±ããããšã§ãã. ããªãã¡, ${\\_{2021}}\\mathrm{C}\\_{m}$ ãå¥æ°ãšãªã $0\\leq m\\leq2021$ ã®åæ°ãæ°ããã°ãã. ããã¯Lucasã®å®çãã $m$ ãš $2021$ ã®è«çç©ã $m$ ã«äžèŽããããšãšåå€ã§, $2021_{(10)}=11111100101_{(2)}$ ãã $2^8=\\textbf{256}$ åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omckoukou1/editorial/2142"
}
] | ã$n$ ã $1$ ä»¥äž $2022$ 以äžã®æŽæ°ãšããŸã. $2021$ 人ã®äººãšããªãããã, äœäººããããªã**ã°ã«ãŒã**ãããã€ãååšããŸã. ã¯ãã, ã°ã«ãŒãã¯ãã¹ãŠ $n$ 人ãããªã, éã«ä»»æã® $n$ 人ããæ§æãããã°ã«ãŒããã¡ããã©äžã€ååšããŸã.\
ãããŸ, ãããã®ã°ã«ãŒãã«ã€ããŠ, ã°ã«ãŒããäžã€ã«ãªããŸã§ä»¥äžã®èŠé ã§çµã¿æããè¡ããŸã.
- é©åœãªã°ã«ãŒã $A\neq B$ ãéžã³, ããããã解æ¶ãã.
- $A$ ãš $B$ ã®ã¡ããã©äžæ¹ã«å±ããŠãã人ãããªãã°ã«ãŒããæ°ããäœã.
çµã¿æãã®æ¹æ³ã«ããã, æåŸã«æ®ã£ãã°ã«ãŒãã«ããªããå«ãŸããŠãããã㪠$n$ ã¯ããã€ãããŸããïŒ |
OMCå¬é«æ¯1 | https://onlinemathcontest.com/contests/omckoukou1 | https://onlinemathcontest.com/contests/omckoukou1/tasks/2130 | F | OMCå¬é«æ¯1(F) | 700 | 4 | 16 | [
{
"content": "ã$\\triangle{ABC}$ ã®åšé·ã $S$ ãšãããš, 以äžã容æã«åãããã, $A$ ãš $BC$ ã®è·é¢ãæ±ããã°ãã.\r\n$$S_BS_C=\\dfrac{S}{2}-AD$$\r\n蟺 $AB,AC$ ã®äžç¹ã $M,N$ ãšã, $F_B,F_C$ ã®äžå¿ããããã $O_B,O_C$ ãšãã. çŽç· $MN$ ãšçŽç· $O_BB,O_CC$ ã®äº€ç¹ããããã $Q,R$ ãšã, $B$ ãã $AO_B$ ã«äžãããåç·ã®è¶³ã $H$ ãšãã.\\\r\nã$4$ ç¹ $B,O_B,S_B,H$ 㯠$BO_B$ ãçŽåŸãšããååšäžã«ãããã, ç°¡åãªè§åºŠèšç®ã«ãã $â¡{BS_BH}=â¡{DS_BT_B}$ ãšãªã, $3$ ç¹ $H,S_B,T_B$ ã¯åäžçŽç·äžã«ãããšåãã. ãŸã $4$ ç¹ $A,Q,B,H$ 㯠$AB$ ãçŽåŸãšããååšäžã«ãããããããç°¡åãªè§åºŠèšç®ã«ãã $â¡{O_BHS_B}=â¡{AHQ}$ ãšãªã, $3$ ç¹ $Q,H,S_B$ ã¯åäžçŽç·äžã«ãããšåãã. 以äžããçŽç· $S_BT_B$ 㯠$D$ ã®äœçœ®ã«é¢ããã $Q$ ãéã. åæ§ã«ããŠ, çŽç· $S_CT_C$ 㯠$D$ ã®äœçœ®ã«é¢ããã $R$ ãéã. \\\r\nãããŸ, $\\angle{QPR}=90^\\circ$ ã§ãããã, $P$ 㯠$QR$ ãçŽåŸãšããååšäžãåããšåãã, åé¡ã®æ¡ä»¶ãã $QR=8$ ã§ãã. ãã£ãŠ $S=16$ ãšãªããã, $BC=7$ ãšãªã.\\\r\nã以äžããæ±ãã $S_BS_C$ ã®æ倧å€ã¯ $\\dfrac{56-8\\sqrt{6}}{7}$ ãšèšç®ã§ã, 解çãã¹ãå€ã¯ $56+8+6+7=\\textbf{77}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omckoukou1/editorial/2130"
}
] | ã$AB=4,AC=5$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠ, 蟺 $BC$ äžã«ç¹ $D$ ããšã, äžè§åœ¢ $ABD$ ã®è§ $BAD$ å
ã®åæ¥åã $F_B$, äžè§åœ¢ $ACD$ ã®è§ $CAD$ å
ã®åæ¥åã $F_C$ ãšããŸã. ãŸã, $F_B$ ãš $BC,AD$ ã®æ¥ç¹ããããã $S_B,T_B$, åæ§ã« $F_C$ ãš $BC,AD$ ã®æ¥ç¹ããããã $S_C,T_C$ ãšããŠ, $S_BT_B$ ãš $S_CT_C$ ã®äº€ç¹ã $P$ ãšããŸã. \
ãããŸ, $D$ ã蟺 $BC$ äžãåãããšã, $P$ ã¯ããååŸ $4$ ã®ååšäžãåããŸãã. ãã®ãšã, ç·å $S_BS_C$ ã®é·ãããšãããæ倧å€ãæ±ããŠãã ãã. ãã ã, æ±ããå€ã¯æ£æŽæ° $a,b,c,d$ (ãã ã $c$ ã¯å¹³æ¹å åãããã, $a,b,d$ ã¯äºãã«çŽ ) ãçšã㊠$\dfrac{a-b\sqrt{c}}{d}$ ãšè¡šããã®ã§, $a+b+c+d$ ã解çããŠãã ãã. |
OMCå¬é«æ¯1 | https://onlinemathcontest.com/contests/omckoukou1 | https://onlinemathcontest.com/contests/omckoukou1/tasks/2150 | G | OMCå¬é«æ¯1(G) | 800 | 1 | 12 | [
{
"content": "ãå¹³é¢äžã®ããã€ãã®ç¹ã®éåã«ã€ããŠ, ã©ã® $3$ ç¹ãåäžçŽç·äžã«ãªãã©ã® $4$ ç¹ãåäžååšäžã«ãªããšã, ããã**æŽã£ã**ãšåŒã¶ããšãšãã. 以äž, åã«**å**ã**äžè§åœ¢**ãªã©ãšããã°, ãã®é ç¹ã¯æŽã£ãç¹ã®éåããéžã°ãã $3$ ç¹ã§ãããšãã.\r\n\r\n----\r\n**è£é¡1.**ãæŽã£ã $s$ åã®ç¹ã«å¯ŸããŠ, ä»ã®ãã¹ãŠã®ç¹ãå
éšã«å«ãåãååšãã. ã€ãŸã $M=s-3$ ã§ãã.\\\r\n**蚌æ.**ã$s$ åã®ç¹ã®åžå
ã $P_1\\cdots P_k$ ãšã, $\\angle{P_1P_3P_2},\\cdots,\\angle{P_1P_kP_2}$ ã®ãã¡å€§ãããæå°ã§ãããã®ã $\\angle{P_1P_iP_2}$ ãšããã°, $P_1,P_2,P_i$ ãéãåã¯ä»ã® $s-3$ åã®ç¹ãå
éšã«å«ã.\r\n\r\n----\r\n**è£é¡2.**ãæŽã£ã $s$ åã®ç¹ã®åžå
ã $t$ è§åœ¢ãšãªãããšãš, $f(s-3)=t-2$ ãæãç«ã€ããšã¯åå€ã§ãã.\\\r\n**蚌æ.**ãå·Šããå³ã瀺ãã°éã¯æããã«åŸã. ãŸã, çžç°ãªãäžè§åœ¢ã®ããããå€æ¥åããšãã«ä»ã®ãã¹ãŠã®ç¹ãå
éšã«å«ããšã, $2$ ã€ã®äžè§åœ¢ã®èŸºã¯äº€ãããªãããšã容æã«ããã. ãŸã, å€æ¥åãä»ã®ãã¹ãŠã®ç¹ãå
éšã«å«ããããªäžè§åœ¢ãã¡ã§, åžå
ã§ãã $2n$ è§åœ¢ã®äžè§åœ¢åå²ãæ§æã§ããããšãåãã. 以äžã䜵ããããšã§ç€ºããã.\r\n\r\n----\r\nãæŽã£ãããã€ãã®ç¹ $S$ ã«å¯ŸããŠ, ãã¹ãŠã®åã®å
éšã®ç¹ã®åæ°ã®ç·åã $S$ ã®**éã**ãšåŒã¶ããšãšãã.\\\r\nããŸã, åæ§ã«ãã¹ãŠã®äžè§åœ¢ã®å
éšã®ç¹ã®åæ°ã®ç·åã $S$ ã®**å¯åºŠ**ãšåŒã¶ããšãšãã. \r\n\r\n----\r\n**è£é¡3.**ãæŽã£ã $s\\geq 4$ åã®ç¹ã®éãã $G$ ãšã, å¯åºŠã $D$ ãšãããš, é
眮ã«ããã $G+D=2\\times{\\_s}\\mathrm{C}\\_4$ ãæãç«ã€.\\\r\n**蚌æ.**ã$s$ åã®ç¹ã $P_1,\\cdots,P_s$ ãšã, $P_k$ ãé€ãã $s-1$ ç¹ã®éãã $G_k$, å¯åºŠã $D_k$ ãšãã. ${\\_s}\\mathrm{C}\\_3$ åã®åã®ãã¡ããäžã€ $C$ ã«çç®ããã°, ãã®å
éšã®ç¹ã¯ $G_1,\\cdots,G_s$ ã«ãã㊠$s-4$ åéè€ããŠã«ãŠã³ãããããã,\r\n$$(s-4)G=\\sum_{k=1}^{s}G_k$$\r\nãŸãåæ§ãªè°è«ãã次ãæãç«ã€\r\näžè§åœ¢ã«ã€ããŠãåæ§ã«è°è«ããããšã§, çµå±ä»¥äžãåŸã.\r\n$$(s-4)(G+D)=\\sum_{k=1}^{s}(G_k+D_k)$$\r\nãã£ãŠ, $s=4$ ã®ãšãåžžã« $G+D=2$ã§ããããšãšã«çæããã°, åž°çŽçã«æç«ã瀺ããã.\r\n\r\n----\r\nã 以äž, æŽã£ã $2n$ åã®ç¹ã«äžè¬åããŠè°è«ãé²ãã. ããªãã¡æ¡ä»¶ã¯ $f(M)=n$ ã§ãããã, è£é¡1,2ããåžå
㯠$n+2$ è§åœ¢ã§ãã. $2n$ åã®ç¹ã®éãã $G$, å¯åºŠã $D$ ãšãããš, è£é¡3ãã $G=2\\times{\\_{2n}}\\mathrm{C}\\_4-D$ ã§ãã, æ±ãã\r\n$$f(1)+2f(2)+\\cdots+(M-1)f(M-1)+Mf(M)$$\r\nã®æ倧å€ã¯ $G$ ã®æ倧å€ãšçãããã, $D$ ã®æå°å€ãæ±ããã°ãã.\\\r\nããŸã$D\\geq (n-2)(2n-3)$ ã瀺ã. åž $n+2$ è§åœ¢ã®å
éšã®ç¹ $P$ ã«ã€ããŠ, $n+2$ è§åœ¢ã®é ç¹ãããªã, $P$ ãå
éšã«å«ããããªäžè§åœ¢ã¯å°ãªããšã $n$ åååšãã. ãŸã $P$ ãš $n+2$ è§åœ¢ã®é ç¹ãããããçµãã ãšã, $n+2$ è§åœ¢ã®å
éšã¯ $n+2$ åã®äžè§åœ¢ã«ãã£ãŠåå²ãããã®ã§, å
éšã«ä»ã®ç¹ $Q$ ããã£ããšã, $P$ ãš $n+2$ è§åœ¢ã®é ç¹ãããªãäžè§åœ¢ã§ãã£ãŠ $Q$ ãå
éšã«å«ããããªãã®ãå¿
ãååšãã.\r\nãã£ãŠ\r\n$$D\\geq n(n-2)+(n-3)(n-2)=(n-2)(2n-3)$$\r\nãéã« $D=(n-2)(2n-3)$ ãã¿ããé
眮ãååšãã. $2n$ åã®ç¹ã®åžå
ã§ããåž $n+2$ è§åœ¢ã$P_1\\cdots P_{n+2}$ ãšã, ä»»æã® $i$ ã«ã€ããŠ, $P_iP_{i+1},P_iP_{i+2},P_{i+1}P_{i-1}$ ã«å²ãŸããé åå
ã« $Q_iQ_{i+1}\\parallel P_iP_{i+2}$ ãã¿ããããã« $Q_i$ ãé©åœã«ãšã, åžå
ã®å
éšã«ãã $n-2$ åã®ç¹ã $Q_1,\\cdots,Q_{n+2}$ ã®äžããéžã¹ã°ãã.\\\r\nã以äžãã $G$ ã®æ倧å€ã¯ $2\\times{\\_{2n}}\\mathrm{C}\\_4-(n-2)(2n-3)$ ã§ãããã, $n=500$ ã代å
¥ã㊠$\\textbf{82833752994}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omckoukou1/editorial/2150"
}
] | ãå¹³é¢äžã« $1000$ åã®ç¹ããã, ã©ã® $3$ ç¹ãåäžçŽç·äžã«ãªã, ã©ã® $4$ ç¹ãåäžååšäžã«ãããŸãã. ãããã $3$ ç¹ãéžã¶æ¹æ³ã§ãã£ãŠ, ããããéãåã®å
éš (åšäžãå«ãŸãªã) ã«ã¡ããã© $k$ åã®ç¹ãå«ããããªãã®ã®åæ°ã $f(k)$ ã§è¡šããŸã. ããŸ, $3$ ç¹ãéãåãå
éšã«å«ãããšã®ã§ããç¹ã®åæ°ã®æ倧å€ã $M$ ãšãããš, $f(M)=500$ ãæç«ããŸãã. ãã®ãšã, 以äžã®ãšãããæ倧å€ãæ±ããŠãã ãã.
$$f(1)+2f(2)+\cdots+(M-1)f(M-1)+Mf(M)$$ |
OMC049 (for beginners) | https://onlinemathcontest.com/contests/omc049 | https://onlinemathcontest.com/contests/omc049/tasks/1544 | A | OMC049(A) | 100 | 225 | 227 | [
{
"content": "ãåžå€è§åœ¢ã®å€è§ã®å㯠$360$ 床ã§ãããã, æ£ãã㯠$5$ 以äžã«ãªãåŸãªã.\\\r\nãéã«é·æ¹åœ¢ã®æ£ãã㯠$\\textbf{4}$ ã§ãããã, ãããæ±ããæ倧å€ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc049/editorial/1544"
}
] | ãåžå€è§åœ¢ã«å¯ŸããŠ, ãã®å
è§ã®ãã¡çŽè§ã§ãããã®ã®æ°ããã®**æ£ãã**ãšå®çŸ©ããŸã.\
ãæ£ããã®ãšãåŸãæ倧ã®å€ã¯ããã€ã§ããïŒ |
OMC049 (for beginners) | https://onlinemathcontest.com/contests/omc049 | https://onlinemathcontest.com/contests/omc049/tasks/220 | B | OMC049(B) | 200 | 191 | 216 | [
{
"content": "ãäžåŒã¯ $(ab-1)(c+d-1)=10$ ãšå€åœ¢ããã.\r\n\r\n- $(ab,c+d)=(2,11)$ ã®ãšã, $2\\times10=20$ éã.\r\n- $(ab,c+d)=(3,6)$ ã®ãšã, $2\\times5=10$ éã.\r\n- $(ab,c+d)=(6,3)$ ã®ãšã, $4\\times2=8$ éã.\r\n- $(ab,c+d)=(11,2)$ ã®ãšã, $2\\times1=2$ éã.\r\n\r\n以äžããæ±ããçµã®æ°ã¯ $\\textbf{40}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc049/editorial/220"
}
] | ã以äžãã¿ããæ£æŽæ°ã®é åºä»ããçµ $(a,b,c,d)$ ã¯ããã€ãããŸããïŒ
$$abc+abd=ab+c+d+9$$ |
OMC049 (for beginners) | https://onlinemathcontest.com/contests/omc049 | https://onlinemathcontest.com/contests/omc049/tasks/221 | C | OMC049(C) | 200 | 125 | 182 | [
{
"content": "ã$a+b+c+d=19$ ãªãæŽæ° $0\\leq a,b,c,d\\leq 9$ ã®çµãæ°ãäžããã°ãã.\r\n\r\n**解æ³1.**ã$(a+b,c+d)=(1,18)$ ãªããã®ã¯ $2\\times1=2$ éã, $(a+b,c+d)=(2,17)$ ãªããã®ã¯ $3\\times2=6$ éããã, åæ§ã«ããã $(18,1)$ ãŸã§èããããšã§æ±ããå Žåã®æ°ã¯\r\n$$2\\times 1+3\\times2+\\cdots+10\\times 9+9\\times 10+\\cdots+1\\times 2=\\textbf{660}$$\r\n\r\n**解æ³2.**ã$9$ 以äžã§ãããšããæ¡ä»¶ãç¡èŠããã° ${}\\_{22}\\mathrm{C}\\_{3}$ éãã§ãã. ãã㧠$a,b,c,d$ ã®ãã¡ $10$ 以äžã§ãããã®ã¯é«ã
äžã€ã§ãã. $a$ ã $10$ 以äžã§ãããšã, $a^\\prime=a-10$ ãšããã° $a^\\prime+b+c+d=9$ ãªãéè² æŽæ°ã®çµ $(a^\\prime,b,c,d)$ ã®åæ°ã«åž°çãã, ãã㯠${}\\_{12}\\mathrm{C}\\_{3}$ ã§ãã. ãããã£ãŠ, æ±ããå Žåã®æ°ã¯ ${}\\_{22}\\mathrm{C}\\_{3}-4\\times{}\\_{12}\\mathrm{C}\\_{3}=\\textbf{660}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc049/editorial/221"
}
] | ãåé²æ³ã§åäœã®åã $19$ ã§ãããã㪠$9999$ 以äžã®æ£æŽæ°ã¯ããã€ãããŸããïŒ |
OMC049 (for beginners) | https://onlinemathcontest.com/contests/omc049 | https://onlinemathcontest.com/contests/omc049/tasks/1506 | D | OMC049(D) | 300 | 101 | 136 | [
{
"content": "ãå®çŸ©ãã $\\\\{3x^2\\\\}$ ã¯åžžã« $0$ ä»¥äž $1$ æªæºã§ãããã,\r\n$$\\frac{3}{2}\\lt \\left\\lfloor\\frac{1}{2}x\\right\\rfloor\\le\\frac{5}{2} \\implies \\left\\lfloor\\frac{1}{2}x\\right\\rfloor=2$$\r\nããªãã¡ $4\\le x\\lt 6$ ã§ãã. ãã㧠$\\\\{3x^2\\\\}=3x^2-m$ ($m=48,\\cdots,107$) ãšããã°,\r\n$$ \\\\{3x^2\\\\}+\\left\\lfloor\\frac{1}{2}x\\right\\rfloor-\\frac{5}{2}=0 \\implies x=\\sqrt{\\frac{m}{3}+\\frac{1}{6}} $$\r\nãããã®åœ¢ã§è¡šããã $60$ åãæ±ããå®æ°è§£ã§ãã, ãããã®å¹³æ¹ã®ç·åã¯\r\n$$ \\left(\\frac{48}{3}+\\frac{1}{6}\\right)+\\cdots+\\left(\\frac{107}{3}+\\frac{1}{6}\\right)=\\frac{1}{3}\\times\\frac{(48+107)\\times60}{2}+\\frac{1}{6}\\times60=\\textbf{1560}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc049/editorial/1506"
}
] | ã次ã®æ¹çšåŒã®å®æ°è§£ã®**å¹³æ¹ã®ç·å**ãæ±ããŠãã ããïŒ
$$ \\{3x^2\\}+\left\lfloor\frac{1}{2}x\right\rfloor=\frac{5}{2}$$
ããã ãå®æ° $a$ ã«å¯ŸããŠ, $\lfloor a\rfloor$ 㧠$a$ ãè¶
ããªãæ倧ã®æŽæ°ãè¡šãã$\\{a\\}$ 㧠$a-\lfloor a\rfloor$ ãè¡šããã®ãšããŸã. |
OMC049 (for beginners) | https://onlinemathcontest.com/contests/omc049 | https://onlinemathcontest.com/contests/omc049/tasks/1269 | E | OMC049(E) | 300 | 123 | 147 | [
{
"content": "ã$ACR$ ãæ£äžè§åœ¢ãšãªããããªç¹ $R(\\neq B)$ ã«ã€ããŠ, $AQ$ ãš $CR$ ã®äº€ç¹ã $S$ ãšããã°, $ABP$ ãš $ACS$ ã¯ååã§ãã, ã〠$AR$ ãš $CQ$ ã¯å¹³è¡ã§ãããã, $AR:CQ=RS:SC=10:11$ ãåŸã. ç¹ã« $CQ=\\dfrac{231}{10}$ ã§ãããã, 解çãã¹ãå€ã¯ $\\textbf{241}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc049/editorial/1269"
}
] | ãäžèŸº $21$ ã®æ£äžè§åœ¢ $ABC$ ã«ãããŠ, 蟺 $BC$ äžã«ç¹ $P$ ã, 蟺 $BC$ ã® $C$ åŽãžã®å»¶é·ç·äžã«ç¹ $Q$ ããã, $BP=11$ ããã³ $\angle BAP=\angle CAQ$ ãã¿ãããŠããŸã. ãã®ãšã, $CQ$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC049 (for beginners) | https://onlinemathcontest.com/contests/omc049 | https://onlinemathcontest.com/contests/omc049/tasks/1437 | F | OMC049(F) | 400 | 83 | 122 | [
{
"content": "ãçµè·¯ã«ãã£ãŠåå²ããã $2$ é åã®ãã¡, äžåŽã«å«ãŸãããã¹ã®åæ°ã $x$ ãšããã°, $x$ ãšããŠããåŸãå€ã¯\r\n$$x=0,2,5,8,17,20,23,25$$\r\nããšã¯å $x$ ã«ã€ããŠ, 以äžã®æ¡ä»¶ãã¿ããçµ $(a,b,c,d,e)$ ã®åæ° $p(x)$ ãæ±ããã°ãã.\r\n\r\n- ãã¹ãŠ $0$ ä»¥äž $5$ 以äžã®æŽæ°ã§ãã.\r\n- $a\\leq b\\leq c\\leq d\\leq e$\r\n- $a+b+c+d+e=x$\r\n\r\nãã㧠$a,b,c,d,e$ ã¯åè¡ã«ã€ããŠäžåŽã®é åã«å±ãããã¹ã®åæ°ã«å¯Ÿå¿ãã.\\\r\nã$x\\leq 5$ ã®ãšããã㯠$x$ ã®åå²æ°ã«äžèŽã, $p(0)=1,p(2)=2,p(5)=7$ ã§ãã. ãŸã $x=8$ ã®ãšã, $6$ 以äžã®æŽæ°ãçšããåå², ããã³ $6$ ã€ä»¥äžã®æ£æŽæ°ãçšããåå²ãé€å€ããããšã§\r\n$$p(8)=22-2\\times(p(0)+p(1)+p(2))=14$$\r\nããã« $p(x)=p(25-x)$ ã§ãããã, 以äžããæ±ããå Žåã®æ°ã¯ $2\\times(1+2+7+14)=\\textbf{48}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc049/editorial/1437"
}
] | ã$5\times 5$ ã®ãã¹ç®ã«ãããŠ, å·Šäžã®ç¹ããå³äžã®ç¹ãŸã§èŸºäžãæçã§ç§»åãã (ããªãã¡ $10$ æ¬ã®èŸºãéã) ãããªçµè·¯ã®ãã¡, 以äžã®æ¡ä»¶ãã¿ãããã®ã¯ããã€ãããŸããïŒ
- çµè·¯ã«ãã£ãŠãã¹ç®ãåå²ãããŠã§ãã $2$ é åã«ã€ããŠ, ããããå«ãŸãããã¹ã®åæ°ã®å·® (ã®çµ¶å¯Ÿå€) ãåææ°ã§ãã.
ããã ã, ãã¹ç®ã $0$ ãã¹ããã³ $25$ ãã¹ãžåå²ãããå Žåã,ã$2$ é åã«åå²ãããããšã¿ãªããã®ãšããŸã.\
ãããã§, åææ°ãšã¯ $2$ 以äžã®çŽ æ°ã§ãªãæŽæ°ãæããŸã. |
OMC048 (for experts) | https://onlinemathcontest.com/contests/omc048 | https://onlinemathcontest.com/contests/omc048/tasks/1613 | A | OMC048(A) | 300 | 148 | 183 | [
{
"content": "**解æ³1.**ãäžæ¹çšåŒã¯ $x=0$ ã解ã«æããªããã, $20x^{2020}=1-\\dfrac{21}{x}$ ãšããã°, 解ã®éæ°åãæ±ããã°ãã. ããã§,\r\n$$21y^{2021}-y^{2020}+20=y^{2021}\\left(20\\left(\\frac{1}{y}\\right)^{2021}-\\dfrac{1}{y}+21\\right)=0$$\r\nã¯, äžæ¹çšåŒã®ããããã®è§£ $x=X$ ã«å¯Ÿã㊠$y=1\\/X$ ã解ã«ãã€æ¹çšåŒã§ãããã, 解ãšä¿æ°ã®é¢ä¿ããäžæ¹çšåŒã®è§£ã®éæ°å㯠$1\\/21$ ã§ãã, ç¹ã«æ±ããç·å㯠$(2021-21\\times(1\\/21))\\/20=\\textbf{101}$ ã§ãã.\r\n\r\n**解æ³2.**ãäžåŒã®å®æ°é
ã移é
ããŠäž¡èŸºã $2020$ ä¹ããããšã§, $a=x^{2020}$ ã«é¢ãã $2021$ 次ã®æ¹çšåŒ\r\n$$a(20a-1)^{2020}=21^{2020}$$\r\nãåŸã. ããã® $2021$ 次, $2020$ 次ã®ä¿æ°ã¯ãããã $20^{2020},-20^{2019}\\times 2020$ ã§ãããã, 解ãšä¿æ°ã®é¢ä¿ããæ±ããç·å㯠$-(-20^{2019}\\times 2020)\\/20^{2020}=\\textbf{101}$ ã§ããïŒ\r\n\r\n**äœè«.**ãæ¬åã®çãã¯äžæ¹çšåŒã®å®æ°é
ã«äŸããªãããšãããã. 解æ³2ãçŽæçã«ãã®äºå®ã瀺ã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc048/editorial/1613"
}
] | ã$x$ ã®æ¹çšåŒ $20x^{2021}-x+21=0$ ã®ïŒéè€ã蟌ããŠïŒ$2021$ åã®è€çŽ æ°è§£ãã¹ãŠã«ã€ããŠïŒããããã® $2020$ ä¹ã®ç·åãæ±ããŠãã ããïŒ |
OMC048 (for experts) | https://onlinemathcontest.com/contests/omc048 | https://onlinemathcontest.com/contests/omc048/tasks/1615 | B | OMC048(B) | 400 | 93 | 157 | [
{
"content": "ã$105$ 以äžã®æ£æŽæ°ã¯, $3,5,7$ ã§å²ã£ãäœããããããå®ããããšã§äžæã«å®ãŸãããšã«çæãã.\\\r\nã$S$ ã«ãããŠ, $3,5,7$ ã®åæ°ã¯ããããé«ã
äžã€ã§ãããã, ãããã®åæ°ã§ããªãå
ã«ã€ããŠèãã. ãããã«ã€ããŠ, $3,5,7$ ã§å²ã£ãäœãã¯é«ã
$1,2,3$ éãã§ãããã, $N\\leq 3+1\\times 2\\times 3=9$ ãåŸã.\\\r\nã以äž, $N=9$ ãªãè¯ãéåãæ°ãäžãã. äŸãã° $7$ ã§å²ã£ãäœãã«ã€ããŠ, $(1,6),(2,5),(3,4)$ ã®åãã¢ããäžã€ãã€ãéžæããããšã«ãªã. ãŸã, äŸãã°å¯äžã® $3$ ã®åæ°ã«ã€ããŠ, $5,7$ ã§å²ã£ãäœãã®éžã³æ¹ããããã $2,3$ éãååšãã. ä»ã®å Žåãåæ§ã«èããããšã§, æ±ããåæ°ã¯ $2^{1+2+3}\\times(1\\times2)\\times(1\\times3)\\times(2\\times 3)=\\textbf{2304}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc048/editorial/1615"
}
] | ãéå $\\{1,2,3,\cdots,105\\}$ ã® $2$ å
以äžãããªãéšåéåã«ã€ããŠ, ã©ã®çžç°ãªã $2$ å
ã«ã€ããŠããã®åã $105$ ãšäºãã«çŽ ã§ãããšã, ããã**è¯ã**éåãšåŒã³ãŸã. è¯ãéåã®èŠçŽ æ°ãšããŠããåŸãæ倧å€ã $N$ ãšãããšã, $N$ å
ãããªãè¯ãéåã¯ããã€ãããŸããïŒ |
OMC048 (for experts) | https://onlinemathcontest.com/contests/omc048 | https://onlinemathcontest.com/contests/omc048/tasks/288 | C | OMC048(C) | 500 | 72 | 125 | [
{
"content": "ã$39305$ ç§åŸãŸã§ã« $X$ ã $k$ å移åãã確ç㯠${}\\_{39305}\\textrm{C}\\_{k}\\/2^{39305}$ ã§ãããã, æ±ãã確ç $P$ ã¯\r\n$$P=\\dfrac{1}{2^{39305}}\\left({}\\_{39305}\\textrm{C}\\_{0}+{}\\_{39305}\\textrm{C}\\_{4}+\\cdots+{}\\_{39305}\\textrm{C}\\_{39304}\\right)$$\r\nãšããã§, äºé
å®çãã以äžã®ååŒãããããæç«ããïŒ\r\n$$\\begin{alignedat}\r\n\\ &&(1+1)^{39305}&&&={}\\_{39305}\\textrm{C}\\_{0}&&+{}\\_{39305}\\textrm{C}\\_{1}&&+{}\\_{39305}\\textrm{C}\\_{2}&&+{}\\_{39305}\\textrm{C}\\_{3}&&+&&\\cdots&&+{}\\_{39305}\\textrm{C}\\_{39305} \\\\\\\\\r\n\\ &&(1-1)^{39305}&&&={}\\_{39305}\\textrm{C}\\_{0}&&-{}\\_{39305}\\textrm{C}\\_{1}&&+{}\\_{39305}\\textrm{C}\\_{2}&&-{}\\_{39305}\\textrm{C}\\_{3}&&+&&\\cdots&&-{}\\_{39305}\\textrm{C}\\_{39305} \\\\\\\\\r\n\\ &&(1+i)^{39305}&&&={}\\_{39305}\\textrm{C}\\_{0}&&+{}\\_{39305}\\textrm{C}\\_{1}i&&-{}\\_{39305}\\textrm{C}\\_{2}&&-{}\\_{39305}\\textrm{C}\\_{3}i&&+&&\\cdots&&+{}\\_{39305}\\textrm{C}\\_{39305}i \\\\\\\\\r\n\\ &&(1-i)^{39305}&&&={}\\_{39305}\\textrm{C}\\_{0}&&-{}\\_{39305}\\textrm{C}\\_{1}i&&-{}\\_{39305}\\textrm{C}\\_{2}&&+{}\\_{39305}\\textrm{C}\\_{3}i&&+&&\\cdots&&-{}\\_{39305}\\textrm{C}\\_{39305}i\r\n\\end{alignedat}$$\r\n$(1+i)^8=(1-i)^8=2^4$ ãçšããŠãããã蟺ã
足ãåãããããšã§,\r\n$$2^{39307}P=4\\left({}\\_{39305}\\textrm{C}\\_{0}+{}\\_{39305}\\textrm{C}\\_{4}+\\cdots+{}\\_{39305}\\textrm{C}\\_{39304}\\right)=2^{39305}+2^{19653}$$\r\nãã£ãŠ $P=(2^{19652}+1)\\/2^{19654}$ ã§ãããã, ããšã¯ $a=2^{19652}+1$ ã®çŽ å æ°ã«ã€ããŠèããã°ãã. é©åœãªèšç®ã«ãã£ãŠ $2,3,5,7,11,13$ ã§ã¯å²ããªãããšãããã. äžæ¹ã§ $19652=4\\times 17^3$ ã§ãããã, $a=16^{17^3}+1$ ãšã¿ãªãããšã§LTEã®è£é¡ãããã㯠$17$ ã§ã¡ããã© $4$ åå²ãåã, 以äžãã解çãã¹ãå€ã¯ $\\textbf{68}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc048/editorial/288"
}
] | ãæ£æ¹åœ¢ã®ããé ç¹ã«äžã€ã®ç²å $X$ ããã, ã¡ããã© $1$ ç§çµã€ããšã« $50\\%$ ã®ç¢ºçã§æèšåãã«é£ã®é ç¹ã«ç§»åã, æ®ãã® $50\\%$ ã®ç¢ºçã§ç§»åããªãæ§è³ªããã¡ãŸã. $X$ ã $39305.5$ ç§åŸã«å
ãšåãé ç¹ã«ãã確çã¯, äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããŸã. $a$ ã®ãã€æå°ã®çŽ å æ°ãš, $a$ ãããã§å²ãåããæ倧ã®åæ°ã®**ç©**ãæ±ããŠãã ãã. \
ããªã, ç²å㯠(é£ç¶çã§ã¯ãªã) ç¬éçã«ç§»åãããã®ãšããŸã. |
OMC048 (for experts) | https://onlinemathcontest.com/contests/omc048 | https://onlinemathcontest.com/contests/omc048/tasks/1611 | D | OMC048(D) | 600 | 69 | 81 | [
{
"content": "ã挞ååŒãã以äžãåŸããã, $\\alpha^2+\\beta^2=1$ ã§ãã.\r\n$$a_{n+1}^2+b_{n+1}^2=(\\alpha^2+\\beta^2)(a_n^2+b_n^2)$$\r\nããªãã¡, ãã $\\theta$ ã«ãã£ãŠ $(\\alpha,\\beta)=(\\cos\\theta,\\sin\\theta)$ ãšãã, ãã $\\theta_n$ ã«ãã£ãŠ\r\n$$(a_n,b_n)=5\\sqrt{26}(\\cos\\theta_n,\\sin\\theta_n)$$\r\nãšè¡šãã° $\\theta_{n+1}\\equiv\\theta_{n}+\\theta$ ãåŸã. ããã«æ¡ä»¶ãã, 座æšå¹³é¢äžã«ç¹ $P_0,P_1,\\cdots,P_{2003}$ ããšããš, ãããã¯åç¹ãäžå¿ãšããæ£ $2004$ è§åœ¢ããªãããšãããã.\\\r\nãããã§, 以äžã®çŽç· $l_k$ ãèãããš, $|2021-a_kX-b_kY|$ ã¯å®ç¹ $(X,Y)$ ãš $l_k$ ã®è·é¢ã® $5\\sqrt{26}$ åã«çããïŒ\r\n$$l_k:a_kx+b_ky=2021$$\r\nããã«, $l_k$ 㯠$OP_k$ ã«åçŽã§ãã, ãã¹ãŠåç¹ããè·é¢ $2021\\/5\\sqrt{26}$ ã§ãããã, $l_k$ ãã¡ã¯ãã¯ãåç¹ãäžå¿ãšããæ£ $2004$ è§åœ¢ããªã, $(X,Y)$ ããã®æ£ $2004$ è§åœ¢ã®å
éšã«ããéã以äžã®ç·åã¯äžå®ã§ããïŒ\r\n$$\\displaystyle\\sum_{k=0}^{2003}|2021-a_kX-b_kY|$$\r\nããªãã¡ $(X,Y)$ ãå
ã® $(9,30)$ ãã$(0,0)$ ã«çœ®ãæããŠãã, 以äžããæ±ããç·å㯠$\\textbf{4050084}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc048/editorial/1611"
}
] | ãç§ natu_math ã®èªçæ¥ã¯ $2004$ 幎 $5$ æ $25$ æ¥ã§ã. ãšããã§, å®æ° $\alpha,\beta$ ã«å¯Ÿã,
$$(a_0,b_0)=(5,25),\quad a_{n+1}=\alpha a_{n}-\beta b_{n},\quad b_{n+1}=\beta a_{n}+\alpha b_{n}\quad (n=0,1,\cdots)$$
ã«ãã£ãŠæ°å $\\{a_n\\},\\{b_n\\}$ ãå®ãããš, $(a_x,b_x)=(a_0,b_0)$ ãªãæ£æŽæ° $x$ ãååšã, ãã®æå°å€ã¯ $2004$ ã§ãã.\
ããã®ã³ã³ãã¹ã㯠$2021$ 幎 $9$ æ $30$ æ¥ã«è¡ãããŸã. 以äžã®ç·åãæ±ããŠãã ãã.
$$\displaystyle\sum_{k=0}^{2003}|2021-9a_k-30b_k|$$ |
OMC048 (for experts) | https://onlinemathcontest.com/contests/omc048 | https://onlinemathcontest.com/contests/omc048/tasks/1933 | E | OMC048(E) | 700 | 41 | 66 | [
{
"content": "ã$Q(x)=(x-1)P(x)$ ãšãããš, åé¡æã®æ¡ä»¶ãã以äžã®ããã«è¡šããïŒ\r\n$$Q(x)=\\sum^t_{i=1}x^{A_i}-\\sum^s_{i=1}x^{B_i}-8$$\r\nãã ã, $A_i$ ããã³ $B_i$ ã«éè€ã¯ãªã, $A_1=17$ ãšãã. ãŸã $Q(1)=0$ ãã $t=s+8$ ã§ãã, ãã®ãšã $Q$ ãšåé¡ã®ååã®æ¡ä»¶ãã¿ãã $P$ ã¯äžå¯Ÿäžã«å¯Ÿå¿ãã. ããã«, ç°¡åãªè©äŸ¡ã«ãã£ãŠ $P$ 㯠$1$ ãæ ¹ã«ãããªããã, ä»¥äž $1$ 以å€ã®æçæ°æ ¹ãã〠$Q$ ã«ã€ããŠèããã°ãã. æçæ°æ ¹ $q$ ã®åè£ã¯ $-1,\\pm2,\\pm4,\\pm8$ ã§ãã.\\\r\nããã㧠$q\\neq -1$ ã®ãšã, $2$ ã¹ãã®å æžã§ $0$ ãäœãããšãšãªã. éè€ãåŸãã®ã¯ $8$ ã®ã¿ã§ãã, ããåŸãå¯äžã®åœ¢ã¯\r\n$$2^N-2^{N-1}-2^{N-2}-\\cdots-16-8-8=0$$\r\nããã, ãã㯠$t=s+8$ ã«åããããšã容æã«ããã. ããªãã¡ $q=-1$ ã§ãã.\\\r\nããã®ãšã, $Q(x)$ ã® $\\sum x^{A_i}-\\sum x^{B_i}$ éšåã«ãããŠ, ææ°ãå¶æ°ã§ç¬Šå·ãæ£ã»è² ã®é
æ°ããããã $\\alpha,\\beta$ ãšããã°,\r\n$$0=Q(-1)=(\\alpha-(s+8-\\alpha))-(\\beta-(s-\\beta))-8=2\\alpha-2\\beta-16$$\r\nãããã $(\\alpha,\\beta)=(8,0)$ ã§ãããã, æ±ããå Žåã®æ°ã¯åçŽãªäºé
ä¿æ°ã®ç·åã§è¡šãã. å
·äœçã«ã¯\r\n$${}\\_8\\mathrm{C}\\_0\\times{}\\_{8-0}\\mathrm{C}\\_1+{}\\_8\\mathrm{C}\\_1\\times{}\\_{8-1}\\mathrm{C}\\_2+{}\\_8\\mathrm{C}\\_2\\times{}\\_{8-2}\\mathrm{C}\\_3+{}\\_8\\mathrm{C}\\_3\\times{}\\_{8-3}\\mathrm{C}\\_4=\\textbf{1016}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc048/editorial/1933"
}
] | ãæŽæ°ä¿æ°ã® $x$ ã® $16$ 次å€é
åŒ
$$P(x)=a_{16}x^{16}+a_{15}x^{15}+\cdots+a_1x+a_0$$
ã«ã€ããŠïŒ$a_{16} =1,~ a_0=8$ ã§ããïŒ$i=1,2,\ldots,16$ ã«å¯Ÿã㊠$|a_i - a_{i-1}|\leq 1$ ãæç«ããŠããŸãïŒãã®ãã㪠$P$ ã§ãã£ãŠïŒ$x$ ã®æ¹çšåŒ $P(x)=0$ ãæçæ°è§£ããã€ãã®ã¯ããã€ãããŸããïŒ |
OMC048 (for experts) | https://onlinemathcontest.com/contests/omc048 | https://onlinemathcontest.com/contests/omc048/tasks/1609 | F | OMC048(F) | 800 | 11 | 32 | [
{
"content": "ãäžè¬ã« $BC=a,AC=b,AB=c,ID=r\\\\,(b\\neq c)$ ãšããŠèãã. ãã ã, ç¹ $I$ 㯠$ABC$ ã®å
å¿ã§ãã. \\\r\nãç°¡åãªè§åºŠèšç®ã«ãã£ãŠ $P$ 㯠$IBC$ ã®åå¿ã§ããããšãåãããã, $PD$ 㯠$\\omega$ ã®çŽåŸã§ãã. ãããã, çŽç· $AP$ ãš $BC$ ã®äº€ç¹ã $S_A$ ãªã©ãšããã°, well-known factãšã㊠$BS_A=CD$ ã§ãã. äžæ¹ã§ $BS_C=CS_B=a$ ã§ãããã, ãããããCevaã®å®çãçšããŠç«åŒããã°, $3a=b+c$ ãæç«ããããšã確èªã§ãã.\\\r\nãããã§, äžè§åœ¢ $ABC$ ã®é¢ç©ã«ã€ã㊠$s=(a+b+c)\\/2$ ãçšããŠè¡šãã°\r\n$$sr=\\sqrt{s(s-a)(s-b)(s-c)}$$\r\n$3a=b+c$ ãã $s=2a$ ã§ãããã, æŽçãããš $2r=\\sqrt{2(bc-2a^2)}$ ãåŸã.\\\r\nã$D$ ã«ã€ã㊠$L$ ãšå¯Ÿç§°ãªç¹ã $M$ ãšããã°, $P$ ã $IBC$ ã®åå¿ã§ããããšãã\r\n$$DM\\times DK=DL\\times DK=BD\\times CD=DI\\times DP$$\r\nããªãã¡ $P,I,M,K$ ã¯å
±å, $PM$ ã¯ãã®çŽåŸã§ãã. ãã£ãŠ $DL=DM=MP$ ã§ãã, äžç·å®çãªã©ãã\r\n$$PX^2=PL^2-LX^2=PL^2+PM^2-2DL^2=2PD^2=8r^2$$\r\næ¬åã§ã¯ $(a,b,c)=(11904,17296,18416)$ ã§ãããã, $PX^2=4(bc-2a^2)=\\textbf{140450816}$ ã§ãã.\r\n![figure 1](\\/images\\/aC3KXYoKqAncHTW2WBYnj9aJ2qekBvdLspJVSRcD)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc048/editorial/1609"
}
] | ã$AB=18416,AC=17296$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠ, å
æ¥åã $\omega$ ãšã, $\omega$ äžã®ç¹ $P$ ã以äžãã¿ãããŸãïŒ
$$\angle PBC=90^{\circ}-\frac{1}{2}\angle C,\quad \angle PCB=90^{\circ}-\frac{1}{2}\angle B$$
$\omega$ ãš $BC$ ã®æ¥ç¹ã $D$ ãšã, çŽç· $AD$ ã $\omega$ ãšåã³äº€ããç¹ã $K$, çŽç· $AD$ ãäžè§åœ¢ $BCK$ ã®å€æ¥åãšåã³äº€ããç¹ã $L$ ãšããŸã. $LD=LX,\angle PXL=90^\circ$ ãã¿ããç¹ $X$ ã«ã€ããŠ, $PX$ ã®é·ãã® $2$ ä¹ãæ±ããŠãã ãã. |
OMC047 (for beginners) | https://onlinemathcontest.com/contests/omc047 | https://onlinemathcontest.com/contests/omc047/tasks/1995 | A | OMC047(A) | 100 | 242 | 250 | [
{
"content": "ãå $4$ æ°ã®éžã³æ¹ã«å¯Ÿã, æ¡ä»¶ãã¿ãã $4$ æ¡ã®æŽæ°ã $1$ ã€ãã€å¯Ÿå¿ãããã, æ±ããå€ã«ã€ã㊠${}_9 \\mathrm{ C }_4=\\bf{ 126 }$ éã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc047/editorial/1995"
}
] | ã$1$ ä»¥äž $9$ 以äžã®æŽæ°ãã, çžç°ãªã $4$ ã€ã䞊ã¹ãŠ $4$ æ¡ã®æ£æŽæ°ãäœããšã, 次ã®æ¡ä»¶ãã¿ãããã®ã¯ããã€ãããŸããïŒ
- åã®äœ, çŸã®äœ, åã®äœ, äžã®äœã®æ°ããããã $a,b,c,d$ ãšãããšã, $a \lt b \lt c \lt d$ ãæç«ãã. |
OMC047 (for beginners) | https://onlinemathcontest.com/contests/omc047 | https://onlinemathcontest.com/contests/omc047/tasks/1836 | B | OMC047(B) | 200 | 229 | 238 | [
{
"content": "ãæ¡ä»¶ãã $(x+3)(y+1)=2025$ ã§ãã, çžå ã»çžä¹å¹³åã®é¢ä¿ãã\r\n$$x+y+4\\geq 2\\sqrt{(x+3)(y+1)}=90$$\r\nãåŸã. éã« $(x,y)=(42,44)$ ã§çå·ãæç«ãããã, æ±ããæå°å€ã¯ $\\textbf{86}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc047/editorial/1836"
}
] | ã$xy+x+3y=2022$ ãªãæ£ã®å®æ° $x,y$ ã«ã€ããŠ, $x+y$ ã®ãšãåŸãæå°å€ãæ±ããŠãã ãã. |
OMC047 (for beginners) | https://onlinemathcontest.com/contests/omc047 | https://onlinemathcontest.com/contests/omc047/tasks/1921 | C | OMC047(C) | 300 | 179 | 216 | [
{
"content": "ãäžè¬ã« $2n$ è§åœ¢ã§èãã. çŽè§äžè§åœ¢ã®éžæã«ããã£ãŠ, æ蟺ãšãªãçŽåŸãåºå®ããããšã§, æ±ããã¹ã³ã¢ã®ç·åã¯\r\n$$\\begin{aligned}\r\nM&= \\displaystyle \\sum_{t=1}^n \\left(\\displaystyle \\sum_{i=1}^{2n}(i+2t+n) - (3t+n) - (3t+2n) \\right ) \\\\\\\\\r\n&=6n^3-3n^2-3n\r\n\\end{aligned}$$\r\nãã ãåŸãã® $2$ é
ã¯, çŽåŸã®äž¡ç«¯ã $3$ ç¹ç®ãšããŠéžæããå¯èœæ§ãæžããŠãã. \r\n\r\n**å¥è§£1.**ãçŽè§äžè§åœ¢ã®ãšãåŸãã¹ã³ã¢ã®æå°å€ã¯$n+4$ ã§, éã«æ倧å€ã¯ $5n - 1$ ã§ãã. ãã®ãšã, çŽè§äžè§åœ¢ã¯å
šéšã§ $n(2n-2)$ éããšããããšã«çæããã°, å®ã¯æ±ããç·åã¯ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$M=\\dfrac{1}{2}\\times\\left( (n+4)+(5 n - 1)\\right)\\times n(2n- 2)$$ \r\n\r\n**å¥è§£2.**ãé ç¹ã®äžã€ã $P_i$ ã§ããçŽè§äžè§åœ¢ã®ãã¡, $\\angle{P_i}=90^{\\circ}$ ãšãªããã®ã¯ $(n-1)$ å, $\\angle{P_i}\\neq90^{\\circ}$ ãšãªããã®ã¯ $2(n-1)$ åååšãããã\r\n$$\\begin{aligned}\r\nM= 3(n-1)\\displaystyle \\sum_{k=1}^{2n} k =3(n-1)n(2n+1)\r\n\\end{aligned}$$ \r\nããããã«ãã, ç¹ã« $n=50$ ã«ãã㊠$M=\\textbf{742350}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc047/editorial/1921"
}
] | ãããæ£ $100$ è§åœ¢ $P_1P_2\cdots P_{100}$ ã«ãããŠ, $3$ é ç¹ãéžãã§ã§ããäžè§åœ¢ã®**ã¹ã³ã¢**ãããããé ç¹ã®æ·»åçªå·ã®ç·åã§å®ããŸã. ãã®ãšã, **çŽè§äžè§åœ¢**ãã¹ãŠã«ã€ããŠã¹ã³ã¢ã®ç·åãæ±ããŠãã ãã. \
ããã ã, åãäžè§åœ¢ã«ã€ããŠ, é ç¹çªå·ã®é åºãç°ãªããã®ã¯åºå¥ããŠæ°ããªããã®ãšããŸã. |
OMC047 (for beginners) | https://onlinemathcontest.com/contests/omc047 | https://onlinemathcontest.com/contests/omc047/tasks/2018 | D | OMC047(D) | 300 | 138 | 204 | [
{
"content": "ã以äžã®èŠé ã§, $2$ å以äžã® $2$ ãšæ®ããã¹ãŠ $3$ ãšããç¶æ³ ($\\textrm{mod}\\ 3$ ãèããã°ããã¯äžæ) ã«åž°çã§ããïŒ\r\n\r\n- $1$ ãå«ãå Žåã¯, é©åœãªãã®ã« $1$ å ç®ãã.\r\n- $2$ ã $3$ åå«ãå Žåã¯, ããã $2$ åã® $3$ ã«çœ®ãæãã.\r\n- $4$ ãå«ãå Žåã¯, ããã $2$ åã® $2$ ã«çœ®ãæãã.\r\n- $5$ 以äžã®æŽæ° $a$ ãå«ãå Žåã¯ããã $2,a-2$ ã«çœ®ãæãã.\r\n\r\nãããã£ãŠ, $2021=2+3\\times 673$ ãã $M=2\\times 3^{673}$ ã§ãããã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{674}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc047/editorial/2018"
}
] | ãç·åã $2021$ ã§ãã**çžç°ãªããšã¯éããªã**ããã€ãã®æ£æŽæ°ã«å¯ŸããŠïŒãã®ç·ç©ãšããŠããåŸãæ倧å€ã $M$ ãšããŸãïŒ$M$ ãçŽ å æ°å解ãããšãïŒææ°ã®ç·åãæ±ããŠãã ããïŒäŸãã° $2\times5^{20}\times 7^{21}$ ãªãã° $42$ ã解çããŠãã ããïŒ |
OMC047 (for beginners) | https://onlinemathcontest.com/contests/omc047 | https://onlinemathcontest.com/contests/omc047/tasks/1960 | E | OMC047(E) | 400 | 47 | 126 | [
{
"content": "ã$\\angle CDP$ ã®äºçåç·ãš $CP$ ã®äº€ç¹ã $Q$ ãšãããš, $CQ:QP=10:7$ ã§ãã. ãŸã\r\n$$\\angle QDC=\\angle BDC\\/2=\\angle BAC\\/2=\\angle ACB=\\angle ADB$$\r\nããã³ $\\angle QCD=\\angle ACD=\\angle ABD$ ããäžè§åœ¢ $ABD$ ãš $QCD$ ã¯çžäŒŒã§ãããã $AD:DQ=7:5$ ã§ãã. ãã㯠$AP:PQ$ ã«çãããã, 以äžãã以äžã®æ¯ãåŸã.\r\n$$AP:PQ:QC=49:35:50$$\r\nãã£ãŠæ¹ã¹ãã®å®çãã $CP=\\sqrt{\\textbf{85}}$ ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc047/editorial/1960"
}
] | ãåã«å
æ¥ããåè§åœ¢ $ABCD$ ã«ãããŠ, 察è§ç·ã®äº€ç¹ã $P$ ãšãããšãã, 以äžã®æ¡ä»¶ãæç«ããŸããïŒ
$$BP=PD=7,\quad CD=10,\quad \angle BAC=2\angle ACB$$
ãã®ãšã, $CP$ ã®é·ãã® $2$ ä¹ãæ±ããŠãã ãã. |
OMC047 (for beginners) | https://onlinemathcontest.com/contests/omc047 | https://onlinemathcontest.com/contests/omc047/tasks/2015 | F | OMC047(D2) | 500 | 75 | 138 | [
{
"content": "ãããã€ãã®æ£æŽæ°ãå°ããé ã« $a_1,a_2,\\cdots,a_n$ ãšãã. ãŸã, 以äžã®èªæãªäžçåŒã«æ³šæããïŒ\r\n$$m\\gt n+1 \\implies (m-1)(n+1)\\gt mn$$\r\nãããç¹°ãè¿ãå©çšããã° $a_1$ ä»¥äž $a_n$ 以äžã®æ£æŽæ°ã«ãããŠ, ç»å Žããªããã®ã¯é«ã
$1$ ã€ãšããŠããããšãããã. ãŸã, å
åãšåæ§ã«ã㊠(ãã ã倧å°é¢ä¿ã厩ããªããã泚æãã) $a_1=2$ ãŸã㯠$a_1=3$ ã§ãããšããŠãã. \\\r\nããªã, $a_1=4$ ã«ã€ããŠã¯ $(4,a_2)\\to(2,2,a_2)\\to(2,3,a_2-1)$ ãªã©ãšããå¿
èŠãããããšã«æ³šæãã.\r\n\r\n(a) äžã€ãé€ããªãå ŽåïŒ$a_1=2,3$ ã®ããšã§ãããã¿ãããã®ã¯ååšããªã.\r\n\r\n(b) $a_1=2$ ã〠$1$ åã®æŽæ° $m$ ãé€ããå ŽåïŒ$3\\le m\\le a_n-1$ ãã $n$ åã®ç·åã«ã€ããŠ\r\n$$\\frac12(a_n+2)(a_n-1)-a_n+1\\le2021\\le\\frac12(a_n+2)(a_n-1)-3$$\r\n以äžã®äžçåŒãèæ
®ããã°, ãããã¿ãã $a_n$ ã¯é«ã
$1$ åã§ãã. å®é $a_n=64$ ã§æç«ã, ãã®ãšã $m=58$ ã§ãã.\r\n$$\\frac12(a_n+2)(a_n-1)-3\\lt\\frac12((a_n+1)+2)((a_n+1)-1)-(a_n+1)+1$$\r\n\r\n(c) $a_1=3$ ã〠$1$ åã®æŽæ° $m$ ãé€ããå ŽåïŒ(b)ãšåæ§ã®è°è«ã«ãã $a_n=64,m=56$ ãå¯äžé©ãã.\r\n\r\nã以äžãã, $M$ ã®åè£ãšã㊠$\\dfrac{64!}{58}$ ãš $\\dfrac{64!}{2\\times 56}$ ãååšããã, æããã«åè
ã倧ãã, ãã㯠$2$ 㧠$\\textbf{62}$ åå²ãåãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc047/editorial/2015"
}
] | ãç·åã $2021$ ã§ãã**çžç°ãªã**ããã€ãã®æ£æŽæ°ã«å¯ŸããŠïŒãã®ç·ç©ãšããŠããåŸãæ倧å€ã $M$ ãšããŸãïŒ$M$ 㯠$2$ ã§æ倧äœåå²ãåããŸããïŒ |
OMC046 | https://onlinemathcontest.com/contests/omc046 | https://onlinemathcontest.com/contests/omc046/tasks/1815 | A | OMC046(A) | 100 | 240 | 241 | [
{
"content": "ã以äžã«ç¹ã®äœçœ®é¢ä¿ã瀺ã. ç·å $EF$ ã§åå²ããŠèãããšïŒåè§åœ¢ $AEFD$ ããã³ $BEFC$ ã¯å¹³è¡å蟺圢ã§ãã, äžè§åœ¢ $EFG,EFH$ ã¯ããããã® $1\\/4$ ã«ããã. ãã£ãŠ, æ±ãã $ABCD$ ã®é¢ç©ã¯ $7\\times4=\\textbf{28}$ ã§ããïŒ \r\n\r\n![figure 1](\\/images\\/RARQa4lpSiPERDUG9j0QocjZEUtGx0MuTFKVoTSl)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc046/editorial/1815"
}
] | ãå¹³è¡å蟺圢 $ABCD$ ã«ãããŠ, 蟺 $AB,CD$ ã®äžç¹ããããã $E,F$ ãšã, ç·å $AF$ ãš $DE$ ã®äº€ç¹ã $G$, $BF$ ãš $CE$ ã®äº€ç¹ã $H$ãšãããš, åè§åœ¢ $EGFH$ ã®é¢ç©ã¯ $7$ ã§ãã. ãã®ãšã, $ABCD$ ã®é¢ç©ãæ±ããŠãã ãã. |
OMC046 | https://onlinemathcontest.com/contests/omc046 | https://onlinemathcontest.com/contests/omc046/tasks/1370 | B | OMC046(B) | 300 | 150 | 229 | [
{
"content": "ã$n=500$ ãšã, äžè¬ã« $2n\\times 2n$ ã®ãã¹ç®ã« $2n^2-1$ åã®ç³ãæ¡ä»¶ãã¿ããããã«çœ®ãããšãèãã. åè¡ã«ã¯é«ã
$n$ åããç³ã眮ããªãããšãã, ãã $k$ ã«ã€ããŠäžãã $k$ è¡ç®ã« $n-1$ å, æ®ãã® $2n-1$ è¡ã« $n$ åã®ç³ã眮ããããªã. 察称æ§ãã $k\\leq n$ ã®å Žåãèã㊠$2$ åããã°ãã.\\\r\nãããã§, ãã¹ç®å
šäœãçœé»ã®åžæŸæš¡æ§ã«å¡ãåããããšãèããã. ãã®ãšã $k$ è¡ç®ä»¥äžã®ç³ã¯ãã¹ãŠåãè²ã®ãã¹ã«çœ®ãããŠãã. äžè¬æ§ã倱ãããããé»è²ã§ããå Žåã®ã¿ãèã㊠$2$ åãã. ãã㧠$k\\neq 2$ ãªãã°, $k$ è¡ç®ä»¥äžã®ç³ããã¹ãŠé»è²ã®ãã¹ã«çœ®ãããŠããããšãããããã, $k$ è¡ç®ã®é
眮ã®ã¿ãèã㊠$n$ éãã§ãã.\\\r\nãä»¥äž $k=2$ ã®å Žåãèãã. äžå³ã«ãããŠâå°ã«ç³ã眮ãå Žå, $1$ è¡ç®ã®é
眮ã¯äžæã«å®ãŸã, $2$ è¡ç®ã®æ®ãã®é
眮ã¯â¯å°ã®éžæãšãªããã $n-1$ éãã§ãã. âå°ã«ç³ã眮ããªãå Žå, $2$ è¡ç®ã®æ®ãã®é
眮ã¯äžæã«å®ãŸã, $1$ è¡ç®ã¯â³å°ã®ã©ã¡ããã«ç³ã眮ããã®ã¿èªç±ã«éžæã§ãã. ããªãã¡åèšã§ $n+1$ éãã§ãã.\\\r\nã以äžããå
šäœã§ã¯ $2\\times2\\times((n-1)\\times n+(n+1))=4n^2+4$ éãã§, ããã§ã¯ç¹ã« $\\textbf{1000004}$ ã§ãã.\r\n\r\n![figure 1](\\/images\\/GzXabrMl13djL92jlwdQGSslzKURXEz754TPIIDi)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc046/editorial/1370"
}
] | ã$1000\times 1000$ ã®ãã¹ç®äžã«, 以äžã®æ¡ä»¶ãã¿ããããã« $499999$ åã®ç³ã眮ãæ¹æ³ã¯äœéããããŸããïŒ
- åãã¹ã«çœ®ãããç³ã¯é«ã
$1$ åã§ãã.
- äºãã«é£ãåãä»»æã® $2$ ãã¹ã®çµã«ã€ããŠ, ãã®äž¡æ¹ã«ç³ã眮ãããŠããããšã¯ãªã. |
OMC046 | https://onlinemathcontest.com/contests/omc046 | https://onlinemathcontest.com/contests/omc046/tasks/1816 | C | OMC046(C) | 300 | 120 | 164 | [
{
"content": "ã$xa$ å¹³é¢ã§èãããš, æŸç©ç· $x^2-2x-a-3=0$ ãšé å $x^2-4x+a^2-5\\leq0$ ãå
±æç¹ãã〠$a$ ã®ç¯å²ãæ±ããã°è¯ãïŒ2åŒãé£ç«ãããŠè§£ããš, å¢çã®äº€ç¹ãšããŠ\r\n$$(x,a)=(-1,0),(2,-3),\\left(\\dfrac{3\\pm\\sqrt{17}}{2},\\dfrac{1\\pm\\sqrt{17}}{2}\\right)$$\r\n(埩å·åé ) ãåŸããããã, ã°ã©ããæžããšä»¥äžã®ããã«ãªãããšããããïŒ\r\n\r\n![figure 1](\\/images\\/q6GQ5qtoI1tcre2onHTYM6SzUR2g363bPVmdaRdd)\r\n\r\nãããã, æ¡ä»¶ãã¿ãã $a$ ã®ç¯å²ã¯ $-3\\leq a\\leq \\dfrac{1+\\sqrt{17}}{2}$ ã§ãã, ç¹ã«è§£çãã¹ãå€ã¯ $7+17+2=\\textbf{26}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc046/editorial/1816"
}
] | ã$x^2-2x-a-3=0$ ã〠$x^2-4x+a^2-5\leq0$ ããšãã«ã¿ããå®æ° $x$ ãååšãããããªå®æ° $a$ ã«ã€ããŠ, ãã®æå°å€ã $l$, æ倧å€ã $r$ ãšããŸã. ãã®ãšã, $r-l=\dfrac{s+\sqrt{t}}{u}$ ($s,t,u$ ã¯æ£ã®æŽæ°ã§, $s$ ãš $u$ ã¯äºãã«çŽ ) ãšè¡šããã®ã§, $s+t+u$ ã解çããŠãã ãã. |
OMC046 | https://onlinemathcontest.com/contests/omc046 | https://onlinemathcontest.com/contests/omc046/tasks/1817 | D | OMC046(D) | 400 | 142 | 192 | [
{
"content": "ãäžè¬ã« $N=500$ ãšã, ãŸãç¹ $(0,0,0)$ ãã移åãç¹°ãè¿ããŠç¹ $(2N,2N,2N)$ ãŸã§å°éããæ¹æ³ãèãã. $y$ 座æšã®å€åã«çç®ãããšïŒç§»å $A$ ãšç§»å $B$ ãåãããŠã¡ããã© $2N$ åè¡ãå¿
èŠããã. åæ§ã«ããŠ, çµå±ã¯ããããã®ç§»åã $N$ åãã€è¡ãå¿
èŠãããããšãããã. ãããã£ãŠ, ãã®åé¡ã¯æ¬¡ã®ããã«èšãæããããšãã§ãã.\r\n\r\n- èšå· $A,B,C$ ããããã $N$ åãã€ãã. ããããäžåã«äžŠã¹ãæ¹æ³ã®ãã¡, ç°ãªãèšå·å士ãé£ãåã£ãŠããç®æãã¡ããã© $4$ ç®æã§ãããããªãã®ã¯äœéããïŒ\r\n\r\nããã®ãããªäžŠã¹æ¹ã«ãããŠ, åãæåãé£ãåã£ãŠããéšåããŸãšããŠãã®æåã®**ã°ã«ãŒã**ãšåŒã¶ããšã«ãããš, 次㮠$2$ éãã«åãããã. ãã ã, $X,Y,Z$ 㯠$A,B,C$ ã«äžå¯Ÿäžã§å¯Ÿå¿ãããã®ãšãã.\r\n\r\n- (i) $X$ ã®ã°ã«ãŒãã $3$ ã€, $Y,Z$ ã®ã°ã«ãŒããå $1$ ã€\r\n- (ii) $X,Y$ ã®ã°ã«ãŒããå $2$ ã€, $Z$ ã®ã°ã«ãŒãã $1$ ã€\r\n\r\nã(i)ã®å Žå, $X$ ã®ã°ã«ãŒãã®äœãæ¹ã ${}_{N-1}\\mathrm{C}_2$ éã, $X$ ã®éžã³æ¹ã $3$ éã, $X,Y,Z$ ã®é
眮ã $2$ éããããã, å
šäœã§ã¯ããããæãåãã㊠$3(N-1)(N-2)$ éãã§ãã.\r\n\r\nã(ii)ã®å Žå, $X,Y$ ã®ã°ã«ãŒãã®äœãæ¹ããããã $N-1$ éã, $Z$ ã®éžã³æ¹ã $3$ éã, $X,Y,Z$ ã®é
眮ã $12$ éãããããšã容æã«ããããã, å
šäœã§ã¯ããããæãåãã㊠$36(N-1)^2$ éãã§ãã.\r\n\r\nã以äžãã, æ±ããå€ã¯ $3(N-1)(N-2)+36(N-1)^2=3(N-1)(13N-14)=\\textbf{9709542}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc046/editorial/1817"
}
] | ã$xyz$ 空éã«ãããŠ, ç¹ $(0,0,0)$ ãã次ã®ããããã®ç§»åãç¹°ãè¿ããŠç¹ $(1000,1000,1000)$ ãŸã§å°éãã移åçµè·¯ãèããŸã. ãã®ãããªç§»åçµè·¯ã®ãã¡, çŽåãšç°ãªã移åæ¹æ³ãçšããåæ°ãã¡ããã© $4$ åãšãªããããªãã®ã¯äœéããããŸããïŒ
- 移å $A$ : $(x,y,z)$ ãã $(x+1,y+1,z)$ ã«ç§»åãã.
- 移å $B$ : $(x,y,z)$ ãã $(x,y+1,z+1)$ ã«ç§»åãã.
- 移å $C$ : $(x,y,z)$ ãã $(x+1,y,z+1)$ ã«ç§»åãã.
äŸãã°, $AAABBCAABBB$ ãšç§»åãããšã, çŽåãšç°ãªã移åæ¹æ³ãçšããåæ°ã¯ã¡ããã© $4$ åã§ã. |
OMC046 | https://onlinemathcontest.com/contests/omc046 | https://onlinemathcontest.com/contests/omc046/tasks/1819 | E | OMC046(E) | 500 | 70 | 98 | [
{
"content": "ã$x,y,z$ ã¯ãããã $0$ ã§ãªãããšã容æã«åãã. äžåŒãå€åœ¢ããããšã§ä»¥äžãåŸã.\r\n$$x^2y^2z^2-2xyz(x+y+z)+x^2+y^2+z^2+2(xy+yz+zx)=102^2$$\r\näžæ¹ã§, äžåŒãå€åœ¢ããããšã§ä»¥äžãåŸã.\r\n$$x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)-2(xy+yz+zx)+1=91^2$$\r\nãããã蟺ã
足ãåãããããšã§, 以äžãåŸã.\r\n$$(x^2+1)(y^2+1)(z^2+1)=5\\times 37\\times 101=(2^2+1)(6^2+1)(10^2+1)$$\r\nããããã¯æ¬¡ã®ããã«ããŠããã. ãŸã, \r\n$$(t+x)(t+y)(t+z)=t^3+(x+y+z)t^2+(xy+yz+zx)t+xyz$$\r\nã§ãã. ããã« $t=i$ (èæ°åäœ)ã代å
¥ãããš, åé¡ã®æ¡ä»¶ãã以äžãåŸã. \r\n$$(i+x)(i+y)(i+z)=102+91i$$\r\n䞡蟺ã®çµ¶å¯Ÿå€ãèŠããš, åãåŒãåŸããã. \\\r\nã$xyz\\neq 0$ ãšäœµããŠ, ããåŸãçµã¯ $(\\pm 2,\\pm 6,\\pm 10)$ (è€å·ä»»æ) ããã³ãã®å
¥ãæ¿ãã®ã¿ã§ãã. ãã®ãã¡äžåŒãã¿ããã®ã¯ãã¹ãŠã®ç¬Šå·ãæ£ã§ãããã®ã®ã¿ã§ãããã, 解çãã¹ãå€ã¯ $18\\times 3!=\\textbf{108}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc046/editorial/1819"
}
] | ã以äžãã¿ããæŽæ°ã®é åºä»ããçµ $(x,y,z)$ ãã¹ãŠã«ã€ããŠ, $x+y+z$ ã®ç·åãæ±ããŠãã ãã.
$$\begin{cases}xyz=x+y+z+102\\\\xy+yz+zx=92\end{cases}$$ |
OMC046 | https://onlinemathcontest.com/contests/omc046 | https://onlinemathcontest.com/contests/omc046/tasks/1407 | F | OMC046(F) | 600 | 12 | 55 | [
{
"content": "ã$90^\\circ+\\angle BAC\\/2=\\angle BIC=180^\\circ-\\angle BAC$ ãã $\\angle BAC=60^\\circ$ ã§ãã. ãã®ãšãæ£åŒŠå®çãã $BC=18$ ã§ãã, $AB=x,AC=y$ ãšããã°äœåŒŠå®çãã $x^2-xy+y^2=18^2$ ã§ãã. ãŸã $\\angle DAI=30^\\circ$ ã§ãããã, äžè§åœ¢ $ADI$ ã«å¯Ÿããæ£åŒŠå®çãã $DI=2\\sqrt{3}$ ã§ãã.\\\r\nãããã§, è§ã®äºçåç·å®çãã $AE:EC=x:18$ ããã³ $DI:IC=x:(y+18)$ ã§ãããã,\r\n$$CE=\\frac{18y}{x+18},\\quad CI=2\\sqrt{3}\\times\\frac{y+18}{x},\\quad CD=2\\sqrt{3}\\times\\frac{x+y+18}{x}$$\r\näžæ¹ã§æ¹ã¹ãã®å®çãã $AC\\times CE=CD\\times CI$ ã§ãããã, äžã®è«žå€ã代å
¥ããŠæŽçããããšã§\r\n$$3x^2y^2=2(x+18)(y+18)(x+y+18)$$\r\n$r=x+y,s=xy$ãšããã°, æ±ããã¹ãå€ã¯ $r$ ã§ãã, äžæ¹ã§æ¡ä»¶ã¯\r\n$$r^2-3s=18^2,\\quad 3s^2=2(s+18r+18^2)(r+18)$$\r\nããã解ã, $r\\gt 18$ ã«çæããããšã§ $r=19+\\sqrt{109}$ ãåŸã. ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{128}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc046/editorial/1407"
},
{
"content": "$\\angle A=60^{\\circ}$ 以éã«ã€ããŠã®è°è«ã§ã. å
ã®è§£èª¬ã¯ããªãèšç®éãéãã§ããïŒäžè§åœ¢ $IBC$ ã®é¢ç©ã«æ³šç®ãããšèšç®éã軜ããªããŸã.\r\n\r\n---\r\n$AI=x$ ãšãããš, äžè§åœ¢ $ABC$ ã®å
æ¥åã®ååŸã¯ $x\\/2$ ãšè¡šã, $BC=18$ ã ããäžè§åœ¢ $IBC$ ã®é¢ç©ã¯ $\\dfrac{9x}{2}$ ãšè¡šãã. ããã§,\r\n$$|IBC|=IBÃICÃ\\dfrac{\\sqrt 3}{4}$$ \r\nãã, $IBÃIC=6\\sqrt 3x$ ãšå°ãã.\r\nãŸã, äœåŒŠå®çãã $IB^2+IBÃIC+IC^2=324$ ã§ãã, $2$ åŒã®åããšãããšã§\r\n$$IB+IC=\\sqrt{324+6\\sqrt 3x}$$\r\nãšè¡šãã. ãã㧠$ID=IE=2\\sqrt 3$ ãã, \r\n$$|IDB|+|IEC|=(IB+IC)Ã2\\sqrt 3Ã\\dfrac{\\sqrt 3}{4}=\\dfrac{3}{2}\\sqrt{324+6\\sqrt 3x}$$\r\nãšãªã. ãã㧠$I$ ãã $AB, AC$ ã«äžãããåç·ã®è¶³ã $P, Q$ ãšãããš, $\\angle ADP=\\angle AEQ$ ãªã®ã§, $|IDP|=|IEQ|$ ã ãã, $|IDB|+|IEC|=|IBC|$ ãå°ãã. ãããã£ãŠ, \r\n $$\\dfrac{9x}{2}=\\dfrac{3}{2}\\sqrt{324+6\\sqrt 3x}$$ \r\nãã $x=\\dfrac{1+\\sqrt{109}}{\\sqrt 3}$ ãšãªã, ãã£ãŠ $$AB+AC=\\sqrt 3x+18=1+\\sqrt{109}+18=19+\\sqrt{109}$$ ã§ãããã, 解çãã¹ãå€ã¯ $\\textbf{128}$ ã§ãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc046/editorial/1407/171"
}
] | ãå
å¿ã $I$ ãšããäžè§åœ¢ $ABC$ ã«ãããŠ, ãã®å€æ¥åã®ååŸã¯ $6\sqrt{3}$ ã§ã. ãŸã, $AB$ ãš $CI$ ã®äº€ç¹ã $D$, $AC$ ãš $BI$ ã®äº€ç¹ã $E$ ãšãããš, $4$ ç¹ $A,D,E,I$ ã¯ååŸ $2\sqrt{3}$ ã®ååšäžã«ãããŸãã. ãã®ãšã, æ£æŽæ° $p,q$ ã«ãã£ãŠ $AB+AC=p+\sqrt{q}$ ãšè¡šããã®ã§, $p+q$ ã®å€ã解çããŠãã ãã.\
ããã ã, $XY$ ã§ç·å $XY$ ã®é·ããè¡šããŸã. |