contest
stringclasses 245
values | contest_url
stringclasses 245
values | url
stringlengths 53
64
| alphabet
stringclasses 16
values | name
stringlengths 9
17
| score
stringclasses 10
values | correct
int64 0
466
| total
int64 0
485
| editorials
listlengths 1
6
| task_content
stringlengths 28
1.49k
|
---|---|---|---|---|---|---|---|---|---|
OMC075 (for beginners) | https://onlinemathcontest.com/contests/omc075 | https://onlinemathcontest.com/contests/omc075/tasks/2899 | C | OMC075(C) | 300 | 175 | 232 | [
{
"content": "ã察称æ§ãã $A_1=1$ ãšã㊠$3$ åããã°ããïŒäžæŠ $A_1\\neq A_8$ ãšããæ¡ä»¶ãé€å€ãïŒ\r\n$$d_{i,j}=(A_1 ãã A_i ãŸã§æ±ºãããšãïŒA_i=j ã§ãããããªãã®ã®åæ°)$$\r\nãšããïŒãã®ãšãïŒ\r\n$$\\displaystyle d_{i,j}=\\sum_{k=1}^3d_{i-1,k}-d_{i-1,j}$$\r\nãšãã挞ååŒãæãç«ã€ããïŒãããçšããŠèšç®ãããš\r\n$$d_{8,1}=42,\\quad d_{8,2}=d_{8,3}=43$$\r\nãåããïŒãããã£ãŠïŒæ¡ä»¶ $A_1\\neq A_8$ ãèæ
®ããã°ïŒçã㯠$3\\times(43+43)=\\textbf{258}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc075/editorial/2899"
},
{
"content": "ãå
é€åçãçšããŠè§£ãïŒãŸãïŒä»¥äžã®åé¡ã $k=0,1,\\ldots, 8$ ã«ã€ããŠèããïŒ\r\n\r\n- $i=1,2,\\ldots, 8$ ã®ãã¡ïŒæ±ºãããã $k$ åã $A_{i}=A_{i+1}$ ãæºãããšãïŒ$A$ ãšããŠèãããããã®ã¯äœéãã§ããïŒ\r\n\r\nãã®åé¡ã®çã㯠$k\\neq 8$ ã®ãšã $3^{8-k}$ éãïŒ$k=8$ ã®ãšã $3$ éãã§ããïŒ\\\r\nã$8$ åã®ãã¡ïŒ$k$ åã決ããæ¹æ³ã¯ ${}\\_{8}\\mathrm{C}\\_{k}$ éãã§ããããšããïŒå
ã®åé¡ã®çãã¯ä»¥äžã®ããã«è¡šããïŒ\r\n\r\n$$\\sum_{k=0}^{8}{{}\\_{8}\\mathrm{C}\\_{k}(-1)^{k}3^{8-k}}+2(-1)^8=(3-1)^8+2=\\mathbf{258}.$$\r\n\r\nã以äžã®è°è«ããïŒäžè¬ã«é·ãã $n~(\\geq 2)$ïŒ$A$ ã®æ°åã®çš®é¡ã $m$ ãšãããšïŒçã㯠$(m-1)^n+(m-1)(-1)^n$ ã§ãããšæ¡åŒµããããšãã§ããïŒäžè¬åããçããæ±ãŸããšïŒãã®åŒãæ£ãããã©ããã $n,m$ ãå°ãããšãã«ç¢ºãããããšãã§ããïŒïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc075/editorial/2899/28"
},
{
"content": "ãäžè¬ã« $8$ ã $2n\\\\ (n \\ge 1)$ ãšããïŒä»®å®ã®å Žåã®æ°ã $a_n$ ãšããŠãããæ±ããïŒ\r\nã$$ a_1 = {}\\_3\\mathrm P\\_2 = 6 $$\r\nã§ããïŒä»¥äžã§ã¯ $n \\ge 2$ ãšããïŒ \r\nããŸãïŒ$A_1,\\ldots, A_{2n-1}$ ãšããŠèããããæŽæ°ã®çµã¯ $\\left(3 \\times 2^{2n-2}\\right)$ éãããïŒããããåºå®ãããšïŒ$A_{2n}$ 㯠$A_1 = A_{2n-1}$ ã®ãšã㯠$2$ éãïŒ$A_1 \\ne A_{2n-1}$ ã®ãšã㯠$1$ éãïŒ$A_1 = A_{2n-1}$ ãšãªã $A_1,\\ldots, A_{2n-1}$ ã®ç·æ°ã¯ïŒ$n-1$ ã®ãšãã«çãããã\r\n$$ a_n = 3 \\times 2^{2n-2} + a_{n-1} \\implies a_n = 3 + \\sum\\_{k=0}^{n-1}\\left(3 \\times 2^{2k}\\right) = 2^{2n} + 2 \\quad (n \\ge 1) $$\r\nãåŸãïŒãã£ãŠçã㯠$2^8 + 2 = \\mathbf{258}$ïŒïŒpotato167 ããã®è§£èª¬ã«ããäžè¬åãå¯èœïŒ",
"text": "é·ãã®æŒžååŒ",
"url": "https://onlinemathcontest.com/contests/omc075/editorial/2899/29"
}
] | ã以äžã® $2$ ã€ã®æ¡ä»¶ãæºããé·ã $8$ ã®æŽæ°å $A_1,A_2,\ldots,A_8$ ã¯ããã€ãããŸããïŒ
- $1\le A_i\le 3\ \ (1\le i\le 8)$
- $A_i\neq A_{i+1}\ \ (1\le i\le 8)$ã(ãã ã $A_9=A_1$ ãšãã) |
OMC075 (for beginners) | https://onlinemathcontest.com/contests/omc075 | https://onlinemathcontest.com/contests/omc075/tasks/1766 | D | OMC075(D) | 300 | 57 | 130 | [
{
"content": "ãçµ $1\\le i\\lt j\\le 2022$ ã«å¯ŸãïŒ$i$ ãš $j$ ãé£ãåã£ãŠçŸããé å㯠$2\\times 2021\\times 2020!$ éãããïŒãã ãïŒ$2$ 㯠$i$ ãš $j$ ã®é åºïŒ$2021$ 㯠$i,j$ ã®äœçœ®ïŒ$2020!$ ã¯æ®ãã®æ°ã®äžŠã³ã«å¯Ÿå¿ããïŒããããïŒæ±ããç·åã¯\r\n$$\\displaystyle S=\\sum_{j=1}^{2022}\\sum_{i=1}^{j-1}\\left(2\\times2021!\\times (j-i)\\right)=2\\times2021!\\times\\sum_{j=1}^{2022}\\sum_{i=1}^{j-1}(j-i)=\\frac{2021\\times2023!}3$$\r\nãšãªãïŒLegendreã®å®çãã $2023!$ 㯠$3$ 㧠$1006$ åå²ãåããããïŒçã㯠$1006-1=\\textbf{1005}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc075/editorial/1766"
}
] | ãé·ã $2022$ ã®æŽæ°å $A_1,A_2,\ldots,A_{2022}$ ã«å¯ŸãïŒãã®**ã¹ã³ã¢**ã以äžã§å®ããŸãïŒ
$$\displaystyle\sum_{i=1}^{2021}|A_i-A_{i+1}|$$
ã$1$ ä»¥äž $2022$ 以äžã®æŽæ°ã䞊ã³æ¿ããŠåŸãããé·ã $2022$ ã®é åå
šãŠã«å¯ŸãïŒ**ã¹ã³ã¢**ã®ç·åã $S$ ãšãããŸãïŒ$S$ ã $3$ ã§å²ããããæ倧ã®åæ°ãæ±ããŠãã ããïŒ |
OMC075 (for beginners) | https://onlinemathcontest.com/contests/omc075 | https://onlinemathcontest.com/contests/omc075/tasks/2907 | E | OMC075(E) | 300 | 125 | 194 | [
{
"content": "ãæ£æŽæ° $a,b,c$ ãçšã㊠$\\displaystyle n=2^{a-1}3^{b-1}5^{c-1}$ ãšè¡šãã°ïŒ$n$ ã®æ£ã®çŽæ°ã®åæ°ã¯ $abc$ ãšæžããïŒããªãã¡ïŒ$abc=k$ ãªãæ£æŽæ°ã®çµ $(a,b,c)$ ãã¡ããã© $45$ åã§ãããããªæå°ã®æ£æŽæ° $k$ ãæ±ããåé¡ã«åž°çãããïŒ\\\r\nã$k$ ã®çŽ å æ°å解ã $k=\\prod_{i=1}^m p_i^{e_i}$ ãšãããšïŒå $i$ ã«å¯ŸãçŽ å æ° $p_i$ ã $a,b,c$ ã«åèšã§ $e_i$ ååé
ããæ¹æ³ã¯\r\n$$\\frac{(e_i+1)(e_i+2)}2$$\r\néãã§ããããïŒ$abc=k$ ãæºããæ£æŽæ° $(a,b,c)$ ã®çµã¯\r\n$$\\prod_{i=1}^m\\frac{(e_i+1)(e_i+2)}2$$\r\néãã§ããããšãåããïŒããã $45$ ã«çãããšãïŒäžè¬æ§ã倱ããå調å¢å ã§ãã $e$ ã®ã¿èããã°\r\n$$(e_1)=(8),(e_1,e_2)=(1,4)$$\r\n$2^8=256\\gt 48=2^4 \\times 3$ ã§ããããïŒæ±ããæå°å€ã¯ $\\textbf{48}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc075/editorial/2907"
}
] | ã以äžã®æ¡ä»¶ãã¿ããæ£æŽæ° $n$ ãã¡ããã© $45$ åååšãããããªïŒæå°ã®æ£æŽæ° $k$ ãæ±ããŠäžããïŒ
- $n$ 㯠$7$ 以äžã®çŽ æ°ã§å²ãåããªãïŒ
- $n$ ã¯æ£ã®çŽæ°ãã¡ããã© $k$ åãã€ïŒ |
OMC075 (for beginners) | https://onlinemathcontest.com/contests/omc075 | https://onlinemathcontest.com/contests/omc075/tasks/2898 | F | OMC075(F) | 300 | 44 | 101 | [
{
"content": "ã$AC$ ãš $BD$ ã®äº€ç¹ã $P$ïŒ$AC$ ãš $DE$ ã®äº€ç¹ã $Q$ïŒ$BC$ ãš $DE$ ã®äº€ç¹ã $R$ ãšããïŒ\r\n\r\n\r\n**解æ³1.**ã以äžã®ããã«è§åºŠèšç®ã§ããããšããïŒäžè§åœ¢ $ABF$ 㯠$CBA$ ãšçžäŒŒã§ããïŒ\r\n$$\\angle{BAF}=\\angle{BAE}=\\angle{BDE}=90^\\circ-\\angle{DQP}=90^\\circ-\\angle{RQC}=\\angle{ACB}$$\r\nãã£ãŠ $\\displaystyle BF=5\\times\\frac{5}{7}=\\frac{25}7$ ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $25+7=\\textbf{32}$ ã§ããïŒ \r\n\r\n**解æ³2.**ã$ADQ$ ãš $QCE$ ã¯çžäŒŒãªäºç蟺äžè§åœ¢ã§ããïŒ$P,R$ ã¯ããããã®åºèŸºã®äžç¹ã§ããããšããããïŒäžå¹³æ¹ã®å®çãã $AP=1$ ã§ããããïŒ$CE=CQ=4$ ãåŸãïŒãããã $ABF$ ãš $CEF$ 㯠$5:4$ ã§çžäŒŒã ããïŒ\r\n$$\\displaystyle FE=\\frac45BF, \\quad \\displaystyle AF=\\frac54FC=\\frac54(7-BF)$$\r\nãã£ãŠïŒ$\\angle ACF=\\angle FCE$ ãã\r\n$$6:4=AC:CE=AF:FE\\displaystyle =\\frac54(7-BF):\\frac45BF$$\r\nããã解ãããšã§ $\\displaystyle BF=\\frac{25}7$ ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $25+7=\\textbf{32}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc075/editorial/2898"
}
] | ãå€æ¥åã $\Gamma$ ãšããäžè§åœ¢ $ABC$ ã¯ïŒ$AB=5,AC=6,BC=7$ ãã¿ãããŸãïŒ$B$ ãã $AC$ ã«ããããåç·ãš $\Gamma$ ã®äº€ç¹ã®ãã¡ $B$ ã§ãªãæ¹ã $D$ ãšãïŒ$D$ ãã $BC$ ã«ããããåç·ãš $\Gamma$ ã®äº€ç¹ã®ãã¡ $D$ ã§ãªãæ¹ã $E$ ãšããŸãïŒç·å $AE$ ãš $BC$ ã®äº€ç¹ã $F$ ãšãããšãïŒ$BF$ ã®é·ããæ±ããŠãã ããïŒ\
ããã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC074 (for experts) | https://onlinemathcontest.com/contests/omc074 | https://onlinemathcontest.com/contests/omc074/tasks/1516 | A | OMC074(A) | 200 | 207 | 219 | [
{
"content": "ãåæ人ã«ã€ããŠçŽ çŽã§ããããè¡šãççå€ã**çŽ çŽåºŠ**ãšåŒã¶. $pe\\overbrace{p...p}^{n}er$ ãããš $pe\\overbrace{p...p}^{f(10^n)}er$ ããã®çŽ çŽåºŠã¯çãã. ããã§, åååŒã®æ³ã $4$ ãšããã°,\r\n$$f(10^n) = \\begin{cases} 1 &(n \\equiv 0) \\\\\\ 10 \\equiv 2 &(n \\equiv 1) \\\\\\ 100 \\equiv 0 &(n \\equiv 2) \\\\\\ 91 \\equiv 3 &(n \\equiv 3) \\end{cases} $$\r\nãã£ãŠ, 以äžã®ããã«å¿
èŠååæ¡ä»¶ãè¡šçŸããããšãã§ãããã, æ±ããå Žåã®æ°ã¯ $2^2 = \\textbf{4}$ ã§ãã. \r\n\r\n- $n\\equiv 0,1,2$ ãªã $n$ ã«ã€ã㊠$pe\\overbrace{p...p}^{n}er$ ããã®çŽ çŽåºŠããã¹ãŠçãã.\r\n- $n\\equiv 3$ ãªã $n$ ã«ã€ã㊠$pe\\overbrace{p...p}^{n}er$ ããã®çŽ çŽåºŠããã¹ãŠçãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc074/editorial/1516"
}
] | ã$peer$ æã«ã¯, $peper$ ãã, $pepper$ ãã, ... , $pe\overbrace{p...p}^{100}er$ ããã® $100$ 人ãäœãã§ããŸã. $peer$ æã®äœäººã®æ§æ Œã¯ã©ãã**çŽ çŽ**ã**ç
§ãå±ãã**ã§ãã, æ§æ ŒãçŽ çŽãªè
ã¯åžžã«çŽ çŽã«æ¬åœã®ããšãèšã, ç
§ãå±ããã¯åžžã«ç
§ããŠåãã€ããŠããŸããŸã. ãŸã, $peer$ æã®äœäººã¯ã©ã®äºäººãäºãã®æ§æ ŒãçŽ çŽã§ãããç
§ãå±ããã§ããããææ¡ããŠããŸã.\
ãããæ, $peer$ æã«æ
人ããã£ãŠããŸãã. æ
人ã¯, $100$ 以äžã®æ£ã®æŽæ° $n$ ããããã«å¯ŸããŠ, $pe\overbrace{p...p}^{n}er$ ããã«
- $x$ ã $101$ ã§å²ã£ãäœãã $f(x)$ ãšãããšã, $pe\overbrace{p...p}^{f(10^n)}er$ ããã¯çŽ çŽã§ããïŒ
ãšè³ªåããŸãã. ãããš, ãã¹ãŠã®æ人ããã¯ãããšåçããŸãã.\
ããã®ãšã, æ人ãã¡ã®æ§æ Œã®çµã¿åãããšããŠèãããããã®ã¯ããã€ãããŸããïŒ |
OMC074 (for experts) | https://onlinemathcontest.com/contests/omc074 | https://onlinemathcontest.com/contests/omc074/tasks/1808 | B | OMC074(B) | 400 | 148 | 197 | [
{
"content": "ãå·Šãã $k$ åç®ã®ãã¹ã«é§ããããšã, ãã®é§ã«åŸç¹ $k - 1$ ãå²ãåœãŠ, åç€é¢ã«ã€ã㊠$100$ åã®é§ã®åŸç¹ã®ç·åããã®ç€é¢ã®åŸç¹ãšãã. ãã®ãšã, åæçªã®ååŸã§ã®ç€é¢ã®åŸç¹ã®å·®ã¯ $2$ ä»¥äž $9$ 以äžã§ãã. ãŸã, ã²ãŒã éå§æã®ç€é¢ã®åŸç¹ã¯ $0$ ç¹ã§ãã, ã²ãŒã çµäºæã®ç€é¢ã®åŸç¹ã¯ $100(n -1) - 1 = 100n - 101$ ç¹ä»¥äžã§ãã. ãããã£ãŠãã®ã²ãŒã ã¯, å®éãããå
æ»ãšããŠ, å®éãããšå³¶æããã $0$ ã«äº€äºã« $2$ ä»¥äž $9$ 以äžã®å¥œããªæ°ã足ããŠãã, $100n - 101$ 以äžã«ããã»ããåã¡ãšããã²ãŒã ã«èšãæãããã.\\\r\nãçµè«ããèšããš, ãã®ã²ãŒã ã«ã¯ $n \\equiv 1,2 \\pmod{11}$ ã®ãšã島æããã«å¿
åæ³ããã, ãã以å€ã®ãšãå®éããã«å¿
åæ³ãããããšã以äžããåãã. ç¹ã«ãã®ç·å㯠$\\textbf{4131}$ ã§ãã. \r\n\r\n- $n \\equiv 1 \\pmod{11}$ ã®ãšã\\\r\nã島æããã¯ç€é¢ã®åŸç¹ã $11$ ãæ³ãšã㊠$100n - 100$ ãšçãããªãããã«åžžã«æäœã§ãã. \r\n- $n \\equiv 2 \\pmod{11}$ ã®ãšã\\\r\nã島æããã¯ç€é¢ã®åŸç¹ã $11$ ãæ³ãšã㊠$100n - 101$ ãšçãããªãããã«åžžã«æäœã§ãã. \r\n- $n \\equiv 3 \\pmod{11}$ ã®ãšã\\\r\nãå®éããã¯ç€é¢ã®åŸç¹ã $11$ ãæ³ãšã㊠$100n - 100$ ãšçãããªãããã«åžžã«æäœã§ãã. \r\n- $n \\equiv 0,4,5,\\ldots,10 \\pmod{11}$ ã®ãšã\\\r\nãå®éããã¯ç€é¢ã®åŸç¹ã $11$ ãæ³ãšã㊠$100n - 101$ ãšçãããªãããã«åžžã«æäœã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc074/editorial/1808"
}
] | ã$n$ ã $2$ ä»¥äž $100$ 以äžã®æŽæ°ãšããŸã. å·Šå³ã«äžŠãã $n$ åã®ãã¹ãš $100$ åã®é§ã䜿ã£ãŠ, å®éãããšå³¶æããã¯æ¬¡ã®ãããªã²ãŒã ãè¡ããŸã.\
ãã¯ãã, ãã¹ãŠã®é§ã¯å·Šç«¯ã®ãã¹ã«çœ®ãããŠããŸã. å
æ»ãå®éãããšããŠ, äºäººã¯èªåã®æçªã§æ¬¡ã®æäœã $2$ åä»¥äž $9$ å以äžã®å¥œããªåæ°ç¹°ãè¿ããŸãïŒ
- å³ç«¯ã®ãã¹ä»¥å€ã«çœ®ãããŠããé§ãäžã€éžã³, ãããçŸåšçœ®ãããŠãããã¹ã®äžã€å³ã®ãã¹ã«ç§»åãã.
å
ã«èªåã®æçªãæ£ããéè¡ããããšãã§ããªããªã£ãæ¹ãè² ããšãªã, ããäžæ¹ãåã¡ãšãªããŸã.\
ããã®ãšã, å®éãããæåãå°œããããšã§å¿
ãåãŠããã㪠$n$ ã®ç·åãæ±ããŠãã ãã. |
OMC074 (for experts) | https://onlinemathcontest.com/contests/omc074 | https://onlinemathcontest.com/contests/omc074/tasks/1514 | C | OMC074(C) | 600 | 57 | 112 | [
{
"content": "ãåæ人ã«ã€ããŠçŽ çŽã§ããããè¡šãççå€ã**çŽ çŽåºŠ**ãšåŒã³, $101$ ãæ³ãšããåå§æ ¹ $r$ ã«ã€ããŠ, $pe\\overbrace{p...p}^{f(r^n)}er$ ããã®çŽ çŽåºŠã $s(n)$ ã§è¡šã. $1\\leq n\\leq 100$ ã®ç¯å²å€ã«ã€ããŠã, $s(n) = s(n - 100)$ ã§ããããšã«çæãã.\\\r\nãæ¡ä»¶ãã $pe\\overbrace{p...p}^{f(r^{n})}er$, $pe\\overbrace{p...p}^{f(r^{2n})}er$, ... , $pe\\overbrace{p...p}^{f(r^{100n})}er$ ã®ãã¡ã¡ããã©å¶æ°äººãçŽ çŽã§ããããšãã, \r\n$$\r\n\\sum_{k = 1}^{100}s(kn) \\equiv 0 \\pmod{2}\r\n$$\r\nãä»»æã® $n$ ã§æç«ãã. ããã§, $a$ ã $10$ ãšäºãã«çŽ ãªæŽæ°ãšã, $n$ ã« $25a,5a,a$ ããããã代å
¥ãããš,\r\n$$\\begin{aligned}\r\n0 &\\equiv \\sum_{k = 1}^{100}s(25ak) \\equiv s(25) + s(50) + s(75) + s(100) \\pmod{2} \\\\\\\\\r\n0 &\\equiv \\sum_{k = 1}^{100}s(5ak) \\equiv s(5) + s(10 ) + \\cdots + s(100) \\pmod{2} \\\\\\\\\r\n0 &\\equiv \\sum_{k = 1}^{100}s(ak) \\equiv s(1) + s(2) + \\cdots + s(100) \\pmod{2} \r\n\\end{aligned}$$\r\nããªãã¡, $s(25),s(50),s(75),s(100)$ ã®ãã¡ã¡ããã©å¶æ°åã $1$ ã§ãã, $25$ ã®åæ°ã§ãªã $1$ ä»¥äž $100$ 以äžã® $5$ ã®åæ° $k$ 㧠$s(k) = 1$ ãªããã®ãã¡ããã©å¶æ°åãã, $5$ ã®åæ°ã§ãªã $1$ ä»¥äž $100$ 以äžã®æŽæ° $k$ 㧠$s(k) = 1$ ãªããã®ãã¡ããã©å¶æ°åããå¿
èŠããã. éã«ããããååæ¡ä»¶ã§ããããšãããããã,\r\n$$\r\nm = \\left(\\sum_{k = 0}^{2}{\\_{4}}{\\mathrm{C}}\\_{2k}\\right)\\left(\\sum_{k = 0}^{8}{\\_{16}}{\\mathrm{C}}\\_{2k}\\right)\\left(\\sum_{k = 0}^{40}{\\_{80}}{\\mathrm{C}}\\_{2k}\\right) = 2^3\\times 2^{15}\\times 2^{79} = 2^{97}\r\n$$\r\nãã, æ±ããå€ã¯ $\\textbf{194}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc074/editorial/1514"
}
] | ã$peer$ æã«ã¯, $peper$ ãã, $pepper$ ãã, ... , $pe\overbrace{p...p}^{100}er$ ããã® $100$ 人ãäœãã§ããŸã. $peer$ æã®äœäººã®æ§æ Œã¯ã©ãã**çŽ çŽ**ã**ç
§ãå±ãã**ã§ãã, æ§æ ŒãçŽ çŽãªè
ã¯åžžã«çŽ çŽã«æ¬åœã®ããšãèšã, ç
§ãå±ããã¯åžžã«ç
§ããŠåãã€ããŠããŸããŸã. ãŸã, $peer$ æã®äœäººã¯ã©ã®äºäººãäºãã®æ§æ ŒãçŽ çŽã§ãããç
§ãå±ããã§ããããææ¡ããŠããŸã.\
ãããæ, $peer$ æã«æ
人ããã£ãŠããŸãã. æ
人ã¯, $100$ 以äžã®æ£ã®æŽæ° $n$ ããããã«å¯ŸããŠ, $pe\overbrace{p...p}^{n}er$ ããã«
- $x$ ã $101$ ã§å²ã£ãäœãã $f(x)$ ãšãããšã, $2$ ä»¥äž $100$ 以äžã®æŽæ° $k$ ã§ãã£ãŠ, $pe\overbrace{p...p}^{f(n^k)}er$ ãããçŽ çŽã§ãããããªãã®ã¯ã¡ããã©å¥æ°åã§ããïŒ
ãšè³ªåããŸãã. ãããš, ãã¹ãŠã®æ人ããã¯ãããšåçããŸãã.\
ããã®ãšã, æ人ãã¡ã®æ§æ Œã®çµã¿åãããšããŠèãããããã®ã¯ $m$ éããããŸã. $m$ã®çŽ å æ°å解ã
$$m=p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k}$$
ãšãããšã, $p_1e_1+p_2e_2+\cdots+ p_ke_k$ãæ±ããŠãã ãã. ãã ã, åçŽ æ° $p_i$ ã¯çžç°ãªã, å $e_i$ ã¯æ£ãšããŸã. |
OMC074 (for experts) | https://onlinemathcontest.com/contests/omc074 | https://onlinemathcontest.com/contests/omc074/tasks/270 | D | OMC074(D) | 600 | 96 | 142 | [
{
"content": "ã$AX$ ã¯å $ABC$ ã®çŽåŸã§ãã. ãŸã, $AYX$ ãš $XYZ$ ã®å€æ¥åååŸãçããããšãã $\\angle XAY=\\angle XZY$ ãæç«ã (ãããããšãã«éè§ã§ããããšã«çæãã), ç¹ã« $AX=XZ$ ããã³ $AY=XY$ ãæç«ããããšãããã.\\\r\nã äžè§åœ¢ $AXY$ ã®åå¿ã $H$ ãšã, äžè§åœ¢ $ABC,AHX$ ã®å€å¿ããããã $O_1,O_2$ ãšãããš, æåäºå®ãšããŠäžè§åœ¢ $AHX$ ãš $AXY$ ã®å€æ¥åååŸãçããããšãã $AO_2=HO_2=25$ ã§ãã. ãããã£ãŠ,\r\n$$O_1O_2=\\sqrt{AO_2^2-AO_1^2}=7,\\quad AH=HX=\\sqrt{(O_1O_2+HO_2)^{2} +AO_{1}^{2}} =40$$\r\nãŸãEulerç·ã®è°è«ãã $HY=2O_1O_2=14$ ã§ãã.\\\r\nããã㧠$AY$ ãš $HX$ ã®äº€ç¹ã $P$ ãšããã°, äžè§åœ¢ $HYP$ ãš $HXO_1$ ã¯çžäŒŒã§ãããã\r\n$$PY=O_1X\\times\\dfrac{HY}{HX}=\\dfrac{42}{5}$$\r\näžæ¹ã§äžè§åœ¢ $AHP$ ãš $AO_{2}O_{1}$ ã®çžäŒŒãã\r\n$$AP=AO_1\\times\\frac{AH}{AO_{2}} =\\frac{192}{5}$$\r\nãããã£ãŠ $YZ=PY+PZ=PY+AP=\\dfrac{234}{5}$ ã§ãã.\\\r\nããšããã§, ç°¡åãªè§åºŠèšç®ã«ãã£ãŠäžè§åœ¢ $ABC$ ãš $XYZ$ ã¯çžäŒŒã§ãã, å€æ¥åååŸãèããã°ãã®çžäŒŒæ¯ã¯ $24:25$ ã§ãã. ãããã£ãŠ, $BC=YZ\\times\\dfrac{24}{25}=\\dfrac{5616}{125}$ ãã, 解çãã¹ãå€ã¯ $\\textbf{5741}$ ã§ãã. \\\r\nããªã, å®éã«ã¯äžè§åœ¢ $AXY$ ã®å€å¿ã¯ $AC$ äžã«ãã. ãããçšãããš, ããç°¡æœã«è§£ãããšãåºæ¥ã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc074/editorial/270"
},
{
"content": "ãäžè§åœ¢ $AXY$ ãšäžè§åœ¢ $XYZ$ ã®å€æ¥åååŸãçããããšããïŒ $\\angle XAZ=\\angle XZA$ ãšãªãããšãšïŒ $\\angle ABX=\\angle ACX=90^\\circ$ ãã $AX$ ãäžè§åœ¢ $ABC$ ã®å€æ¥åã®çŽåŸãšãªãããšããïŒ $XZ=XA=48$ ãšãªãïŒ\\\r\nãè§ãè¿œããšïŒäžè§åœ¢ $ABC$ ãšäžè§åœ¢ $XYZ$ ã¯çžäŒŒã§ããïŒçžäŒŒæ¯ã¯å€æ¥åååŸã®æ¯ã«äžèŽããã®ã§ $24:25$ ã§ããïŒãã£ãŠïŒ $XA:AC=XZ:AC=25:24$ ã§ããïŒäžè§åœ¢ $ACX$ ã¯äžèŸºæ¯ã $7:24:25$ ã®çŽè§äžè§åœ¢ïŒ\\\r\nãŸãïŒ $AZ$ ãš $XB$ ã®äº€ç¹ã $P$ ãšãïŒ $AZ$ ãšäžè§åœ¢ $ABC$ ã®å€æ¥åã®äº€ç¹ã $Q$ ãšãããšïŒè§ãè¿œãããšã§äžè§åœ¢ $ABP$ ãšäžè§åœ¢ $XQP$ ã¯ååã§ããïŒãã®äºã€ã®äžè§åœ¢ã¯äžè§åœ¢ $ACX$ ãšçžäŒŒã§ãããšãããïŒ\\\r\nãããã§ïŒäžè§åœ¢ $ABP$ ãšäžè§åœ¢ $XQP$ ã®äžèŸºã®é·ãã $7k,24k,25k$ ãšãããšïŒäžè§åœ¢ $AXQ$ ã§äžå¹³æ¹ã®å®çããïŒ $AX=40k=48$ ãã $k=\\dfrac{6}{5}$ ãšãªãïŒ\\\r\nããã£ãŠïŒ $BC=\\dfrac{24}{25}PZ=\\dfrac{24}{25}(PQ+QZ)=\\dfrac{24}{25}\\cdot39k=\\dfrac{5616}{125}$ ããïŒè§£çãã¹ãå€ã¯ $\\textbf{5741}$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc074/editorial/270/25"
}
] | ã$AB\lt AC$ ãªãéè§äžè§åœ¢ $ABC$ ã«ãããŠ, $A$ ãã察蟺ã«ããããåç·ã $s_A$, $B$ ãéã $AB$ ã«åçŽãªçŽç·ã $s_{B}$, $C$ ãéã $AC$ ã«åçŽãªçŽç·ã $s_C$ ãšããŸã. ãŸã $s_{B}$ ãš $s_{C}$ ã®äº€ç¹ã $X$, $s_{A}$ ãš $s_{B}$ ã®äº€ç¹ã $Y$, $s_{A}$ ãš $s_{C}$ ã®äº€ç¹ã $Z$ ãšããŸã. äžè§åœ¢ $ABC$ ã®å€æ¥åååŸã $24$, äžè§åœ¢ $AXY$ ããã³ $XYZ$ ã®å€æ¥åååŸããšãã« $25$ ã§ãããšã, 蟺 $BC$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠäžãã. |
OMC074 (for experts) | https://onlinemathcontest.com/contests/omc074 | https://onlinemathcontest.com/contests/omc074/tasks/1698 | E | OMC074(E) | 700 | 13 | 49 | [
{
"content": "ã$1$ ãã $100$ ã®çªå·ãä»ãã $100$ åã®é ç¹ã«ã€ããŠ, $pe\\overbrace{p...p}^{n}er$ ãããçŽ çŽãªãã°é ç¹ $n$ ãçœã§å¡ã, $pe\\overbrace{p...p}^{n}er$ ãããç
§ãå±ãããªãã°é ç¹ $n$ ãé»ã§å¡ã. ããã«, é ç¹ $n$ ããé ç¹ $a_n$ ãžæå蟺ã匵ã£ãã°ã©ããèãã. ãã®ã°ã©ãã«ãããŠ, ã©ã®èŸºã䞡端ã®é ç¹ã®è²ã¯ç°ãªã, ã©ã®é ç¹ããã äžã€ã® $2$ ãã倧ããªå¶æ°åã®é ç¹ãããªãéè·¯ã«å«ãŸããŠãã. ãããã£ãŠ, ç¹ã«çœãé ç¹ã®æ°ãšé»ãé ç¹ã®æ°ã¯çããããšã«æ³šæãã. \r\n\r\n----\r\n**è£é¡.**ãçœãé ç¹ $W_1,W_2,\\dots,W_n$ ãšé»ãé ç¹ $B_1,B_2,\\dots,B_n$ ããã. ãã®ãšã, ãããã®é ç¹ã®éã« $2n$ æ¬ã®æå蟺ã匵ãæ¹æ³ã§ãã£ãŠ, ã©ã®èŸºã䞡端ã®é ç¹ã®è²ã¯ç°ãªã, ã©ã®é ç¹ããã äžã€ã®å¶æ°åã®é ç¹ãããªãéè·¯ã«å«ãŸããŠãããã®ã¯, $(n!)^2$ éããã.\\\r\n**蚌æ.**ã$W_i$ ããåºã蟺ã®è¡ãå
ã $B_{p_i}$, $B_i$ ããåºã蟺ã®è¡ãå
ã $W_{q_i}$ ãšãããš, \r\n$p_1,p_2,\\dots,p_n$ ãš $q_1,q_2,\\dots,q_n$ ã¯ãããã $1,2,\\dots,n$ ã®çœ®æã§ãã. \r\nãŸã, ç°ãªãã°ã©ãã«ã€ããŠç°ãªã眮æãåŸããã. \\\r\nãéã«, $p_1,p_2,\\dots,p_n$ ãš $q_1,q_2,\\dots,q_n$ ããããã $1,2,\\dots,n$ ã®çœ®æãšãããš, \r\n$W_i\\to B_{p_i}$, $B_i\\to W_{q_i}$ ãšèŸºã匵ãããšã§, æ¡ä»¶ãã¿ããã°ã©ããšãªã. \\\r\nããããã£ãŠ, æ¡ä»¶ãã¿ããã°ã©ããšçœ®æ $\\\\{p_i\\\\},\\\\{q_i\\\\}$ ã®çµã¯äžå¯Ÿäžå¯Ÿå¿ãããã, 瀺ããã. \r\n\r\n---\r\n\r\nã以äž, $m$ ãæ±ãããã, é ç¹ã®è²ãåºå®ã, å
é€åçãçšãã. \r\né»ãšçœã®é ç¹ $1$ ã€ãã€ãããªãéè·¯ $k$ åã®éžã³æ¹ã¯ $\\left({}\\_{50}\\mathrm{C}\\_k\\right)^2k!$ éãã§ãããã\r\n$$\r\nm = {}\\_{100}\\mathrm{C}\\_{50}\\times \\sum\\_{k = 0}^{50} (-1)^k\\left({}\\_{50}\\mathrm{C}\\_k\\right)^2k!\\bigl((50 - k)!\\bigr)^2 = 100!\\times \\sum_{k = 0}^{50}\\frac{(-1)^k}{k!}\r\n$$\r\nãåŸã. åŸã£ãŠ, ããããã®çŽ æ°ã«ã€ããŠèšç®ããããšã§æ±ããçã㯠$50+26+12+10=\\bf{98}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc074/editorial/1698"
},
{
"content": "ãæåŸã«éå¶ããããè£è¶³ãããã®ã§æ¯éæåŸãŸã§èªãã§ãã ããïŒ\r\n\r\n----\r\n\r\nã$1,2,\\cdots, 100$ ãé ç¹ãšã $n$ ãã $a_n$ ã«èŸºã匵ã£ãæåã°ã©ããèããïŒãã®ãšãæ¡ä»¶ããåé£çµæåã¯åšæã $4$ 以äžã®å¶æ°ã®ãµã€ã¯ã«ã§ããïŒãµã€ã¯ã«ã $k$ åã®ãšãæ人ã®æ§æ Œã¯ $2^k$ éãããïŒ\\\r\nãäŸãšããŠåšæ $4$ ã®ãµã€ã¯ã«ã $22$ åïŒ$6$ ã®ãµã€ã¯ã«ã $2$ åã®å ŽåãèãããïŒãã®ãšãåé¡ã®çµã¿åããã¯\r\n$$\\frac{100!}{(4!)^{22}\\times (6!)^2}\\times \\frac{1}{22!\\cdot 2!} \\times (3!)^{22}\\times (5!)^2\\times 2^{22+2}=\\frac{100!}{2^{22}\\times 3^2}\\times \\frac{1}{22!\\cdot 2!}$$\r\néãã§ããïŒããã§ïŒå³èŸºãããã«ä»¥äžã®ããã«å€åœ¢ããïŒ\r\n$$\\frac{100!}{24!}\\times \\frac{1}{2^{22}\\times 3^2}\\times \\frac{24!}{22!\\cdot 2!}$$\r\nãã®ãšã以äžã«çæããïŒ\r\n- $2\\times 22+3\\times 2=50$\r\n- 第3é
㯠$22$ åã® $2$ ãš $2$ åã® $3$ ã䞊ã¹æ¿ããæ¹æ³ã®ç·æ°ã«ãªã£ãŠããïŒ\r\n\r\nããã®èŠé ã§ïŒé£çµæåã®åæ°ã $k$ åã§ããå ŽåïŒåé¡ã®çµã¿åããã®ç·æ°ã¯ä»¥äžã®åœ¢åŒçåªçŽæ°ã® $x^{50}$ ã®ä¿æ°ã§äžããããããšãåããïŒ\r\n$$\\frac{100!}{k!}\\left(\\frac{x^2}{2}+\\frac{x^3}{3}+\\frac{x^4}{4}+\\cdots\\right)^k$$\r\nããã $k=1,2,\\cdots$ ã«ã€ããŠè¶³ãåãããããšã§ïŒçµå±æ±ããã¹ã $m$ ã¯ä»¥äžã§è¡šããã $Q(x)$ ã® $x^{50}$ ã®ä¿æ°ã§äžããããïŒ\r\n$$P(x)=\\frac{x^2}{2}+\\frac{x^3}{3}+\\frac{x^4}{4}+\\cdots,ãQ(x)=\\frac{100!}{1!}P(x)+\\frac{100!}{2!}P(x)^2+\\frac{100!}{3!}P(x)^3\\cdots$$\r\nãã㧠$P^\\prime (x) = x+x^2+x^3+\\cdots$ ã ãã\r\n$$\\begin{aligned}\r\nQ^\\prime(x)&=P^\\prime (x) \\left(\\frac{100!}{0!}+\\frac{100!}{1!}P(x)+\\frac{100!}{2!}P(x)^2+\\cdots\\right) \\\\\\\\\r\n&= (x+x^2+x^3+\\cdots)(100!+Q(x))\r\n\\end{aligned}$$\r\n$Q(x)=a_0+a_1 x+ a_2 x^2+\\cdots$ ãšããã° $m=a_{50}$ ã§ããïŒ\r\n$$\\begin{aligned}\r\nQ^\\prime(x) &= a_1+2a_2x+3a_3x^2+\\cdots \\\\\\\\\r\n&= (a_0+100!)x+(a_0+a_1+100!)x^2+(a_0+a_1+a_2+100!)x^3+\\cdots\r\n\\end{aligned}$$\r\nä¿æ°æ¯èŒãš $a_0=a_1=0$ ãã以äžãåŸãããïŒ\r\n$$a_2=\\frac{100!}{2},ãa_3=\\frac{100!}{3},ãa_{k+2}=\\frac{100!+\\sum_{i=2}^{k} a_i}{k+2}ã(k=2,3,\\cdots)$$\r\nããšã¯ $a_{50}$ ã $2,3,5,7$ ã§ããããå²ãåããåæ°ãæ±ããã°ããïŒ$b_n=\\dfrac{a_n}{100!}$ ãšããã°ïŒåž°çŽçã« $b_n$ ã¯ä»¥äžã«çããããšãåããïŒ\r\n- æ£æŽæ°ãããªãç矩å調æžå°ãªæéæ°åã§ãã£ãŠïŒåé
ã $n$ ã§ããïŒé£ç¶ãã $2$ é
ã®å·®ãåžžã« $2$ 以äžã§ãããããªãã®ãã¹ãŠã«ã€ããŠïŒé
ã®ç·ç©ã®éæ°ã足ãåãããå€ïŒ\r\n\r\näŸãã° $n=6$ ã®ãšãã¯\r\n$$b_6=\\frac{1}{6\\times 4\\times 2}+\\frac{1}{6\\times4}+\\frac{1}{6\\times 3}+\\frac{1}{6\\times 2}+\\frac{1}{6}$$\r\nã§ããïŒä»¥äž $2,3,5,7$ ããããã«ã€ã㊠$b_{50}$ ã®ãªãŒããŒãèããïŒäŸ¿å®äžè² ã®å€ãèããïŒïŒ\r\n- $2$ ã®ãšã $\\\\{50,48,46,\\cdots,2\\\\}$ ã®ãšãã®ã¿ãªãŒããŒãæå°å€ $-47$ ãåãïŒ$b_{50}$ ã®ãªãŒããŒã¯ $-47$ ã§ããïŒ\r\n- $3$ ã®ãšã $\\\\{50,48,45,\\cdots,3\\\\}$ ã®ãšãã®ã¿ãªãŒããŒãæå°å€ $-22$ ãåãïŒ$b_{50}$ ã®ãªãŒããŒã¯ $-22$ ã§ããïŒ\r\n- $5$ ã®ãšã\r\n$$\\\\{50,â»,45,â»,40,\\cdots,10,â»,5,â»\\\\}$$\r\nã®åœ¢åŒã§è¡šãããæ°åã®ãšãã«ãªãŒããŒãæå°å€ $-12$ ãåãïŒ$b_{50}$ ã®ãªãŒããŒã $-12$ ã§ããããšãèšç®ã«ãã確èªã§ããïŒ\r\n- $7$ ã®ãšã\r\n$$\\\\{50,â»,42,â»,35,\\cdots,14,â»,7,â»\\\\}$$\r\nã®åœ¢åŒã§è¡šãããæ°åã®ãšãã«ãªãŒããŒãæå°å€ $-6$ ãåãïŒ$b_{50}$ ã®ãªãŒããŒã $-6$ ã§ããããšãèšç®ã«ãã確èªã§ããïŒ\r\n\r\n以äžããïŒæ±ããå€ã¯ $(97-47)+(48-22)+(24-12)+(16-6)=\\textbf{98}$ ã§ããïŒ\r\n\r\n----\r\n\r\nïŒéå¶è£è¶³ïŒåœ¢åŒçåªçŽæ°ãšã㊠$P,Q$ ã¯æ¬¡ã®ããã«èšç®ã§ãïŒããããæ¬è§£èª¬ã«ããã $m$ ã®è¡šåŒãåŸãããšãã§ããŸãïŒ\r\n$$\\begin{aligned}\r\nP(x)&=-\\log(1-x)-x,\\\\\\\\\r\nQ(x)&=100!(e^{P(x)}-1)\\\\\\\\\r\n&=100!\\left(\\dfrac{e^{-x}}{1-x}-1\\right)\\\\\\\\\r\n&=100!\\left(\\sum_{k\\geq 0}\\dfrac{(-x)^k}{k!}\\right)\\left(\\sum_{k\\geq 0}x^k\\right)-100!\\\\\\\\\r\n&=100!\\sum_{n\\geq 1}\\left(\\sum_{0\\leq k\\leq n}\\dfrac{(-1)^k}{k!}\\right)x^n\r\n\\end{aligned}$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc074/editorial/1698/70"
}
] | ã$peer$ æã«ã¯, $peper$ ãã, $pepper$ ãã, ... , $pe\overbrace{p...p}^{100}er$ ããã® $100$ 人ãäœãã§ããŸã. $peer$ æã®äœäººã®æ§æ Œã¯ã©ãã**çŽ çŽ**ã**ç
§ãå±ãã**ã§ãã, æ§æ ŒãçŽ çŽãªè
ã¯åžžã«çŽ çŽã«æ¬åœã®ããšãèšã, ç
§ãå±ããã¯åžžã«ç
§ããŠåãã€ããŠããŸããŸã. ãŸã, $peer$ æã®äœäººã¯ã©ã®äºäººãäºãã®æ§æ ŒãçŽ çŽã§ãããç
§ãå±ããã§ããããææ¡ããŠããŸã.\
ãããæ, $peer$ æã«æ
人ããã£ãŠããŸãã. æ
人ã¯, ãŸã $1,2,...,100$ ã䞊ã³æ¿ããé å $a_1,a_2,...,a_{100}$ ã§ãã£ãŠ $a_{a_n}\neq n$ ãåžžã«ã¿ãããã®ãé©åœã«å®ã, ãã㊠$100$ 以äžã®æ£ã®æŽæ° $n$ ããããã«å¯ŸããŠ, $pe\overbrace{p...p}^{n}er$ ããã«
- $pe\overbrace{p...p}^{a_n}er$ ããã¯ç
§ãå±ããã§ããïŒ
ãšè³ªåããŸãã. ãããš, ãã¹ãŠã®æ人ããã¯ãããšåçããŸãã.\
ããã®ãšã, ãæ
人ã®å®ãã $\lbrace a_n\rbrace$ ãšæ人ãã¡ã®æ§æ Œãã®çµã¿åãããšããŠèãããããã®ã¯ $m$ åãããŸã. $m$ ã $10$ 以äžã®çŽ æ°ã§å²ãåããåæ°ã®ç·åãæ±ããŠãã ãã. äŸãã°, $m = 2^3 \times 3^5 \times7\times11$ ã§ããã° $9$ ã§ã. |
OMC074 (for experts) | https://onlinemathcontest.com/contests/omc074 | https://onlinemathcontest.com/contests/omc074/tasks/2555 | F | OMC074(F) | 700 | 9 | 25 | [
{
"content": "ã$\\displaystyle f(x, y) = \\frac{x}{xy+1}$ ãšãããš, ä»»æã®æ£ã®å®æ°ã®çµ $(p, q, r)$ ã«å¯ŸããŠ\r\n$$f(f(p, q), r) = f(p, q + r)$$\r\nãæç«ãã. ãã£ãŠ, $S_n = x_1 + x_2 + \\cdots + x_n$ ãšå®ãããš, $x_{n+1}=f(x_{n},x_{n})$ ããåž°çŽçã«\r\n$$\r\nS_{n + 1} - S_{n} = x_{n + 1} = f(x_1, x_1 + \\cdots + x_n) = \\frac{1}{S_n + \\frac{5926}{3141}}\r\n$$\r\nã®æç«ãåãã. ãããã£ãŠ, $\\displaystyle a_n = \\frac{S_n + \\frac{5926}{3141}}{\\sqrt n}$ ãšãããš, 以äžãæç«ãã.\r\n$$\r\na_{n+1} = \\frac{na_n^2 + 1}{\\sqrt{n^2 + n}\\thinspace a_n}\r\n$$\r\nããšããã§, $\\displaystyle g_n(x) = \\frac{nx^2 + 1}{\\sqrt{n^2 + n}\\thinspace x}$ ãšãããšã, $g_n(x)$ ã $x\\ge1$ ã§å調å¢å ã§ããããšã¯å®¹æã«ç¢ºããããã. ãããã£ãŠ, æ¹çšåŒ $x = g_n(x)$ ã®å¯äžã®æ£ã®å®æ°è§£ã $x=b_n $ãšããã°, $a_1 \\gt b_1$ ããåž°çŽçã« $a_n\\gt b_n$ ãåŸã. ãŸã, $x\\gt b_n$ ã«ãã㊠$g_n(x)\\lt x$ ã§ããããšãã $\\lbrace a_n\\rbrace$ ã¯å調æžå°ãã. ããã§\r\n\r\n$$b_n=\\sqrt{\\sqrt{1 + 1\\/n} +1}\\gt 1$$\r\nã§ãã, ããã¯å調æžå°ã§ $\\sqrt{2}$ ã«åæãããã, 以äžãã $\\lbrace a_n\\rbrace$ 㯠$\\sqrt2$ ä»¥äž $a_1$ 以äžã®ããå®æ°å€ã«åæã,\r\n$$\r\n\\begin{aligned}\r\n\\lim_{n\\rightarrow \\infty}\\frac{S_{5358n}}{S_n} &= \\lim_{n\\rightarrow \\infty}\\frac{\\sqrt{5358n}\\thinspace a_{5358n} - \\frac{5926}{3141}} {\\sqrt{n}\\thinspace a_{n} - \\frac{5926}{3141}}\\\\\\\\\r\n &= \\lim_{n\\rightarrow \\infty}\\frac{\\sqrt{5358}\\thinspace a_{5358n} - \\frac{5926}{3141\\sqrt n}}{a_{n} - \\frac{5926}{3141\\sqrt n}}\\\\\\\\\r\n&= \\sqrt{5358}\r\n\\end{aligned}\r\n$$\r\nãã£ãŠ, $P(x)$ 㯠$\\sqrt{5358}-1$ ã®æå°å€é
åŒ $x^2 +2x - 5357$ ã§ãããã, æ±ããå€ã¯ $\\bf{100014643}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc074/editorial/2555"
},
{
"content": "ããã®åé¡ããšã¹ããŒã§è§£ãæ¹æ³ã玹ä»ããŸãïŒãããã£ãŠïŒãã®è§£èª¬å
ã«ã¯å³å¯ã§ãªãèšè¿°ãããããç»å ŽããŸãïŒïŒ\\\r\nã$\\displaystyle\\frac{1}{x_n}=y_n$ ãšãããšïŒ $y_{n+1}=y_n+\\dfrac{1}{y_n}$ ã§ãïŒå·®å $y_{n+1}-y_n$ ã埮åãšã¿ãªãããšã«ãããš $y^\\prime(n)=\\dfrac{1}{y(n)}$ ãšãªãïŒãã®åŸ®åæ¹çšåŒã解ãããšã§ $y_n$ ããããã $\\sqrt{2n}$ ã§ããããšãããããŸãïŒãããã $x_1+x_2+\\cdots+x_n$ ãè©äŸ¡ããã«ããã£ãŠïŒæããã£ãŠ\r\n$$\\displaystyle\\frac{1}{\\sqrt{2}}+\\frac{1}{\\sqrt{4}}+\\cdots+\\frac{1}{\\sqrt{2n}}$$\r\nã«çœ®ãæããŸãïŒç·åãªã®ã§ç©åã ãšæãããšã«ãããšïŒããã¯ãããã $\\displaystyle\\int_0^n\\frac{1}{\\sqrt{2x}}dx=\\sqrt{2n}$ ãšãªããŸãïŒ\\\r\nããã£ãŠïŒæ¥µéå€ã $\\sqrt{5358}-1$ ãšæ±ãŸããŸãïŒ\r\n\r\n---\r\n\r\nã2022\\/03\\/16 01:49 è¿œèšãå³å¯ã«ãããã®ãæžããŠãããŸãïŒãŸãïŒ$\\sqrt{2n}\\leq y_n\\leq\\sqrt{2n}+\\dfrac{1}{\\sqrt{2n}}$ ãåž°çŽæ³ãã確ãããããŸãïŒ\r\n<details><summary>蚌æ<\\/summary>\r\nã$n=1,2$ ã®ãšãã¯æãç«ã€ïŒ$x+\\dfrac{1}{x}$ ã®å調æ§ã«æ³šæãããšïŒå·ŠåŽã®äžçå·ã¯\r\n$$\\displaystyle\\sqrt{2n+2}-\\sqrt{2n}=\\frac{2}{\\sqrt{2n+2}+\\sqrt{2n}}\\leq\\frac{1}{\\sqrt{2n}}$$\r\nã«ãã $\\sqrt{2n+2}\\leq\\sqrt{2n}+\\dfrac{1}{\\sqrt{2n}}$ ã§ããããæãç«ã€ïŒãŸãïŒ\r\n$$\\sqrt{2n}+\\dfrac{1}{\\sqrt{2n}}+\\dfrac{1}{\\sqrt{2n}+\\frac{1}{\\sqrt{2n}}}=\\dfrac{4n^2+6n+1}{(2n+1)\\sqrt{2n}}$$\r\nã§ããïŒ$n\\geq2$ ã«å¯Ÿã $\\dfrac{4n^2+6n+1}{(2n+1)\\sqrt{2n}}\\leq\\sqrt{2n+2}+\\dfrac{1}{\\sqrt{2n+2}}$ ãé 匵ã£ãŠå±éãããšãããã®ã§ïŒå³åŽã®äžçå·ãæãç«ã€ïŒ\r\n<\\/details>\r\n\r\n$\\displaystyle\\sum_{k=1}^nx_k=S_n$ ãšããŸãïŒç©åã $\\displaystyle\\sum_{k=1}^n\\int_{k-1}^kf(x)dx$ ãšæããããšã§ïŒç©åã«ããæŠç®å€ãšå®éã®å€ãšã®å·®ãè©äŸ¡ã§ããŸãïŒ\r\n\r\n<details><summary>è©äŸ¡<\\/summary>\r\nã$\\sqrt{2n}\\leq y_n\\leq\\sqrt{2n}+\\dfrac{1}{\\sqrt{2n}}$ ããïŒ $\\displaystyle\\frac{1}{\\sqrt{2n}}-\\frac{1}{(2n)^{3\\/2}}\\leq x_n\\leq\\frac{1}{\\sqrt{2n}}$ïŒ$\\displaystyle S^\\prime_n=\\sum_{k=1}^n\\frac{1}{\\sqrt{2k}}$ ãšãããšïŒ\r\n$$\\displaystyle S^\\prime_n-\\sqrt{2n}=\\sum_{k=1}^n\\frac{1}{\\sqrt{2k}}-\\sum_{k=1}^n\\int_{k-1}^k\\frac{1}{\\sqrt{2x}}dx=\\sum_{k=1}^n\\left(\\frac{1}{\\sqrt{2k}}-(\\sqrt{2k+2}-\\sqrt{2k})\\right)=\\sum_{k=1}^n\\frac{2}{\\sqrt{2k}(\\sqrt{2k}+\\sqrt{2k+2})^2}$$\r\nãšãªãïŒãã㯠$\\displaystyle O\\left(\\frac{1}{\\sqrt{n}}\\right)$ ã§ããïŒ$\\displaystyle\\sum_{k=1}^n\\frac{1}{(2n)^{3\\/2}}$ ã $\\displaystyle O\\left(\\frac{1}{\\sqrt{n}}\\right)$ ã§ããã®ã§ $S_n=\\sqrt{2n}+\\displaystyle O\\left(\\frac{1}{\\sqrt{n}}\\right)$ ã§ããïŒ\r\n<\\/details>",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc074/editorial/2555/24"
}
] | ãæ£ã®å®æ°ãããªãæ°å $\lbrace x_n\rbrace$ ã¯æ¬¡ãã¿ãããŸã.
$$x_1 = \frac{3141}{5926},\quad x_{n + 1} = \frac{x_n}{x_n^2+1}\quad (n = 1,2,\ldots)$$
ãã®ãšã, 以äžã®æ¥µé
$$
\lim_{n\rightarrow \infty} \frac{x_{n+1}+x_{n+2}+\cdots+x_{5358n}}{x_1+x_2+\cdots+x_n}
$$
ã¯ããå®æ° $k$ ã«åæããããšã瀺ããŸã.\
ãããã§, $k$ ã®æå°å€é
åŒã $P$ ãšã㊠$|P(10000)|$ ã解çããŠãã ãã. \
ããã ã, $k$ ã¯æå°å€é
åŒããã€ããšãä¿èšŒãããŸã. |
OMC073 | https://onlinemathcontest.com/contests/omc073 | https://onlinemathcontest.com/contests/omc073/tasks/1536 | A | OMC073(A) | 200 | 280 | 304 | [
{
"content": "ãäžåŒã¯ä»¥äžã®ããã«è¡šçŸã§ããïŒ\r\n$$1.575+\\frac{1}{7}+\\frac{1}{9}$$\r\nããã« $1\\/7$ ã¯å°æ°ç¹ä»¥äžã§ $142857$ ãç¹°ãè¿ãïŒ$1\\/9$ ã¯å°æ°ç¹ä»¥äžã§ $1$ ãç¹°ãè¿ãããïŒäžåŒã¯\r\n$$1.828,968,253,968,253,968,\\ldots$$\r\n$924=6\\times(1+153)\\$ ã§ããããšããïŒæ±ããå€ã¯ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$(8+2+8+9+6+8)+153\\times(2+5+3+9+6+8)=\\textbf{5090}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc073/editorial/1536"
}
] | ã以äžã®å€ãåé²æ³è¡šèšã®å°æ°ã§è¡šãããšãïŒå°æ°ç¹ä»¥äžç¬¬ $1$ äœãã第 $924$ äœãŸã§ã®ç·åãæ±ããŠãã ããïŒ
$$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}$$ |
OMC073 | https://onlinemathcontest.com/contests/omc073 | https://onlinemathcontest.com/contests/omc073/tasks/1675 | B | OMC073(B) | 200 | 282 | 297 | [
{
"content": "ãäžè§åœ¢ $ABC$ ãšçŽç· $PM$ ã«å¯ŸããŠMenelausã®å®çãé©çšããããšã§, $AQ:QC=7:18$ ãåŸã.\\\r\nããŸã, äžè§åœ¢ $MBP$ ãšçŽç· $AC$ ã«Menelausã®å®çãé©çšããããšã§, $PQ:QM=14:11$ ãåŸã.\\\r\nã以äžãã, æ±ããã¹ãé¢ç©æ¯ã¯ $14Ã7:18Ã11=49:99$ ã§ãããã, 解çãã¹ãå€ã¯ $49+99=\\textbf{148}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc073/editorial/1675"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠ, $BC$ ã®äžç¹ã $M$ ãšã, 蟺 $AB$ ã® $A$ åŽã®å»¶é·ç·äžã« $PA:AB=7:11$ ãªãç¹ $P$ ããšããŸã. ãã®ãšã, ç·å $MP$ ãš $AC$ ã®äº€ç¹ã $Q$ ãšããã°, äžè§åœ¢ $APQ$ ãšäžè§åœ¢ $CMQ$ ã®é¢ç©æ¯ã¯, äºãã«çŽ ãªæ£æŽæ° $x,y$ ã«ãã£ãŠ $x:y$ ãšè¡šãããŸã. $x+y$ ã解çããŠãã ãã. |
OMC073 | https://onlinemathcontest.com/contests/omc073 | https://onlinemathcontest.com/contests/omc073/tasks/1679 | C | OMC073(C) | 300 | 205 | 228 | [
{
"content": "ã$x^{n-3}$ ã®ä¿æ°ã¯, $k$ 以äžã®æ£æŽæ°ãã $3$ ã€ãéžã¶æ¹æ³ãã¹ãŠã«ã€ããŠãããã®ç©ã足ãåããããã®ã«çãã,\r\n$$\\dfrac{1}{6}\\Biggl(\\left(\\sum_{k=1}^{n} k\\right)^3-3\\left(\\sum_{k=1}^{n} k^2\\right)\\left(\\sum_{k=1}^{n} k\\right)+2\\left(\\sum_{k=1}^{n} k^3\\right)\\Biggr)=\\dfrac{1}{48}(n-2)(n-1)n^2(n+1)^2$$\r\nãã㯠$n$ ã«ã€ããŠå調ã§ãã, ç¹ã«ããã $55770$ ãšãªã $n$ 㯠$\\textbf{12}$ ã®ã¿ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc073/editorial/1679"
}
] | ã$x$ ã®å€é
åŒ $\displaystyle\prod_{k=1}^{n}(x+k)$ ã«ãããŠ, $x^{n-3}$ ã®ä¿æ°ã $55770$ ã§ãããããª, æŽæ° $n\geq 3$ ã®ç·åãæ±ããŠãã ãã. |
OMC073 | https://onlinemathcontest.com/contests/omc073 | https://onlinemathcontest.com/contests/omc073/tasks/1638 | D | OMC073(D) | 400 | 63 | 157 | [
{
"content": "ãéœåžãé ç¹ïŒéã蟺ãšããããšã§é路網ã(ç¡å)ã°ã©ããšã¿ãªãïŒäžè¬ã«ïŒé£çµãªã°ã©ãã«Eulerè·¯ãååšããªã(äžçæžãäžå¯èœã§ãã)ããšã¯ïŒæ¬¡æ°ãå¥æ°ã®é ç¹ã $4$ å以äžããããšãšåå€ã§ããïŒããã§ã¯ãã¹ãŠã®é ç¹ã®æ¬¡æ°ãå¥æ°ã§ããããšãæå³ããïŒæ¬¡æ°ãå¥æ°ã®é ç¹ã $0,2,4$ åãšãªã $i$ åã®æäœã®çµã¿åããããããã $a_i,b_i,c_i$ éãã§ãããšããïŒãã ãïŒ$a_0=1,b_0=0,c_0=0$ ãšããïŒãã®ãšãïŒä»¥äžã®é¢ä¿ãæãç«ã€ïŒ\r\n$$a_{i+1}=c_{i+1}=b_i,\\quad a_{i}+b_{i}+c_{i}=6^{i}$$\r\nãããã $b_{i+1}+2b_{i}=6^{i+1}$ ãåŸãïŒãã㧠$d_i=b_i\\/(-2)^i$ ãšããã° $d_{i+1}-d_{i}=(-3)^{i+1}$ ã§ããããšããïŒ\r\n$$b_i=(-2)^{i}\\times (-3)\\times \\frac{1-(-3)^{i}}{4}=(-3)(-2)^{i-2}(1-(-3)^i)$$\r\nã§ããããšããããïŒãããã£ãŠïŒçãã¯\r\n$$\\begin{aligned}\r\nc_{10^9+10}&=b_{10^9+9}\\\\\\\\\r\n&=3\\cdot 2^{10^9+7}(1+3^{10^9+9})\\\\\\\\\r\n&\\equiv 3\\cdot 2(1+3^3) &\\pmod{10^9+7}\\\\\\\\\r\n&\\equiv \\bf{168} &\\pmod{10^9+7}\r\n\\end{aligned}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc073/editorial/1638"
},
{
"content": "ãé ç¹ã®æ¬¡æ°ãå¥æ°ã§ãããã®ã®ç·æ°ã®æ±ãæ¹ã®å¥è§£ã§ãïŒ\r\n\r\n---\r\n\r\nã $n=10^9+10$ ãšããïŒ\r\n$$f(a,b,c,d)=(ab+ac+ad+bc+bd+cd)^n$$\r\nãå±éãããšãã«ïŒã©ã®æåã«ã€ããŠã次æ°ãå¥æ°ã§ãããã®ã®é
ã®ä¿æ°åãæ±ããã¹ãç·æ° $S$ ã§ããïŒ $S$ 㯠$(\\pm1,\\pm1,\\pm1,\\pm1)$ ã«å¯Ÿããããã $abcd\\times{f(a,b,c,d)}$ ãèšç®ãããšãã®ç·åãïŒ$16$ ã§å²ã£ããã®ã§ããïŒ\\\r\nããã£ãŠïŒ $S=\\dfrac{1}{16}(2\\cdot6^n+6\\cdot(-2)^n)$ ã§ããïŒFermatã®å°å®çãã,\\\r\n$$S\\equiv(2\\cdot6^4+6\\cdot(-2)^4)\\div16\\equiv\\textbf{168}\\pmod{(n-3)}.$$",
"text": "å€é
åŒãå©çšããŠæŒžååŒãåé¿ãã",
"url": "https://onlinemathcontest.com/contests/omc073/editorial/1638/23"
}
] | ã$4$ ã€ã®éœåž $A,B,C,D$ ãããïŒ
ã¯ãã㯠$AB,BC,CD,DA$ éã«ããããéè·¯ã $1$ æ¬ãã€ãããŸãïŒ
ãããžïŒä»¥äžã®æäœã $10^9+10$ åç¹°ãè¿ããŸãïŒ
- ç°ãªã $2$ éœåžãéžã³ïŒããããåæ¹åã«çµã¶éè·¯ãæ°ãã« $1$ æ¬å»ºèšããïŒ
ã$10^9+10$ åã®æäœã®çµã¿åãã㯠$6^{10^9+10}$ éããããŸããïŒ
ãã®ãã¡åŸãããé路網ã«ã€ããŠïŒ
ãã¹ãŠã®éè·¯ãã¡ããã© $1$ åãã€éããããªéé ãååšããªããããªæäœã®çµã¿åããã¯äœéããããŸããïŒ
çŽ æ° $10^9+7$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ
ããã ãïŒéè·¯ã¯äº€å·®ããªããã®ãšãïŒéäžã§åŒãè¿ãããšã¯ã§ããªããã®ãšããŸãïŒ |
OMC073 | https://onlinemathcontest.com/contests/omc073 | https://onlinemathcontest.com/contests/omc073/tasks/1722 | E | OMC073(E) | 500 | 25 | 148 | [
{
"content": "ããŸã $n$ ãå¹³æ¹å åãæã€ãšã, ããªãã¡ããçŽ æ° $p$ ã«å¯Ÿã㊠$n$ ã $p^2$ ã§å²ãåãããšã, $p^k\\equiv p\\pmod{n}$ ãšãªãåŸãªããã $f(n)=-1$ ã§ãã. ãããã£ãŠ, ä»¥äž $n=p_1p_2\\cdots p_l$ ($p_1,p_2,\\dots,p_l$ ã¯çžç°ãªãçŽ æ°)ãšè¡šãããå Žåã®ã¿èããã°ãã. ãã®ãšã, Fermatã®å°å®çãã\r\n$$k^\\prime=\\textrm{lcm}(p_1-1,p_2-1,\\cdots,p_l-1)+1$$\r\nãšãããš, $k=k^\\prime$ ã¯æ¡ä»¶ãã¿ãã. ãŸã, $2\\leq k\\lt k^\\prime$ ã§ãããšã, ãã $i$ ãååšã㊠$p_i-1$ 㯠$k-1$ ãå²ããããªããã, $g$ ã $p_i$ ã«ãããåå§æ ¹ãšãããšã, $g^{k}\\not\\equiv g\\pmod{p_i}$ ãšãªã, æ¡ä»¶ãã¿ãããªã. ãããã£ãŠ $f(n)=k^\\prime$ ãããã, ç¹ã« $f(2021)=967$ ã§ãã. ãã£ãŠ, \r\n$$\\textrm{lcm}(p_1-1,p_2-1,\\cdots,p_l-1)=966=2\\times 3\\times 7\\times 23$$\r\nãªãçŽ æ°ã®çµãæ°ãäžããã°ãã. $p-1$ ã $966$ ã®çŽæ°ã§ãããããªçŽ æ° $p$ ã¯\r\n$$p=2,3,7,43,47,139,967.$$\r\nãã®ãã¡, $43,967$ ããäžã€ä»¥äžéžã³, ã〠$47,139,967$ ããäžã€ä»¥äžéžã¹ã°æ¡ä»¶ãã¿ãããã, $43,47,139,967$ ããã®éžã³æ¹ã¯ $11$ éãã§ãã, $2,3,7$ ã®éžæã¯ä»»æã§ãããã, å
šäœã§ã¯ $\\textbf{88}$ åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc073/editorial/1722"
}
] | ãæŽæ° $n\geq 2$ ã«å¯Ÿã, 以äžã®æ¡ä»¶ãã¿ããæå°ã®æŽæ° $k\geq 2$ ã $f(n)$ ãšãããŸãïŒ
- ä»»æã®æŽæ° $m$ ã«å¯Ÿã, $m^k$ ãš $m$ ã $n$ ã§å²ã£ãäœããçãã.
ãã ã, ååšããªãå Žå㯠$f(n)=-1$ ãšããŸã. $f(n)=f(2021)$ ãªã $n$ ã¯, $2021$ **ãå«ã**ããã€ãããŸããïŒ |
OMC073 | https://onlinemathcontest.com/contests/omc073 | https://onlinemathcontest.com/contests/omc073/tasks/298 | F | OMC073(F) | 600 | 17 | 48 | [
{
"content": "ãäžè§åœ¢ $BDF$ ãš $GFD$ ãååãšãªããããªç¹ $G$ ã $DF$ ã«é¢ã㊠$B$ ãšåãåŽã«ãšããš, æ¡ä»¶ãã $FG=BD=CE$ ã§ãã, ç°¡åãªè§åºŠèšç®ãšäœµã㊠$CEF$ ãš $GFE$ ãååã§ããããšãããã. ãã®ãšã, $BFCED$ ã®é¢ç©ã¯ $DEG$ ã®é¢ç©ã«çãã. ããã§, äžè§åœ¢ $DEG$ ã¯ä»¥äžã®æ¡ä»¶ã«ãã£ãŠç¹åŸŽä»ããããïŒ\r\n$$DE=11,\\quad DG=20,\\quad \\angle G=30^\\circ$$\r\nãã®ãããªäžè§åœ¢ã¯ $2$ éãååšããã, ãã®ãã¡éè§äžè§åœ¢ã§ãããã®ãåœãŠã¯ãŸãããšãç°¡åã«ããã.\\\r\nããã®é¢ç©ã¯ $50\\sqrt{3}+5\\sqrt{21}$ ã§ãããã, 解çãã¹ãå€ã¯ $525+7500=\\textbf{8025}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc073/editorial/298"
}
] | ã$\angle A=100^\circ$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠ, ãããã蟺 $AB,AC$ äžã®ç¹ $D,E$ ã $BD=CE$ ããã³ $DE=11$ ãã¿ãããŸã. ããã« $BE$ ãš $CD$ ã®äº€ç¹ã $F$ ãšããã°, $BF=20$ ããã³ $\angle BFC=130^\circ$ ãæç«ããŸãã. ãã®ãšã, äºè§åœ¢ $BFCED$ ã®é¢ç©ã¯, æ£æŽæ° $a\lt b$ ã«ãã£ãŠ $\sqrt{a}+\sqrt{b}$ ãšäžæã«è¡šããã®ã§, $a+b$ ãåçããŠãã ãã. |
OMC072 (for beginners) | https://onlinemathcontest.com/contests/omc072 | https://onlinemathcontest.com/contests/omc072/tasks/1654 | A | OMC072(A) | 100 | 311 | 321 | [
{
"content": "ã$\\textrm{A}n$ ãµã€ãºã®çŽã®åšé·ã¯, $\\textrm{A}(n+2)$ ãµã€ãºã®çŽã®åšé·ã® $2$ åã§ãããã, æ±ããå€ã¯ $2^{5}=\\textbf{32}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc072/editorial/1654"
}
] | ãä»»æã®éè² æŽæ° $n$ ã«å¯Ÿã $\textrm{A}n$ ãµã€ãºã®çŽãš $\textrm{A}(n+1)$ ãµã€ãºã®çŽã¯çžäŒŒã§ãã, ãã®é¢ç©æ¯ã¯ $2:1$ ã§ã. $\textrm{A}0$ ãµã€ãºã®çŽã®åšé·ã¯, $\textrm{A}10$ ãµã€ãºã®çŽã®åšé·ã®äœåã§ããïŒ |
OMC072 (for beginners) | https://onlinemathcontest.com/contests/omc072 | https://onlinemathcontest.com/contests/omc072/tasks/252 | B | OMC072(B) | 200 | 296 | 306 | [
{
"content": "ãèµ€è²ããã³çœè²ã®ããŒã«ã®åæã®åæ°ããããã $x,y$ ãšããã°, æ¡ä»¶ã¯ä»¥äžã® $2$ åŒã«è¡šçŸããã.\r\n$$xy=a,\\ \\ (x+17)(y+3)=a+146$$\r\nãããã蟺ã
åŒãåãããŠ, $3x+17y=95$ ãåŸã. ããã®æ£æŽæ°è§£ã¯\r\n$$(x,y)=(9,4),(26,1)$$\r\nã§ãããã, æ±ããå€ã¯ $36+26=\\textbf{62}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc072/editorial/252"
}
] | ãåºå¥ã§ããèµ€è²ããã³çœè²ã®ããŒã«ããããã $1$ ã€ä»¥äžãã, èµ€è²ã®ããŒã« $1$ã€ãšçœè²ã®ããŒã« $1$ ã€ã®çµã¯ $a$ éããããŸãã. ãããžåºå¥ã§ããèµ€è²ã®ããŒã«ã $17$ å, åºå¥ã§ããçœè²ã®ããŒã«ã $3$ åå ãããš, èµ€è²ã®ããŒã« $1$ ã€ãšçœè²ã®ããŒã« $1$ ã€ã®çµã¯ $a+146$ éãã«ãªããŸãã. ãã®ãšã, æ£æŽæ° $a$ ãšããŠããåŸãå€ããã¹ãŠæ±ã, ãããã®ç·åã解çããŠãã ãã. |
OMC072 (for beginners) | https://onlinemathcontest.com/contests/omc072 | https://onlinemathcontest.com/contests/omc072/tasks/1229 | C | OMC072(C) | 200 | 281 | 309 | [
{
"content": "ã$1,2,3$ ã®ãã¡äžã€ãæžãããã«ãŒãããããã $3$ æãã€ããç¶æ³ãèããŠãåãã§ãã. ããã«, éžãã ã«ãŒã $3$ æã®ç·åã $3$ ã§å²ãåãããã«ã€ããŠèããã°ãã, ç¹ã«é åºã¯ç¡èŠããŠãã. ãã®ãšã, $3$ æã®æ°ã®çµã¿åãããšããŠããåŸããã®ã¯\r\n$$\\lbrace1,1,1\\rbrace,\\lbrace1,2,3\\rbrace,\\lbrace2,2,2\\rbrace,\\lbrace3,3,3\\rbrace $$\r\nãã£ãŠ, æ±ãã確ç㯠$\\dfrac{1+3^3+1+1}{{}\\_{9}\\mathrm{C}\\_{3}}=\\dfrac{5}{14}$ ã§ãã, 解çãã¹ãå€ã¯ $\\textbf{19}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc072/editorial/1229"
}
] | ã$1$ ãã $9$ ãŸã§ã®æŽæ°ã®ãã¡ã¡ããã© $1$ ã€ãæžãããã«ãŒãã $1$ æãã€ãããŸã. ããã®äžãã $1$ æãã€åŒã, å·Šãã䞊ã¹ãŠ $3$ æ¡ã®æŽæ°ãäœã£ããšã, ããã $3$ ã§å²ãåãã確çãæ±ããŠãã ãã. ãã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC072 (for beginners) | https://onlinemathcontest.com/contests/omc072 | https://onlinemathcontest.com/contests/omc072/tasks/1392 | D | OMC072(D) | 300 | 176 | 225 | [
{
"content": "ãäžè¬æ§ã倱ãã $BP\\geq PC$ ã§èããŠãã. ãã®ãšã, æ¹ã¹ãã®å®çãã $AP\\times PQ=BP\\times PC$ ã§ãããã $BP=8$ ããã³ $PC=6$ ãæç«ãã. ãã㧠$\\angle APB=\\theta$ ãšããã°, äœåŒŠå®çãã\r\n$$AB^2=208-192\\cos\\theta,\\quad AC^2=180+144\\cos\\theta$$\r\nããããã $\\cos\\theta$ ãæ¶å»ããããšã§, 以äžãåŸã. ãªã, ããã¯Stewartã®å®çãšããŠç¥ããããã®ã§ãã.\r\n$$3AB^2+4AC^2=1344$$\r\nãäžæ¹ã§, Cauchy-Schwarzã®äžçåŒãã\r\n$$28^2=(3AB^2+4AC^2)\\biggl(\\frac{1}{3}+\\frac{1}{4}\\biggr)\\geq (AB+AC)^2$$\r\nã§ããããïŒä»¥äžããæ±ããæ倧å€ã¯ $\\textbf{28}$ ã§ãã.\\\r\nããªã, çå·æç«æ¡ä»¶ $AB=16,AC=12$ ãã¿ããå³ã¯ç¢ºãã«ååšãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc072/editorial/1392"
},
{
"content": "ãäºæ¬¡æ²ç·ã®ç¥èãçšããæ¹æ³ã®è§£æ³ã§ãïŒ2023幎床ã«ãããåŠç¿æå°èŠé ã§ã¯æ°åŠCã«è©²åœããŸãïŒïŒ\\\r\n\\\r\n ãæ¹ã¹ãã®å®çããïŒ$BP=8$ïŒ$PC=6$ ãšããŠããïŒ$AB+BC$ ãäžå®å€ã«ãªãå³åœ¢ã¯æ¥åã§ããããšã掻çšãããïŒ$BC$ ã®äžç¹ãåç¹ã«ãšãïŒçŽç· $BC$ ã $x$ 軞ãšãªãããã«çŽäº€åº§æšãèšå®ããïŒãã®ãšãïŒç¹ $A$ ã¯å $(x-1)^2+y^2=12^2 \\cdots â $ äžã«ååšããïŒ\\\r\n ã$AB+BC$ ãäžå®å€ã§ããæ¥å $\\dfrac{x^2}{a^2}+\\dfrac{y^2}{b^2}=1 \\cdots â¡$ ãèããïŒãã®ãšãïŒç¹ $A$ïŒ$C$ ãæ¥åã®çŠç¹ã§ããããšããïŒ$a^2-b^2=7^2$ ã§ããïŒæ±ããããã®ã¯ $AB+BC=2a$ ã®æ倧å€ã§ããïŒ\\\r\n ãå³åœ¢çèå¯ã«ããïŒæ倧å€ãåŸãã®ã¯ïŒæ¥åãšåãæ¥ãããšãã ãšãããïŒ\\\r\n ãâ ã»â¡ãé£ç«ãããŠïŒæŽçãããšïŒåŒ $49x^2-2a^2x+a^4-192a^2=0$ ãåŸãïŒãããé解ãæãŠã°ããã®ã§ïŒå€å¥åŒ $D=0$ ãçšããŠä»¥äžèšç®ããã°ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc072/editorial/1392/251"
}
] | ãå€æ¥åã $\Gamma$ ãšããäžè§åœ¢ $ABC$ ã«ãããŠ, $A$ ãéãçŽç· $\ell$ ã蟺 $BC$ ããã³ $\Gamma$ ãšãããã $P,Q$ ã§äº€ãããŸãã (ãã ã $Q\neq A$).
$$AP=12,\quad PQ=4,\quad BC=14$$
ã®ãšã, $AB+AC$ ãšããŠããåŸãæ倧å€ãæ±ããŠãã ãã. |
OMC072 (for beginners) | https://onlinemathcontest.com/contests/omc072 | https://onlinemathcontest.com/contests/omc072/tasks/1751 | E | OMC072(E) | 300 | 106 | 158 | [
{
"content": "ããµãŒããã $1$ åšã®é·ãã $L$ , $k$ åšç®ã®éãã $v_k$ ãšãããš, $k$ åšç®ã«ãããæé㯠$\\dfrac{L}{v_k}$ ã§ãããã, ã¬ãŒã¹å
šäœã®å¹³åã®éãã¯\r\n$$ \\dfrac{100L}{\\displaystyle\\sum_{k=1}^{100} \\dfrac{L}{v_k}}=\\dfrac{100}{\\displaystyle\\sum_{k=1}^{100}\\dfrac{4k}{4k^4+1}}$$\r\nã§ãã. åæ¯ã«ã€ããŠ\r\n$$\\begin{aligned}\r\n\\displaystyle\\sum_{k=1}^{100}\\dfrac{4k}{4k^4+1}\r\n&=\\displaystyle\\sum_{k=1}^{100}\\dfrac{(2k^2+2 k+1)-(2 k^2 -2k+1)}{(2k^2+2k+1)(2k^2-2k+1)}\\\\\\\\\r\n&=\\sum_{k=1}^{100}\\left(\\frac{1}{2k^2-2k+1}-\\frac{1}{2k^2+2k+1}\\right) \\\\\\\\\r\n&=\\dfrac{1}{2\\cdot1^2-2\\cdot1+1}-\\dfrac{1}{2\\cdot100^2+2\\cdot100+1} \\\\\\\\\r\n&=\\dfrac{20200}{20201}\r\n\\end{aligned}$$\r\nã§ããããçã㯠$\\dfrac{20201}{202}$ ã§ãã, æ±ããå€ã¯ $20201+202=\\textbf{20403}$ ã§ãã. \\\r\nããªã, äžè¬ã«OMCåã $n$ åšãããšã, å
šäœã§ã®å¹³åã®éãã $u_n$ ãšããã°, 調åå¹³åã®èŠé ã«ãã\r\n$$\\displaystyle\\frac{n}{u_n}=\\sum_{k=1}^n\\frac{4k}{4k^4+1}$$\r\nãæãç«ã€ã®ã§, ãããçšããŠèšç®ããŠããã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc072/editorial/1751"
}
] | ãã¬ãŒãµãŒã®OMCåã¯, ããã¬ãŒã¹ã§ãµãŒãããã $100$ åšã, å $k=1,2,\cdots ,100$ ã«ã€ã㊠$k$ åšç®ã®éã㯠$k^3+\dfrac{1}{4k}$ ã§ãã. ãã®ãšã, ã¬ãŒã¹å
šäœã§ã®å¹³åã®éããæ±ããŠãã ãã. ãã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC072 (for beginners) | https://onlinemathcontest.com/contests/omc072 | https://onlinemathcontest.com/contests/omc072/tasks/2278 | F | OMC072(F) | 400 | 62 | 128 | [
{
"content": "ã$99, 100, 101$ ã¯ã©ã®äºã€ãäºãã«çŽ ã§ãããã, ä»»æã®éè² æŽæ° $r_1\\lt 99, r_2\\lt 100,r_3\\lt 101$ ã«å¯Ÿã, äžåœå°äœå®çãã以äžã®æ¡ä»¶ãã¿ããæŽæ° $n$ ã $99\\times 100\\times 101$ ãæ³ãšããŠäžæã«ååšãã.\r\n- $n$ ã $99$ ã§å²ã£ãäœãã $r_1$ ã§ãã.\r\n- $n$ ã $100$ ã§å²ã£ãäœãã $r_2$ ã§ãã.\r\n- $n$ ã $101$ ã§å²ã£ãäœãã $r_3$ ã§ãã.\r\n\r\nãããã£ãŠ, æ±ããã¹ãç·å $S$ ã¯, \r\n$$\r\n\\begin{aligned}\r\nS &= \\sum_{k=1}^{98} ((\\min \\lbrace r_1, r_2, r_3 \\rbrace = k \\ ã§ããçµ (r_1, r_2, r_3) ã®åæ°)\\times k) \\\\\\\\\r\n&=\\sum_{k=1}^{98} (\\min \\lbrace r_1, r_2, r_3 \\rbrace \\geq k \\ ã§ããçµ (r_1, r_2, r_3) ã®åæ°) \\\\\\\\\r\n&= \\sum_{k=1}^{98}(99-k)(100-k)(101-k) \\\\\\\\\r\n&= \\sum_{k=1}^{98}k(k+1)(k+2) \\\\\\\\\r\n&= \\sum_{k=1}^{98} \\frac14 \\lbrace k(k+1)(k+2)(k+3) - (k-1)k(k+1)(k+2) \\rbrace \\\\\\\\\r\n&= \\frac14 \\times (98 \\times 99 \\times 100 \\times 101)\\\\\\\\\r\n&= \\mathbf{24497550}\r\n\\end{aligned}\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc072/editorial/2278"
}
] | ã$N$ ã $99, 100, 101$ ã§ããããå²ã£ãäœãã®ãã¡æå°ã®ãã® $f(N)$ ã«ã€ããŠ, 以äžã®ç·åãæ±ããŠãã ãã.
$$f(1)+f(2)+\cdots+f(99\times100\times101)$$ |
OMC071 | https://onlinemathcontest.com/contests/omc071 | https://onlinemathcontest.com/contests/omc071/tasks/2204 | A | OMC071(A) | 200 | 264 | 290 | [
{
"content": "ã$2204$ 以äžã®æ£æŽæ°ãå
é²æ³ã§è¡šèšã, $0,1,2,3,4,5$ ããããã $0,1,4,6,8,9$ ã«çœ®ãæããŠåé²æ³ã§è§£éããã°, æ±ããæ£æŽæ°ãšã®éã«äžå¯Ÿäžå¯Ÿå¿ãåŸããã. ç¹ã« $2204_{(10)}=14112_{(6)}$ ãã, æ±ããå€ã¯ $\\bm{18114}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc071/editorial/2204"
}
] | ãåé²è¡šèšã§ $2,3,5,7$ ã®ããããçŸããªãæ£æŽæ°ã®ãã¡, $2204$ çªç®ã«å°ãããã®ãæ±ããŠãã ãã. |
OMC071 | https://onlinemathcontest.com/contests/omc071 | https://onlinemathcontest.com/contests/omc071/tasks/2455 | B | OMC071(B) | 300 | 233 | 278 | [
{
"content": "ãåå³ã®èµ€ç·éšãããã¿ã€ã«ã®å€åšãšãªããšã, å·Šå³ã®ããã« $6$ ã€ã®æ£å
è§åœ¢ã«åå²ããããã, $3^6=729$ éãã§ãã. ããã§ãªããšã, äžå³ãŸãã¯å³å³ã® $2$ éããããããã, 以äžããæ±ããå Žåã®æ°ã¯ $\\textbf{731}$ ã§ãã.\r\n\r\n|![figure 1](\\/images\\/OyK8fpvpmTOmsCYnXjCNLT0qFHmnzivDRw9YGgcL)|![figure 1](\\/images\\/4R4nDFxI6iyEFD3aJBs2hrFPxqJyAPDrdpwJGXb5)|![figure 1](\\/images\\/KDwntHUeyiQmFowJiOLGk2TccxhZDQeO4ujulYxm)|\r\n|---|---|---|\r\n||||",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc071/editorial/2455"
}
] | ãå·Šå³ã®ãã㪠$1$ 蟺ã®é·ãã $1$ ã®æ£äžè§åœ¢ $36$ åãããªãå³åœ¢ããããŸã. ãŸã, $1$ 蟺ã®é·ãã $1$ ã®æ£äžè§åœ¢ $3$ ã€ãå³å³ã®ããã«çµã¿åããã**ã¿ã€ã«**ã $12$ æãããŸã. å·Šå³ã®å³åœ¢ãééãéè€ãªãã¿ã€ã«ã§æ·ãè©°ããæ¹æ³ã¯äœéããããŸããïŒãã ã, å転ãããè£è¿ãããããŠäžèŽãããã®ãç°ãªããã®ãšããŠæ°ããŸã.
|![figure 1](\/images\/LYsHqYLxUWgTRqjtQApnSjp3Jjk30KOdtRIRF2GV) |![figure 1](\/images\/LXKkG7t92DomeDlveKODfGwfqYUXEu0WZfa1ADWl)|
|---|---|
||| |
OMC071 | https://onlinemathcontest.com/contests/omc071 | https://onlinemathcontest.com/contests/omc071/tasks/2866 | C | OMC071(C) | 300 | 137 | 250 | [
{
"content": "ã$f$ ã®å€åã $T$ ãšãããš, 以äžã®åœ¢åŒã§ããããšãå¿
èŠååæ¡ä»¶ãšãªã.\r\n$$\\begin{cases} f(x)=x & (x\\in T)\\\\\\\\ f(x)\\in T & (x\\notin T)\\end{cases}$$\r\nãã£ãŠ, $k=|T|$ ãšããŠéå $T$ ã®èŠçŽ ã®éžã³æ¹ãèããã°,\r\n$$M= \\sum _{k=1} ^6 {6 \\choose k} k^{6-k}= \\bm{1057}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc071/editorial/2866"
}
] | ãéå $\lbrace 1,2,3,4,5,6 \rbrace$ ã $S$ ãšãããŸã. é¢æ° $f:S \rightarrow S$ ã§ãã£ãŠ, ä»»æã® $x \in S$ ã«å¯ŸããŠ
$$f(f(x))=f(x)$$
ãã¿ãããã®ã¯ $M$ åååšããŸã. $M$ ã解çããŠãã ãã. |
OMC071 | https://onlinemathcontest.com/contests/omc071 | https://onlinemathcontest.com/contests/omc071/tasks/2497 | D | OMC071(D) | 300 | 151 | 199 | [
{
"content": "ã$BC$ ã«ã€ã㊠$A$ ãšå¯Ÿç§°ãªç¹ã $A^\\prime$, $CA^\\prime$ ã«ã€ã㊠$B$ ãšå¯Ÿç§°ãªç¹ã $B^\\prime$ ãšã, ç·å $CA^\\prime,A^\\prime B^\\prime$ äžã«ãããã $CR=CR^\\prime,AP=A^\\prime P^\\prime$ ãšãªãç¹ $R^\\prime,P^\\prime$ ããšããš,\r\n$$PQ+QR+RP=PQ+QR^\\prime+R^\\prime P^\\prime \\geq PP^\\prime$$\r\nãã, çå·æç«æ¡ä»¶ãèããããšã§ $4$ ç¹ $P,Q,R^\\prime,P^\\prime$ ã¯ãã®é ã«åäžçŽç·äžã«ååšãã.\\\r\nãäžè§åœ¢ $A^\\prime BC$ ã®éå¿ã $G$ ãšãããš, æ¡ä»¶ã¯ $G$ ã $PP^\\prime$ äžã«ããããšã§ãã. $A^\\prime G$ ãš $BC,AB$ ãšã®äº€ç¹ããããã $D,E$ ãšãããš, $A^\\prime E\\parallel B^\\prime A$ ã§ãããã, $A^\\prime G:GD=2:1,A^\\prime D:DE=2:1$ ãã $A^\\prime G:GE=4:5$ ãåŸã. ãã㧠$AP:PB=(2-a):a$ ãšãã, äžè§åœ¢ $BA^\\prime E$ ãšçŽç· $PP^\\prime$ ã«Menelausã®å®çãçšãããš\r\n$$\\dfrac{1-a}{a}\\times\\dfrac{4}{5}\\times\\dfrac{4-a}{2-a}=1$$\r\nããã解ããš $a=\\dfrac{2}{3}$ ãåŸããã, $AP:PB=\\left(2-\\dfrac{2}{3}\\right):\\dfrac{2}{3}=2:1$ ã§, ç¹ã«æ±ããå€ã¯ $2+1=\\bm{3}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc071/editorial/2497"
}
] | ã$\angle{A}=90^\circ,\angle{B}=30^\circ$ ãªãçŽè§äžè§åœ¢ $ABC$ ã®èŸº $AB$ äžïŒäž¡ç«¯ãé€ãïŒã®å®ç¹ $P$ ã«ã€ããŠïŒäžè§åœ¢ $PQR$ ã®åšé·ãæå°ãšãªãããã« $2$ ç¹ $Q,R$ ããããã蟺 $BC,CA$ ã«ãšããŸãïŒäžè§åœ¢ $ABC$ ã®éå¿ãç·å $QR$ ã«ååšãããšãïŒ$AP:PB$ ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$a:b$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC071 | https://onlinemathcontest.com/contests/omc071 | https://onlinemathcontest.com/contests/omc071/tasks/1929 | E | OMC071(E) | 400 | 52 | 140 | [
{
"content": "ãäžè§åœ¢ $IBC,ICA,IAB$ ã®å€å¿ããããã $X,Y,Z$ ãšãããš, well-known factãšããŠäžè¬ã«ãããã¯ãã¹ãŠ $ABC$ ã®å€æ¥åäžã«ãã. äžè§åœ¢ $ABC$ ã«ãããŠ, å€å¿ã $O$ , å€æ¥åã®ååŸã $R$ ãšããã°, $OXâ¥BC$ ããåè§åœ¢ $OBXC$ ã®é¢ç©ã¯ $\\dfrac{1}{2}ÃOXÃBC=\\dfrac{5}{2}R$ ã§ãã. \r\nç¹ $Y,Z$ ã«ã€ããŠãåæ§ã«èããããšã§, å
è§åœ¢ $AZBXCY$ ã®é¢ç©ã¯ $\\dfrac{15}{2}R$ ã§ãã, $\\triangle IYZ\\equiv \\triangle AYZ$ ãªã©ã«çæããã°æ±ããé¢ç©ã¯ããã®ååã§ãã. æ£åŒŠå®çãã $R=\\dfrac{8}{\\sqrt{7}}$ ã§ãããã, æ±ããé¢ç©ã¯ $\\dfrac{15}{4}R=\\dfrac{30}{\\sqrt{7}}$ ãšèšç®ã§ã, 以äžãã解çãã¹ãå€ã¯ $900+7=\\textbf{907}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc071/editorial/1929"
},
{
"content": "ãããã§ã¯ïŒãã®åé¡ã®äžè¬åãèããŠã¿ãŸãããïŒ\r\n\r\nãéè§äžè§åœ¢ $ABC$ ã«å¯ŸãïŒå
å¿ã $I$ ãšããŠäžè§åœ¢ $IBC,ICA,IAB$ ã®å€å¿ããããã $X,Y,Z$ ãšãããšïŒwell-known factãšããŠãããã¯ãã¹ãŠäžè§åœ¢ $ABC$ ã®å€æ¥åäžã«ãããŸãïŒäžè§åœ¢ $ABC$ ã®å€å¿ã $O,$ å€æ¥åååŸã $R$ ãšãïŒ$BC=a,CA=b,AB=C$ ãšããã°ïŒå
è§åœ¢ $AZBXCY$ ã®é¢ç©ã¯åè§åœ¢ $OBXC,OCYA,OAZB$ ã®é¢ç©ã®åã§ããããïŒ\r\n$$\\frac{aR}{2}+\\frac{bR}{2}+\\frac{cR}{2}$$\r\nã§æ±ãŸããŸããïŒ$I$ ã $YZ,ZX,XY$ ã§æãè¿ãããã®ã $A,B,C$ ã§ããããšã«æ³šæããã°ïŒå
è§åœ¢ $AZBXCY$ ã®é¢ç©ã¯äžè§åœ¢ $XYZ$ ã®é¢ç©ã® $2$ åã ãšããããŸã $\\cdots(*)$ïŒãã£ãŠïŒäžè§åœ¢ $XYZ$ ã®é¢ç©ã¯\r\n$$\\frac{(a+b+c)R}{4}$$\r\nãšåãããŸããïŒ\r\n\r\nãããã¯ïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã¯äžè§åœ¢ $ABC$ ã®å
æ¥åååŸã $r$ ãšããã°\r\n$$\\frac{(a+b+c)r}{2}$$\r\nãšãªããšããäºå®ã«äŒŒãåŒã§ç¶ºéºã§ããïŒã€ãã§ã«ïŒ\r\n$$\\frac{â³XYZ}{â³ABC}=\\frac{R}{2r}$$\r\nãæãç«ã€ããšãããããŸãïŒããã«ãŠïŒãã®åé¡ã®äžè¬åã¯å®äºã§ãïŒ\r\n\r\nãããŠïŒãã®åé¡ã§ã¯ $(*)$ ã®äºå®ãã«ã®ãšãªã£ãããã§ããïŒããã«äŒŒãæ§è³ªãšããŠæãåºãããã®ãïŒäžè§åœ¢ $ABC$ ã®åå¿ã $H$ ãšããã°ïŒ$H$ ã $BC,CA,AB$ ã§æãè¿ããç¹ã $D,E,F$ ãšãããšïŒ$D,E,F$ ã¯äžè§åœ¢ $ABC$ ã®å€æ¥åäžã«ãããšãããã®ã§ãïŒ\\\r\nãããã«ããïŒå
è§åœ¢ $AFBDCE$ ã®é¢ç©ã¯äžè§åœ¢ $ABC$ ã®é¢ç©ã® $2$ åã§ããããšãããããŸããïŒ\r\n\r\nã以äžã®ããšããŸãšãããšïŒ \r\n$$\\frac{R}{2r}=\\frac{â³XYZ}{â³ABC}=\\frac{å
è§åœ¢AZBXCYã®é¢ç©}{å
è§åœ¢AFBDCEã®é¢ç©}$$\r\nãšãªãããã§ããïŒ$X,Y,Z$ ã¯åŒ§ $BC,CA,AB$ ã®äžç¹ãªã®ã§\r\n$$â³XBC\\geqâ³DBC,\\quad â³YCA\\geqâ³ECA,\\quad â³ZAB\\geqâ³FAB$$\r\nãšãªãããšã«æ³šæããã°ïŒ \r\n$$(å
è§åœ¢AZBXCYã®é¢ç©) \\geq (å
è§åœ¢AFBDCEã®é¢ç©)$$\r\nã§ããããïŒ$R\\geq{2r}$ ãæãç«ã€ããšã瀺ããŸããïŒ\r\n\r\nãããã¯ïŒãªã€ã©ãŒã®äžçåŒãšåŒã°ããæåãªå¹ŸäœäžçåŒã§ãïŒ\\\r\nããã®åé¡ã®äžè¬åãããªã€ã©ãŒã®äžçåŒã«è¡ãçããªããŠïŒã³ã£ããã§ããïŒ",
"text": "ãã®åé¡ã®äžè¬åãšãªã€ã©ãŒã®äžçåŒã®èšŒæ",
"url": "https://onlinemathcontest.com/contests/omc071/editorial/1929/21"
}
] | ã$AB=4,BC=5,CA=6$ ãªãäžè§åœ¢ $ABC$ ã®å
å¿ã $I$ ãšããŸã. äžè§åœ¢ $IBC,ICA,IAB$ ã®å€å¿ã $3$ é ç¹ãšããäžè§åœ¢ã®é¢ç©ã¯, äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\sqrt{\dfrac{a}{b}}$ ãšè¡šããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC071 | https://onlinemathcontest.com/contests/omc071 | https://onlinemathcontest.com/contests/omc071/tasks/1965 | F | OMC071(F) | 500 | 49 | 119 | [
{
"content": "ã察称æ§ãã $\\lfloor y \\rfloor = \\lfloor x \\rfloor +a, \\lfloor z \\rfloor = \\lfloor x \\rfloor +b$ $(0 \\lt a \\lt b)$ ãšããŠãäžè¬æ§ã倱ããªã. ãã®ãšãäžåŒã¯\r\n$$6 \\lfloor x \\rfloor = ab+2354-a^2-b^2-2a-2b=3(785+ab)-(a+b+1)^2$$\r\næå³èŸºã $6$ ã®åæ°ãšãªããã㪠$(a,b)$ ã®æ¡ä»¶ãèããã. $a+b+1$ ã $6$ ã§å²ãåãããšã, $ab$ ã¯å¶æ°ã§ããã, ããã¯äžé©ã§ãã. ãããã£ãŠ $a+b+1$ 㯠$6$ ã§å²ã£ãŠ $3$ äœã, ãã®ãšã $ab$ ãå¶æ°ã§ããããšãã, $a,b$ ã $6$ ã§å²ã£ãäœããšããŠããåŸãçµã¿åãã㯠$(0,2),(2,0),(4,4)$ ã§ãã. ããã§, æ倧åãã¹ãå€ã¯\r\n$$ \\lfloor x \\rfloor + \\lfloor y \\rfloor + \\lfloor z \\rfloor =3 \\lfloor x \\rfloor +a+b=1177- \\dfrac{1}{2} \\lbrace (a-b)^2+ab \\rbrace$$\r\nã§ãã, ããã¯äžã§äžããå¶çŽã®äžã§ $(a,b)=(2,6)$ ã®ãšãæå€§å€ $1177- 28\\/2= \\bm{1163}$ ããšã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc071/editorial/1965"
},
{
"content": "ã$\\lfloor x\\rfloor=a,\\lfloor y\\rfloor=b,\\lfloor z\\rfloor=c$ ãšçœ®ããŸãïŒ$x,y,z$ ã¯ã©ããæŽæ°ã§ã¯ãªãã®ã§\r\n$$\\lceil x\\rceil=a+1,\\quad \\lceil y\\rceil=b+1,\\quad \\lceil z\\rceil=c+1$$\r\nãšãªãïŒçžç°ãªãæŽæ° $a,b,c$ ã\\\r\n$$(a+1)^2+(b+1)^2+(c+1)^2=ab+bc+ca+2357$$\r\nãã¿ãããšãã® $a+b+c$ ã®æ倧å€ãæ±ããã°ããã§ãïŒãããå€åœ¢ãããš\r\n$$a^2+b^2+c^2-ab-bc-ca+2(a+b+c)=2354$$\r\nãšãªããŸãïŒ$a+b+c$ ã倧ãããããã®ã§ $a^2+b^2+c^2-ab-bc-ca$ ãå°ãããããã§ãïŒ\\\r\nãããã§ïŒwell-known fact ãšããŠ\r\n$$a^2+b^2+c^2\\geq ab+bc+ca$$\r\nãæãç«ã€ã®ã§ $a,b,c$ ããã®äžçåŒã®çå·æç«æ¡ä»¶ã«è¿ããªãããã«ãããã§ãïŒãã®äžçåŒã®èšŒæãæãåºããŠã¿ããšæ¬¡ã®ãããªå€åœ¢ãæãã€ããŸãïŒ\r\n$$\\dfrac{1}{2}\\bigl((a-b)^2+(b-c)^2+(c-a)^2\\bigr)+2(a+b+c)=2354.$$\r\nããã§ïŒå¯Ÿç§°æ§ãã $a\\lt b\\lt c$ ãšä»®å®ã§ãïŒ$b-a=p,c-b=q$ ãšçœ®ãã° $p,q$ ã¯æ£ã®æŽæ°ã§ããïŒ\r\n$$\\dfrac{1}{4}\\bigl(p^2+q^2+(p+q)^2\\bigr)+a+b+c=1177$$\r\nãšãªããŸãïŒ$p^2+q^2+(p+q)^2$ ã $4$ ã®åæ°ãªã®ã§ $p,q,p+q$ ã¯ã©ãã $2$ ã®åæ°ã§ãïŒå $(p,q)$ ã«ã€ã㊠$p^2+q^2+(p+q)^2$ ã®å€ãå°ããé ã«æ¡ä»¶ã«é©åãã $a,b,c$ ãååšãããã調ã¹ãŠãããšïŒ$(p,q)=(2,4)$ ã®ãšãã«\r\n$$(a,b,c)=(385,387,391)$$\r\nãèŠã€ããïŒæå°å€ $1163$ ãåŸãããŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc071/editorial/1965/19"
}
] | ãããããæŽæ°ã§ãªãå®æ° $x,y,z$ ã
$$ \lceil x \rceil ^2 + \lceil y \rceil ^2 + \lceil z \rceil^2 = \lfloor x \rfloor \lfloor y \rfloor + \lfloor y \rfloor \lfloor z \rfloor +\lfloor z \rfloor \lfloor x \rfloor +2357$$
ãã¿ãã, ãã€, $ \lfloor x \rfloor , \lfloor y \rfloor , \lfloor z \rfloor $ ã®å€ããã¹ãŠç°ãªããšã, $ \lfloor x \rfloor + \lfloor y \rfloor + \lfloor z \rfloor $ ãšããŠããåŸãæ倧å€ãæ±ããŠãã ãã.\
ããã ã, $\lfloor x \rfloor$ 㧠$x$ ãè¶
ããªãæ倧ã®æŽæ°ã, $\lceil x \rceil $ 㧠$x$ 以äžã®æå°ã®æŽæ°ãè¡šããã®ãšããŸã. |
OMC070 (for beginners) | https://onlinemathcontest.com/contests/omc070 | https://onlinemathcontest.com/contests/omc070/tasks/237 | A | OMC070(A) | 100 | 212 | 214 | [
{
"content": "**解æ³1.**ãæ±ããé¢ç©ã¯ $\\dfrac{1}{2}\\times AB\\times BC\\times\\sin\\angle B=30\\sin\\angle B$ ãšè¡šã, æããã«ãã㯠$\\angle B=90^\\circ$ ã®ãšãæå€§å€ $\\textbf{30}$ ããšã.\r\n\r\n**解æ³2.**ã$A$ ãã $BC$ ã«ããããåç·ã®è¶³ $H$ ã«ãã£ãŠäžè§åœ¢ã®é¢ç©ã¯ $AH\\times BC\\/2$ ãšè¡šã, $AH\\leq AB$ ãããã㯠$30$ 以äžã§ããã, éã« $\\angle B=90^\\circ$ ã®ãšã $AH=AB$ ãšãªããã, æ±ããæ倧å€ã¯ $\\textbf{30}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc070/editorial/237"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠ, 蟺 $AB,BC$ ã®é·ãããããã $5,12$ ã§ãã£ããšã, ãã®é¢ç©ãšããŠããåŸãæ倧å€ãæ±ããŠãã ãã. |
OMC070 (for beginners) | https://onlinemathcontest.com/contests/omc070 | https://onlinemathcontest.com/contests/omc070/tasks/2306 | B | OMC070(B) | 100 | 170 | 180 | [
{
"content": "ã$n$ 人ãåã€ç¢ºçãš $100 - n$ 人ãåã€ïŒ$n$ 人ãè² ããïŒç¢ºçã¯çããã®ã§, æ±ããæåŸ
å€ã¯ $100\\/2 = \\bf{50}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc070/editorial/2306"
}
] | ã$100$ 人ã§ããããããè¡ã, ãããã§ãªããªããŸã§ç¶ãããšã, ãã®ãããããã«åå©ãã人æ°ã®æåŸ
å€ãæ±ããŠãã ãã. |
OMC070 (for beginners) | https://onlinemathcontest.com/contests/omc070 | https://onlinemathcontest.com/contests/omc070/tasks/2298 | C | OMC070(C) | 200 | 120 | 181 | [
{
"content": "**解æ³1.**ã$i \\lt j$ ã§ãããšãã$a_i$ 㯠$a_j$ ã®å·Šã«äžŠãã§ãããã$a_j$ 㯠$a_i$ ã®å³ã«äžŠãã§ããããšè¡šçŸããã°, $1$ ã®å·Šã«äžŠãã§ããæŽæ°ãš $5$ ã®å³ã«äžŠãã§ããæŽæ°ã¯åèšã§ $2$ å以äžã§ãããã, 以äžã®å Žååãããæ±ããçã㯠$\\bf{9}$ ã§ãã. \r\n\r\n- $a_1 = 1, a_3 = 5$ ã®å Žå$\\\\\\\\$\r\nã$a_2 \\lt a_4 \\lt a_5$ ã§ããå¿
èŠããããã, $(1,2,5,3,4)$ ã®ã¿. \r\n- $a_1 = 1, a_4 = 5$ ã®å Žå$\\\\\\\\$\r\nã$a_2,a_3,a_5$ 㯠$2,3,4$ ã®äžŠã³æ¿ãã§ããã®ã§, $6$ éãå
šãŠè©Šãããšã§ $(1,2,4,5,3),(1,3,2,5,4)$ ã®ã¿. \r\n- $a_1 = 1, a_5 = 5$ ã®å Žå$\\\\\\\\$\r\nã$a_2,a_3,a_4$ 㯠$2,3,4$ ã®äžŠã³æ¿ãã§ããã®ã§, $6$ éãå
šãŠè©Šãããšã§ $(1,4,2,3,5),(1,3,4,2,5)$ ã®ã¿. \r\n- $a_2 = 1, a_4 = 5$ ã®å Žå$\\\\\\\\$\r\nã$a_1 \\lt a_3 \\lt a_5$ ã§ããå¿
èŠããããã, $(2,1,3,5,4)$ ã®ã¿. \r\n- $a_2 = 1, a_5 = 5$ ã®å Žå$\\\\\\\\$\r\nã$a_1,a_3,a_4$ 㯠$2,3,4$ ã®äžŠã³æ¿ãã§ããã®ã§, $6$ éãå
šãŠè©Šãããšã§ $(2,1,4,3,5),(3,1,2,4,5)$ ã®ã¿. \r\n- $a_3 = 1, a_5 = 5$ ã®å Žå$\\\\\\\\$\r\nã$a_1 \\lt a_2 \\lt a_4$ ã§ããå¿
èŠããããã, $(2,3,1,4,5)$ ã®ã¿. \r\n\r\n**解æ³2.**ãæ°å $a_1 = 1,a_2 = 2,\\ldots,a_5 = 5$ ã«å¯Ÿã, é ã« $i=s,t~(s\\neq t)$ ãéžã㧠$a_i$ ãš $a_{i + 1}$ ã®å€ãå
¥ãæ¿ããæäœãæœããçµæåŸãããæ°å $f(s,t)$ ãèããã°ãã,ãããã«ã€ããŠ\r\n$$\\begin{cases}\r\nf(s,t)=f(t,s) & (|s-t|\\gt 1) \\\\\\\\\r\nf(s,t)\\neq f(t,s) & (|s-t|=1)\r\n\\end{cases}$$\r\nãæç«ãããã, æ±ããçã㯠$3 + 6 = \\bf{9}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc070/editorial/2298"
}
] | ã$1,2,3,4,5$ ã®äžŠã¹æ¿ã $a_1,a_2,a_3,a_4,a_5$ ã§ãã£ãŠ, $1\le i \lt j \le 5$ ã〠$a_i \gt a_j$ ãæºãã $(i,j)$ ã®çµãã¡ããã© $2$ ã€ååšãããã®ã¯äœéããããŸãã. |
OMC070 (for beginners) | https://onlinemathcontest.com/contests/omc070 | https://onlinemathcontest.com/contests/omc070/tasks/2297 | D | OMC070(D) | 200 | 190 | 194 | [
{
"content": "ãå³ã®ããã«ããããšã§, äžèŸºã®é·ãã $1$ ã®æ£æ¹åœ¢ $6$ åãšäžèŸºã®é·ãã $1$ ã®æ£äžè§åœ¢ $12$ åã«åå²ã§ãããã, æ±ããé¢ç©ã¯ $6+\\sqrt{27}$ ã§ãã, ç¹ã«è§£çãã¹ãå€ã¯ $\\bf{33}$ ã§ãã. \r\n\r\n![figure 1](\\/images\\/n0jP3OaJJEZ7zgiyAblhSLcB8Im3hNSDPiZKr3j5)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc070/editorial/2297"
}
] | ãäžèŸºã®é·ãã $1$ ã®æ£åäºè§åœ¢ã®é¢ç©ã¯, æ£ã®æŽæ° $a,b$ ãçšã㊠$a+\sqrt b$ ãšè¡šããã®ã§, $a+b$ ãæ±ããŠãã ãã. |
OMC070 (for beginners) | https://onlinemathcontest.com/contests/omc070 | https://onlinemathcontest.com/contests/omc070/tasks/2296 | E | OMC070(E) | 300 | 63 | 119 | [
{
"content": "$$P(x) = x^5 + ax^4 + bx^3 + cx^2 + dx + e ,\\quad Q(x) = x^5 + 2ax^4 + 2bx^3 + 2cx^2 + 2dx + 2e$$\r\nãšãããšã,\r\n$$\r\nQ(x) = (x - \\alpha + 1)(x - \\beta + 1)(x - \\gamma + 1)(x - \\delta + 1)(x - \\varepsilon + 1) = P(x + 1)\r\n$$\r\nã§ãããã, $P(x + 1)$ãå±éããŠä¿æ°ãæ¯èŒããããšã§\r\n$$\r\n\\begin{cases}\r\n2a = a + 5\\\\\\\\\r\n2b = 4a + b + 10\\\\\\\\\r\n2c = 6a + 3b + c + 10\\\\\\\\\r\n2d = 4a + 3b + 2c + d + 5\\\\\\\\\r\n2e = a + b + c + d + e + 1\r\n\\end{cases}\r\n$$\r\nãã $a = 5, b = 30 , c = 130 , d = 375 , e = 541$ ãåŸãã®ã§, æ±ããçãã¯\r\n$$a+b+c+d+e=2e-1=\\bf{1081}$$\r\nã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc070/editorial/2296"
}
] | ãå®æ° $a,b,c,d,e$ ã«ã€ããŠ,
$$
x^5 + ax^4 + bx^3 + cx^2 + dx + e = 0
$$
ã®è€çŽ æ°è§£ãéè€ã蟌ã㊠$x=\alpha, \beta , \gamma , \delta , \varepsilon$ ã§ãã,
$$
x^5 + 2ax^4 + 2bx^3 + 2cx^2 + 2dx + 2e = 0
$$
ã®è€çŽ æ°è§£ãéè€ã蟌ã㊠$x=\alpha - 1 , \beta - 1 , \gamma - 1 , \delta - 1 , \varepsilon - 1$ ã§ãããšã,
$$|a+b+c+d+e|$$
ãåãåŸãå€ã®ç·åãæ±ããŠãã ãã. |
OMC070 (for beginners) | https://onlinemathcontest.com/contests/omc070 | https://onlinemathcontest.com/contests/omc070/tasks/2232 | F | OMC070(F) | 400 | 118 | 153 | [
{
"content": "ãæ£æŽæ° $k$ ã«å¯Ÿã㊠$\\sqrt{k}$ ã¯åæŽæ°ã«ãªãåŸãªãããšãã\r\n$$\\left\\lceil\\sqrt k\\right\\rfloor=\\left\\lceil 2\\sqrt k \\right\\rceil-\\left\\lceil \\sqrt k \\right\\rceil$$\r\nãæç«ãïŒä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$\r\n\\begin{aligned}\r\n\\sum_{k = 1}^{12345^2}\\left\\lceil\\sqrt k\\right\\rfloor &= \\sum_{k = 1}^{12345^2}\\left\\lceil 2\\sqrt k \\right\\rceil - \\sum_{k = 1}^{12345^2}\\left\\lceil \\sqrt k \\right\\rceil \\\\\\\\\r\n&= \\sum_{k = 1}^{2\\times12345}k\\left(\\left\\lfloor\\frac{k^2}{4}\\right\\rfloor - \\left\\lfloor\\frac{(k - 1)^2}{4}\\right\\rfloor \\right) - \\sum_{k = 1}^{12345}k(k^2 - (k-1)^2) \\\\\\\\\r\n&= \\sum_{k = 1}^{12345} ((2k-1)(k-1)+2k\\times k)- \\sum_{k = 1}^{12345}k(k^2 - (k-1)^2) \\\\\\\\\r\n&= \\sum_{k = 1}^{12345} (2k^2-2k+1)\\\\\\\\\r\n&= \\dfrac{1}{3}\\times(2\\times 12345^3+12345)\\\\\\\\\r\n&= \\bf{1254243979865}\r\n\\end{aligned}\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc070/editorial/2232"
},
{
"content": "ã$n=12345$ãšããïŒ\\\r\nã$\\lceil \\sqrt{k} \\rfloor$ ãçŽæ¥åŒå€åœ¢ããŠç·åãæ±ããã®ã§ã¯ãªãïŒ$0\\leq x\\leq n$ ãªã $x$ ã«ã€ããŠïŒ$\\lceil \\sqrt{k} \\rfloor = x$ ãªã $1\\leq k \\leq n^2$ ã®åæ°ã $f(x)$ ãšãïŒ\r\n$$\r\n\\sum_{k=1}^{n^2} \\lceil \\sqrt{k} \\rfloor =\\sum_{x=0}^{n} xf(x) \r\n$$\r\nãšããŠç·åãæ±ããŠã¿ããïŒ\r\nãŸãïŒ$1\\leq x \\lt n$ ãšãïŒ$\\lceil \\sqrt{k} \\rfloor$ ã®å®çŸ©ããïŒ\r\n$$\r\n\\lceil \\sqrt{k} \\rfloor =x \\iff x-\\frac{1}{2} \\leq k \\lt x+\\frac{1}{2} \\iff x^2-x\\leq k-\\frac{1}{4} \\lt x^2+x\r\n$$\r\nãšãªãïŒå³èŸºãæºãã $k$ ã¯ã¡ããã© $2x$ åã ããïŒ$f(x)=2x$ïŒãŸãïŒ$f(n)=n$ ã§ããã®ã§ïŒæ±ããç·åã¯\r\n$$\r\n\\sum_{x=0}^{n} xf(x) =\\sum_{x=1}^{n-1} 2x^2 +n\\cdot n = \\frac{1}{3}(n-1)n(2n-1) +n^2=\\frac{2n^3+n}{3}.\r\n$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc070/editorial/2232/20"
}
] | ãæ£ã®å®æ° $x$ ãå°æ°ç¬¬äžäœã§åæšäºå
¥ããå€ã $\lceil x\rfloor$ ã§è¡šããšã,
$$\displaystyle \sum_{k=1}^{12345^2}\left\lceil\sqrt k\right\rfloor$$
ãæ±ããŠãã ãã. |
OMC069 (for experts) | https://onlinemathcontest.com/contests/omc069 | https://onlinemathcontest.com/contests/omc069/tasks/2089 | A | OMC069(A) | 300 | 68 | 170 | [
{
"content": "ãåé¢äœã®é¢ã®ãã¡ããã€ãå¹³è¡å
é¢äœã®é¢ã«å«ãŸãããã§åããŠæ°ãããš, 以äžã®ããã«ãªãïŒ\r\n- $3$ é¢ (å³ã®(i))ïŒé¢ã®éžã³æ¹ $4$ éãããããã«å¯Ÿã $1$ éããã€ãããã $4$ éãïŒ\r\n- $2$ é¢ (å³ã®(ii))ïŒé¢ã®éžã³æ¹ $6$ éãããããã«å¯Ÿã $2$ éããã€ãããã $12$ éãïŒ\r\n- $1$ é¢ (å³ã®(iii))ïŒé¢ã®éžã³æ¹ $4$ éãããããã«å¯Ÿã $3$ éããã€ãããã $12$ éãïŒ\r\n- $0$ é¢ (å³ã®(iv))ïŒ$1$ éãïŒ\r\n\r\nãéã«, é©åœãªå¹³è¡å
é¢äœãåºå®ããŠåé¢äœãããã€åãããèããŠãåãã§ãã. $8$ é ç¹ãã $4$ ã€ãéžã¶æ¹æ³ã®ãã¡, ããããåäžå¹³é¢äžã«ãããã® $12$ éãããŸãé€å€ã, æ®ãã«ã€ããŠãäžå¿ã«é¢ããŠå¯Ÿç§°ãª $2$ ã€ã¯å
ã®ç¶æ³ã«æ»ããšéè€ããããšã«çæãã. ãããã«ãã, å
šäœã§æ±ããå Žåã®æ°ã¯ $\\bm{29}$ éãã§ããïŒ\r\n![figure 1](\\/images\\/bOw57xNPXRe4cyxPKs4gNnXP8GEsDiiA2ZqY7nwy)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc069/editorial/2089"
},
{
"content": "ã$4$ ã€ã®ç¹ããã¯ãã«ã§å¯Ÿå¿ãããŸãïŒå
·äœçã«ã¯ïŒ$\\vec{0}, \\vec{x_1}, \\vec{x_2}, \\vec{x_3}$ ãšããããã®ç¹ã察å¿ãããŸãïŒ\\\r\nãåç¹ããåºãŠãã $1$ 次ç¬ç«ãª $3$ ã€ã®ãã¯ãã«ãå®ãããšïŒãã®ãã¯ãã«ã®ã€ããå¹³è¡å
é¢äœã¯äžæã«å®ãŸãã®ã§ïŒ\r\nãã® $3$ ã€ã®ãã¯ãã«ã $\\vec{p}, \\vec{q},\\vec{r}$ ãšå®ããŸãïŒãã®ãšãå¹³è¡å
é¢äœã®åç¹ä»¥å€ã®é ç¹ã®éå $S$ ã¯æ¬¡ã®ããã«è¡šããŸãïŒ\r\n$$ S= \\\\{ \\vec{p}, \\vec{q}, \\vec{r}, \\vec{p}+\\vec{q}, \\vec{q}+\\vec{r}, \\vec{r}+\\vec{p}, \\vec{p}+\\vec{q}+\\vec{r} \\\\}. $$\r\n$\\vec{x_1}, \\vec{x_2}, \\vec{x_3}$ ãçžç°ãªã $S$ ã®èŠçŽ ã«ãªããã㪠$\\vec{p}, \\vec{q}, \\vec{r}$ ã®çµãèããŸãïŒ\\\r\nã$S$ ã® $7$ ã€ã®èŠçŽ ãã $\\vec{x_1}, \\vec{x_2}, \\vec{x_3}$ ã«å¯Ÿå¿ãããæ¹æ³ã¯ $7 \\times 6 \\times 5=210$ éããããŸãïŒ\r\nããã§ïŒ$S$ ããéžãã§ãã $3$ ã€ã®èŠçŽ ãäžæ¬¡åŸå±ã§ãããšãïŒæ¡ä»¶ãæºãããã㪠$\\vec{p}, \\vec{q}, \\vec{r}$ ã¯ååšããªãããšããããã®ã§ïŒãã®ãããªå Žåãé€ããŸãïŒäžæ¬¡ç¬ç«ã«ãªãã®ã¯ïŒä»¥äžã®ãããªå Žåã§ãïŒ\r\n\r\n- $\\vec{x_1}=\\vec{p}, ~ \\vec{x_2}=\\vec{q}, ~ \\vec{x_3}= \\vec{p}+\\vec{q}$ïŒ\r\n- $\\vec{x_1}=\\vec{p}, ~ \\vec{x_2}=\\vec{q}+\\vec{r}, ~ \\vec{x_3}= \\vec{p}+\\vec{q}+\\vec{r}$ïŒ\r\n\r\nãããã¯ãšãã« $18$ éããã€ããã®ã§ïŒæ¡ä»¶ãæºãããã㪠$\\vec{p}, \\vec{q}, \\vec{r}$ ã®çµã¯ $210-18\\times2=174$ éããããŸãïŒ\\\r\nãæåŸã«ïŒ$\\vec{p}, \\vec{q}, \\vec{r}$ ã¯å¹³è¡å
é¢äœãã€ããã«ããã£ãŠåºå¥ããªãã®ã§ $3!$ ã§å²ã£ãŠ $\\textbf{29}$ éãã§ãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc069/editorial/2089/17"
}
] | ãåé¢äœ $ABCD$ ããããŸã. å¹³è¡å
é¢äœã§ãã£ãŠ, é ç¹éåã« $A,B,C,D$ ããã¹ãŠå«ãŸãããããªãã®ã¯ããã€ãããŸããïŒãã ã, ååã§ãã£ãŠãé ç¹éåãäžèŽããªããã®ã¯åºå¥ããŠæ°ããŸã. ãŸã**å¹³è¡å
é¢äœ**ãšã¯, äžçµã®å¹³è¡ãªäºå¹³é¢ã«ãã£ãŠå²ãŸããç«äœã§ã. |
OMC069 (for experts) | https://onlinemathcontest.com/contests/omc069 | https://onlinemathcontest.com/contests/omc069/tasks/2090 | B | OMC069(B) | 300 | 130 | 156 | [
{
"content": "ãäžåŒã§ $y$ ãåºå®ããã° $f$ ã¯å
šå°ã§ããããšãããã, ç¹ã« $f(a)=0$ ãªã $a$ ããšãã. ãã®ãšãäžåŒã§ $x=a$ ãšããã° $a=1$ ã§ãã, ããããäžåŒã§ $y=1$ ãšããã°ä»¥äžãæãç«ã€ïŒ\r\n$$f(f(x)+1)=x-1$$\r\nãã£ãŠäžåŒã§ $(x,y)=(f(n)+1,0)$ ãšããã°\r\n$$f(n-1)=f(n)+f(0)$$\r\nãåŸãã, ãããã $k$ ãæŽæ°ãšã㊠$f(n)=k(n-1)$ ãšãã圢ã§ããããšãåãã. ãããäžåŒã«ä»£å
¥ããããšã§ $k=\\pm 1$ ãåŸããããã, ç¹ã«è§£çãã¹ãå€ã¯ $\\bm{4042}$ ã§ããïŒ \\\r\nããªã $f(b)=1$ ãªã $b$ ã«ã€ã㊠$x=b$ ãšããŠã $f$ ãäžæ¬¡é¢æ°ã§ããããšã¯åŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc069/editorial/2090"
}
] | ãæŽæ°ã«å¯ŸããŠå®çŸ©ããæŽæ°å€ããšãé¢æ° $f$ ã¯, ä»»æã®æŽæ° $x,y$ ã«å¯ŸããŠä»¥äžãã¿ãããŸãïŒ
$$f(f(x)+y)+1=x+f(y)$$
ãã®ãã㪠$f$ ãšããŠèãããããã®ãã¹ãŠã«å¯Ÿã, å€ $|f(2022)|$ ã®ç·åã解çããŠãã ããïŒ |
OMC069 (for experts) | https://onlinemathcontest.com/contests/omc069 | https://onlinemathcontest.com/contests/omc069/tasks/1378 | C | OMC069(C) | 400 | 93 | 138 | [
{
"content": "ãäžè¬ã« $4n=400000$ ãšãã, $l$ ã $2^{l-1}\\leq 4n\\lt 2^l$ ãã¿ããæŽæ°ãšãã. ãã®ãšã, æããã« $T\\lt 2^l$ ã§ãã, äžæ¹ã§ $m=l$ 㧠$x_i=2^{i-1}$ ãšããã° $T=2^l-1$ ã§ããããšãã, ããã $T$ ã®ãšãåŸãæ倧å€ã§ãã.\\\r\nãããªãã¡, èããã¹ãæå€§å€ $M(n)$ ã¯, 以äžã®ããã«è¡šçŸã§ãã.\r\n- $4n$ 以äžã®æ£æŽæ°ããä»»æã«äžã€ä»¥äžãéžã³, ãã®ãã¡ $2^k$ ã®äœã $1$ ã§ãããã®ã $k=0,1,\\cdots,l-1$ ã«ã€ããŠããããå¥æ°åã§ããããã«ãããšã, ãããã®ç·åãšããŠããåŸãæ倧å€.\r\n\r\nããã§, å $k\\geq 0$ ã«å¯ŸããŠ, $1$ ä»¥äž $4n-1$ 以äžã®æŽæ°ã®ãã¡ $2^k$ ã®äœã $1$ ã§ãããã®ã¯å¶æ°åã§ãããã,\r\n$$M(n)\\leq\\sum_{i=1}^{4n}i-\\left(\\sum_{k=0}^{l-1}2^k-4n\\right)=8n^2+6n+1-2^l$$ \r\néã«, éžã°ãªãã£ãæ°å
šäœã®éåã次ã®ããã«ãªããšãçå·ã¯æç«ãã.\r\n$$\\\\\\{2^k\\mid 0\\leq k\\lt l,~ 4n\\\\,ã®\\\\,2^k \\\\,ã®äœã¯\\\\,0\\\\\\}$$\r\nãç¹ã« $n=10^5$ ã®ãšã $l=19$ ã§ãããã, 解çãã¹ãå€ã¯ $\\textbf{80000075713}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc069/editorial/1378"
}
] | $$m\leq 400000,\quad x_1\lt x_2\lt\cdots\lt x_m\leq 400000$$
ãã¿ããæ£æŽæ° $m,x_1,x_2,\ldots,x_m$ ã«å¯ŸãïŒ
$$S=x_1+x_2+\cdots+x_m,\quad \ T=x_1 \oplus x_2 \oplus \dots \oplus x_m$$
ãšãããŸãïŒ$T$ ãæ倧å€ããšããã㪠$m,x_1,x_2,\ldots,x_m$ ã«ã€ããŠïŒ$S$ ã®ãšãåŸãæ倧å€ãæ±ããŠãã ããïŒ
<details> <summary>æä»çè«çå $\oplus $ ã«ã€ããŠ<\/summary>
ãéè² æŽæ°ã«å¯Ÿã, ãããã®**æä»çè«çå** $\oplus $ ã次ã®ããã«å®ããŸãïŒ
- $a,b$ ãäºé²æ°è¡šèšã«ãã£ãŠ $a_i,b_i\in\\{0,1\\}$ ãçšããŠ
$$a=a_0+2a_1+2^2 a_2+\cdots+2^d a_d,\ \ b=b_0+2b_1+2^2 b_2+\cdots+2^d b_d$$
ãšè¡šããããšãã. å $i$ ã«ã€ã㊠$c_i$ ã $a_i=b_i$ ãªãã° $c_i=0$, $a_i\neq b_i$ ãªãã° $c_i=1$ ãšå®ãããšã,
$$a\oplus b=c_0+2c_1+2^2 c_2+\cdots+2^d c_d.$$
äŸãã°ä»¥äžã®ããã«èšç®ãããŸã.
$$5\oplus 9=0101_{(2)}\oplus 1001_{(2)}=1100_{(2)}=12$$
ããã®æŒç®ã¯çµåçã§ããããšã蚌æã§ãããã, $3$ å以äžã®éè² æŽæ°ã«å¯ŸããŠãççŸãªãå®çŸ©ã§ããŸã.
<\/details> |
OMC069 (for experts) | https://onlinemathcontest.com/contests/omc069 | https://onlinemathcontest.com/contests/omc069/tasks/2092 | D | OMC069(D) | 600 | 10 | 48 | [
{
"content": "ã$n$ ãæ£æŽæ°ãšããïŒ$k=1,\\dots,n-1$ ã«å¯Ÿãåã®æ£æŽæ°ã®çµã®ãã¡ $z=n-k$ ãã¿ãããã®ã®æ°ã $g(k)$ ãšãããšïŒãã㯠$xy$ å¹³é¢ã§ $O(0,0),A(k,0),B(0,n)$ ãšãããšãã«äžè§åœ¢ $OAB$ ã®åšãé€ãå
éšã«ããæ Œåç¹ã®æ°ã«çããïŒ\r\näžè§åœ¢ $OAB$ ã®åšäžã«ããæ Œåç¹ã¯ $n+k+\\mathrm{gcd}(n,k)$ åã§ããããïŒPickã®å®çãã次ããããïŒ\r\n$$g(k)=\\frac{1}{2}(nk-n-k-\\mathrm{gcd}(n,k))+1$$\r\nããã $k=1,\\cdots,n-1$ ã«ã€ããŠè¶³ãåãããããšã§æ¬¡ãåŸãïŒ\r\n$$f(n)=\\frac{1}{4}\\left(n^3-4n^2+9n-4-2\\sum_{k=1}^{n}\\mathrm{gcd}(n,k)\\right)$$\r\nãããã£ãŠæ£æŽæ° $m$ ã«ãã£ãŠ $n=66^m$ ãšè¡šããããšãïŒä»¥äžã®ç·åãèšç®ããã°ããïŒ\r\n$$\\sum_{k=1}^{66^m}\\mathrm{gcd}(66^m,k)$$\r\nããã㧠$m$ 以äžã®éè² æŽæ° $i,j,k$ ã«ãã£ãŠ $\\mathrm{gcd}(66^m,k)=2^i3^j11^k$ ã§ããïŒãŸã $\\mathrm{gcd}(66^m,k)=2^i3^j11^k$ ãšãªã $1\\leq k\\leq 66^m$ ã®åæ°ã¯Eulerã®totienté¢æ° $\\varphi$ ãçšããã° $\\varphi\\left(2^{m-i}3^{m-j}11^{m-k}\\right)$ åã§ããããšã容æã«ç¢ºèªã§ããïŒãã£ãŠ $\\varphi$ ãä¹æ³çé¢æ°ã§ããããšãªã©ãçšããã°æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\begin{aligned}\r\n\\sum_{k=1}^{66^m}\\mathrm{gcd}(66^m,k)\r\n&=\\sum_{i=0}^{m}\\sum_{j=0}^{m}\\sum_{k=0}^{m}2^i3^j11^k\\varphi\\left(2^{m-i}3^{m-j}11^{m-k}\\right)\\\\\\\\\r\n&=\\left(\\sum_{i=0}^{m}2^i\\varphi\\left(2^{m-i}\\right)\\right)\\left(\\sum_{j=0}^{m}3^j\\varphi\\left(3^{m-j}\\right)\\right)\\left(\\sum_{k=0}^{m}11^k\\varphi\\left(11^{m-k}\\right)\\right)\\\\\\\\\r\n&=66^{m-1}(m+2)(2m+3)(10m+11)\r\n\\end{aligned}$$\r\nããããã£ãŠFermatã®å°å®çãªã©ãã以äžã®ããã«èšç®ã§ããããïŒæ±ããäœã㯠$\\bm{317}$ ã§ããïŒ\r\n$$f(66^{60000})\\equiv 5 \\pmod{6},\\quad f(66^{60000})\\equiv 14 \\pmod{101}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc069/editorial/2092"
}
] | ãæ£æŽæ° $n$ ã«å¯ŸãïŒä»¥äžãã¿ããæ£æŽæ°ã®çµ $(x,y,z)$ ã®ç·æ°ã $f(n)$ ã§è¡šããŸãïŒ
$$nx\lt(y-n)(z-n),\quad x\lt n,\quad y\lt n,\quad z\lt n$$
ãã®ãšãïŒ$f(66^{60000})$ ã $606$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ |
OMC069 (for experts) | https://onlinemathcontest.com/contests/omc069 | https://onlinemathcontest.com/contests/omc069/tasks/2093 | E | OMC069(E) | 700 | 33 | 65 | [
{
"content": "#### ååïŒOMCåã®åé¡ã解ã\r\nãå®æ° $x,y,z$ ã«å¯Ÿã㊠$F=\\dfrac{ax^4+by^4+cz^4+1}{x^2+y^2+z^2+1}$ ã®æå°å€ãæ±ãããïŒãŸãCauchy-Schwarzã®äžçåŒãã\r\n$$(ax^4+by^4+cz^4)\\left(\\frac{1}{a}+\\frac{1}{b}+\\frac{1}{c}\\right)\\geq(x^2+y^2+z^2)^2$$\r\nãã£ãŠ $x^2+y^2+z^2+1=t$ ã®ãšã $C=\\left(\\dfrac{1}{a}+\\dfrac{1}{b}+\\dfrac{1}{c}\\right)^{-1}$ ãšãããšæ¬¡ãæãç«ã€ïŒ\r\n$$F\\geq Ct+\\frac{C+1}{t}-2C\\geq 2\\sqrt{C(C+1)}-2C$$\r\né©åœãª $(x,y,z)$ ã§çå·ãæç«ããããšã¯å®¹æã«ç¢ºèªã§ããããïŒçµå±æ¬¡ãåŸãããïŒ\r\n$$M=\\frac{2\\sqrt{\\dfrac{1}{a}+\\dfrac{1}{b}+\\dfrac{1}{c}+1}-2}{\\dfrac{1}{a}+\\dfrac{1}{b}+\\dfrac{1}{c}}$$\r\n#### åŸåïŒæ¬é¡ã解ã\r\nã$\\displaystyle u=\\sqrt{\\dfrac{1}{a}+\\dfrac{1}{b}+\\dfrac{1}{c}+1}$ ãšãããš $\\displaystyle M=\\dfrac{2u-2}{u^2-1}=\\dfrac{2}{u+1}$ ã§ããããïŒ\r\näºãã«çŽ ãªæ£æŽæ° $p,q$ ãååšã $M=\\dfrac{p}{q}$ ãšãªããšãïŒ$u$ ã¯äºãã«çŽ ãªæ£æŽæ° $m,n$ ãçšã㊠$u=\\dfrac{m}{n}$ ãšè¡šããŠïŒããã«ä»¥äžãæãç«ã€ïŒ\r\n$$p+q=\r\n\\begin{cases}\r\nm+3n&(m+n\\\\,ãå¥æ°ã®ãšã)\\\\\\\\\r\n(m+3n)\\/2 &(m+n\\\\,ãå¶æ°ã®ãšã)\r\n\\end{cases}$$\r\n$a,b,c$ ãæ£æŽæ°ã§ããããšãã $1\\lt u\\leq 2$ ãæç«ããã®ã§ $n\\lt m\\leq 2n$ ã§ããïŒæ¬¡ãã $p+q\\geq 5$ ããããïŒ\r\n- $m+n$ ãå¥æ°ã®ãšãïŒ$p+q\\gt 4n\\geq 4$ïŒ\r\n- $m+n$ ãå¶æ°ã®ãšãïŒ$m,n$ ã¯ãšãã« $1$ ã§ãªããã $p+q\\gt 2n\\geq 4$ïŒ\r\n\r\nãäžæ¹ïŒæ¬¡ãæãç«ã€ããšã確èªã§ããïŒ\r\n- $(a,b,c)=(1,1,1)$ ã®ãšã $u=2,\\ p+q=5$\r\n- $(a,b,c)=(1,8,8)$ ã®ãšã $u=3\\/2,\\ p+q=9$\r\n\r\nã$p+q$ ã®åãåŸãå€ã§2çªç®ã«å°ããªãã®ã¯ $9$ ã§ããããšã瀺ããïŒãã®ããã«ã¯ $p+q=6,7,8$ ãšããŠççŸãå°ãã°ããïŒãã®ãšãããåŸãã®ã¯ $(m,n)=(5,3)$ ã®ã¿ã§ããã\r\n$$\\dfrac{1}{a}+\\dfrac{1}{b}+\\dfrac{1}{c}=\\dfrac{16}{9}$$\r\nãã¿ããæ£æŽæ°ã®çµ $(a,b,c)$ ã¯ç¢ºãã«ååšããªãããšã容æã«ç¢ºèªã§ããïŒãããã£ãŠïŒä»¥äžèããã¹ãã¯\r\n$$\\dfrac{1}{a}+\\dfrac{1}{b}+\\dfrac{1}{c}=\\dfrac{5}{4}$$\r\nã§ããïŒãããã¿ããæ£æŽæ°ã®çµ $(a,b,c)$ ã¯ä»¥äžã® $4$ çµã§ããïŒ\r\n$$(a,b,c)=(1,5,20),(1,6,12),(1,8,8),(2,2,4)$$\r\nã以äžããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bm{70}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc069/editorial/2093"
}
] | ãOMCåã¯æ¬¡ã®åé¡ãäœããŸããïŒãã ã $a,b,c$ 㯠$a\leq b\leq c$ ãã¿ããæ£æŽæ°ãšããŸãïŒ
- **åé¡**ïŒä»»æã®å®æ° $x,y,z$ ã«å¯ŸããŠä»¥äžãæãç«ã€ãããªïŒå®æ° $m$ ãšããŠããåŸãæå€§å€ $M$ ã¯ããã€ã§ããïŒ
$$ax^4+by^4+cz^4+1\geq m(x^2+y^2+z^2+1)$$
ãOMCå㯠$M$ ãæçæ°ãšãªãããã« $a,b,c$ ã®å€ãèšå®ãããã§ãïŒ$M=\dfrac{p}{q}$ ãªãäºãã«çŽ ãªæ£æŽæ° $p,q$ ãååšãããããªçµ $a\leq b\leq c$ ã®ãã¡ïŒ$p+q$ ã®å€ã**2çªç®ã«å°ãããã®**ãã¹ãŠã«ã€ããŠïŒ$a+b+c$ ã®ç·åãæ±ããŠãã ãã. |
OMC069 (for experts) | https://onlinemathcontest.com/contests/omc069 | https://onlinemathcontest.com/contests/omc069/tasks/2094 | F | OMC069(F) | 900 | 0 | 18 | [
{
"content": "ã$ABCD$ ã®å€æ¥çã®ååŸã $r$ ãšããïŒç¹ $A$ ãäžå¿ãšããååŸ $1$ ã®çé¢ã«é¢ããå転ãèããïŒãã®ãšã $ABCD$ ã®å€æ¥ç㯠$A$ ããè·é¢ $\\dfrac{1}{2r}$ ã®å¹³é¢ã«ç§»ãïŒãŸãç¹ $B,C,D$ ã®ç§»ãå
ã®ç¹ããããã $P,Q,R$ ãšããã°ïŒ\r\n$$AB\\times AP=AC\\times AQ=AD\\times AR=1$$\r\n$$PQ=\\frac{BC}{AB\\times AC},\\quad QR=\\frac{CD}{AC\\times AD},\\quad RP=\\frac{DB}{AD\\times AB}$$\r\näžããããæ¡ä»¶ãã $AB\\times CD=AD\\times BC=2021,AC\\times DB=2000$ ã§ããããïŒæ¬¡ãåŸãããïŒ\r\n$$PQ=QR=\\dfrac{2021}{AB\\times AC\\times AD},\\quad RP=\\dfrac{2000}{AB\\times AC\\times AD}$$\r\nããããäžè§åœ¢ $PQR$ ã®é¢ç©ã¯\r\n$$\\dfrac{1000\\sqrt{2021^2-1000^2}}{AB^2\\times AC^2\\times AD^2}=\\dfrac{1000\\sqrt{1021\\times 3021}}{AB^2\\times AC^2\\times AD^2}$$\r\nãšæ±ããããïŒä»¥äžãã $(XYZW)$ ã§åé¢äœ $XYZW$ ã®äœç©ãè¡šãã°\r\n$$\\begin{aligned}\r\n(ABCD)\r\n&=\\frac{AB}{AP}\\times\\frac{AC}{AQ}\\times\\frac{AD}{AR}\\times(APQR)\\\\\\\\\r\n&=AB^2\\times AC^2 \\times AD^2\\times\\frac{1}{3}\\times\\frac{1}{2r}\\times\\dfrac{1000\\sqrt{1021\\times 3021}}{AB^2\\times AC^2\\times AD^2}\\\\\\\\\r\n&=\\frac{500\\sqrt{1021\\times 3021}}{3r}\r\n\\end{aligned}$$\r\nããã $2022$ ã§ããããšãã $r=\\dfrac{250\\sqrt{3084441}}{3033}$ ãåŸããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bm{3087724}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc069/editorial/2094"
}
] | ãäœç© $2022$ ã®åé¢äœ $ABCD$ ã以äžã®æ¡ä»¶ãã¿ãããšãïŒãã®å€æ¥çã®ååŸã¯æ£æŽæ° $a,b,c$ (ãã ã $a,c$ ã¯äºãã«çŽ ã§ïŒ$b$ ã¯å¹³æ¹å åããããªã) ã«ãã£ãŠ $\dfrac{a\sqrt{b}}{c}$ ãšè¡šãããã®ã§ïŒ$a+b+c$ ã解çããŠãã ããïŒ
$$AB\times CD=2021,\quad AC=40,\quad AD=43,\quad BC=47,\quad BD=50$$
ããã ãåé¢äœã®**å€æ¥ç**ãšã¯ïŒãã® $4$ ã€ã®é ç¹ãå
šãŠéãçã®ããšãæããŸãïŒ |
OMC068 (for beginners) | https://onlinemathcontest.com/contests/omc068 | https://onlinemathcontest.com/contests/omc068/tasks/2929 | A | OMC068(A) | 100 | 307 | 312 | [
{
"content": "ã$0\\leq\\lbrace x\\rbrace\\lt1$ ãã $\\lfloor x\\rfloor=\\dfrac{1}{\\lbrace x\\rbrace}\\gt 1$ ã§ãã, $\\lfloor x\\rfloor$ ã¯æŽæ°ã§ãããã $\\lfloor x\\rfloor\\geq 2$ ãå¿
èŠã§ãã.\\\r\nãæ¡ä»¶ãæºãã $x$ ã®æå°å€ãèããŠãããã $\\lfloor x\\rfloor=2$ ã®ãšããèããã°ãã. ãã®ãšã $\\lbrace x\\rbrace=0.5$ ã§ãã, $x=\\dfrac{5}{2}$ ãçåŒãæºããæå°ã® $x$ ãšãªã. æ±ããå€ã¯ $5+2=\\bf{7}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc068/editorial/2929"
}
] | ãæ£ã®å®æ° $x$ ã«å¯Ÿã, $\lfloor x\rfloor$ 㧠$x$ ã®æŽæ°éšå, $\lbrace x\rbrace$ 㧠$x$ ã®å°æ°éšåãè¡šããŸã. äŸãã°
$$\lfloor 3.14\rfloor =3, \quad \lbrace 3.14\rbrace=0.14$$
ã§ã. ãã®ãšã,
$$ \lfloor x\rfloor\times\lbrace x\rbrace=1$$
ãæºããæå°ã®æ£ã®å®æ° $x$ ãæ±ããŠãã ãã.\
ããã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC068 (for beginners) | https://onlinemathcontest.com/contests/omc068 | https://onlinemathcontest.com/contests/omc068/tasks/2246 | B | OMC068(B) | 200 | 277 | 291 | [
{
"content": "ãæ£ã®æŽæ° $a,b\\lt\\min(10,N)$ ã«ã€ããŠæ¡ä»¶ãã\r\n$$10a+b=Nb+a \\iff 9a=(N-1)b$$\r\n$N=2,3$ ã§ã¯ãã®ãããªããšã¯ããåŸã, $N=4$ ã§ã¯ $(a,b)=(1,3)$ ãé©ãããã, æ±ããæå°å€ã¯ $\\textbf{4}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc068/editorial/2246"
}
] | ãããæ£ã®æŽæ°ã $10$ é²æ³ã§è¡šèšãããš $\overline{ab}$ ã§ãã, $N$ é²æ³ã§è¡šèšãããš $\overline{ba}$ ã§ãã. ãã®ãããªããšãèµ·ããåŸãæ£ã®æŽæ° $N(\geq2)$ ã®æå°å€ãæ±ããŠãã ãã. ãã ã, $a,b$ 㯠$1\leq a,b\lt \min(N,10)$ ãæºãããã®ãšããŸã. |
OMC068 (for beginners) | https://onlinemathcontest.com/contests/omc068 | https://onlinemathcontest.com/contests/omc068/tasks/2275 | C | OMC068(C) | 200 | 215 | 248 | [
{
"content": "ãæ±ããåã®ååŸã $r$ ãšãããšïŒ$\\triangle ABC \\sim \\triangle HBA \\sim \\triangle HAC$ãã\r\n$$BC : BA : AC = 505 : r : 100$$\r\nããããïŒ$BC = 505t, BA = rt, AC = 100t$ ãšãããïŒäžæ¹ã§ïŒ$â³ABC$ã«ãããŠäžå¹³æ¹ã®å®çãçšããã°\r\n$$(505t)^2 = (rt)^2 + (100t)^2$$\r\nãããã£ãŠ $r^2 = 505^2 - 100^2 = 495^2$ ã§ãã, æ±ããåã®ååŸã¯ $\\textbf{495}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc068/editorial/2275"
}
] | ãè§ $A$ ãçŽè§ãšããäžè§åœ¢ $ABC$ ã«ãããŠïŒ$A$ ãã $BC$ ã«äžãããåç·ã®è¶³ã $H$ ãšãããšïŒäžè§åœ¢ $ABC$ ã®å
æ¥åã®ååŸã¯ $505$ïŒäžè§åœ¢ $ACH$ ã®å
æ¥åã®ååŸã¯ $100$ ã§ããïŒäžè§åœ¢ $ABH$ ã®å
æ¥åã®ååŸãæ±ããŠãã ããïŒ |
OMC068 (for beginners) | https://onlinemathcontest.com/contests/omc068 | https://onlinemathcontest.com/contests/omc068/tasks/2277 | D | OMC068(D) | 300 | 135 | 246 | [
{
"content": "$$\\begin{aligned}\r\nP &= 1! à (1! à 2) à 3! à (3! à 4) à \\cdots à 599! à (599! à 600) \\\\\\\\\r\n&= (1! à 3! à \\cdots à 599!)^2 à (2 à 4 à \\cdots à 600) \\\\\\\\\r\n&= (1! à 3! à \\cdots à 599!)^2 à (2^{150})^2 à 300!\r\n\\end{aligned}$$\r\nã§ããããïŒ$n = 300$ ã¯é¡æãæºããããšã確èªã§ããïŒ\\\r\nãéã«ïŒ$n = 299$ ã®ãšã\r\n$$Q = (1! à 3! à \\cdots à 599!)^2 à (2^{150})^2 à 300$$\r\nã¯å¹³æ¹æ°ã§ãªãïŒãŸã $n\\leq 292$ ã®ãšã $Q$ ã¯çŽ å æ°ã« $293$ ãå¥æ°åãã¡ïŒ$293\\leq n\\leq 298$ ã®ãšã $Q$ ã¯çŽ å æ°ã« $13$ ãå¥æ°åãã€ããïŒäžé©ã§ããïŒãããã£ãŠïŒæ±ããæå°å€ã¯ $\\bf{300}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc068/editorial/2277"
}
] | $$P = 1! à 2! à 3! à \cdots à 600!,\quad Q = \dfrac{P}{n!}$$
ã«ã€ããŠïŒ$Q$ ãå¹³æ¹æ°ãšãªããããªæå°ã®æ£æŽæ° $n$ ãæ±ããŠãã ããïŒ |
OMC068 (for beginners) | https://onlinemathcontest.com/contests/omc068 | https://onlinemathcontest.com/contests/omc068/tasks/1676 | E | OMC068(E) | 300 | 134 | 199 | [
{
"content": "ãæé ã®å®ãæ¹ãã, $i$ çªç®ã«æžãããæ° $a_i$ 㯠$i$ ã®äºé²æ°è¡šç€ºã§ã®åæ¡ã®åã«çãã. \r\n\r\n**蚌æ.** æ£æŽæ° $n$ ãäºé²æ°è¡šèšããæã® $1$ ã®åæ°ã $\\mathrm{popcount}(n)$ ãšãããš, $\\mathrm{popcount}(n)$ ã¯\r\n\r\n- $\\mathrm{popcount}(1)=1$\r\n- $\\mathrm{popcount}(2n)=\\mathrm{popcount}(n)$\r\n- $\\mathrm{popcount}(2n+1)=\\mathrm{popcount}(2n)+1$\r\n\r\nãæºãã, ããã¯ããããã®æäœã«å¯Ÿå¿ãã. \r\n\r\nã$M=9$ ã容æã«åŸããã, æ±ãã $i$ 㯠$1023_{(10)}=1111111111_{(2)}$ ã® $10$ æ¡ããã¡ããã©äžæ¡ã $0$ ãšããããšã§åŸãã, ãããã®ãã¡ $1000$ 以äžã®ãã®ã®ç·åã¯\r\n$$(1023-2^9)+(1023-2^8)+(1023-2^7)+(1023-2^6)+(1023-2^5)=\\textbf{4123}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc068/editorial/1676"
}
] | ãOMCåã¯ä»¥äžã®æé ã«ãã£ãŠé»æ¿ã« $1000$ åã®æ°ãæžãããšã«ããŸããïŒ
- $1$ çªç®ã«ã¯ $1$ ãæžã.
- æ£æŽæ° $n$ ã«å¯Ÿã, $2n$ çªç®ã«ã¯ $n$ çªç®ã«æžããæ°ãšåãæ°ãæžã.
- æ£æŽæ° $n$ ã«å¯Ÿã, $2n+1$ çªç®ã«ã¯ $2n$ çªç®ã«æžããæ°ããã¡ããã© $1$ 倧ããæ°ãæžã.
ãäžé£ã®æäœã§é»æ¿ã«æžãããæ°ã®ãã¡æ倧ã®ãã®ã $M$ ãšãããšã, $i$ çªç®ã« $M$ ãæžãããã㪠$1000$ 以äžã®æ£æŽæ° $i$ ã®ç·åãæ±ããŠãã ãã. |
OMC068 (for beginners) | https://onlinemathcontest.com/contests/omc068 | https://onlinemathcontest.com/contests/omc068/tasks/2240 | F | OMC068(F) | 400 | 52 | 126 | [
{
"content": "ãåçŽç· $PA$ äžã« $PC=PQ$ ãªãç¹ $Q$ ããšããš,äžè§åœ¢ $BCP$ ãšäžè§åœ¢ $BQP$ ã¯ååã§ããããç¹ã« $BC=BQ$ ã§ãã, ãããš $â CBQ = â CBP + â PBQ = 60^\\circ$ ããäžè§åœ¢ $BCQ$ ã¯æ£äžè§åœ¢ã§ããïŒäžæ¹ïŒ$â ABQ=â AQB$ ãã $AB = AQ$ ã§ããããïŒãããããäžè§åœ¢ $ABC$ ãšäžè§åœ¢ $AQC$ ã¯åå, ç¹ã« $\\angle ACB=30^\\circ$ ã§ããïŒåŸã£ãŠïŒ\r\n$$\\begin{aligned}\r\nâ CAP &= \\angle{BAC}-\\angle{BAP} \\\\\\\\\r\n&= (180^\\circ-51.4^\\circ-30^\\circ)-(180^\\circ-21.4^\\circ-141.4^\\circ) \\\\\\\\\r\n&= 81.4^\\circ = (407\\/5)^\\circ\r\n\\end{aligned}$$\r\nç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{412}$ ã§ããïŒ \r\n![figure 1](\\/images\\/3c2UpmPJBVZ2msrBYDOwVVynkwRBictif1cuThU5)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc068/editorial/2240"
},
{
"content": "ãå³åœ¢ã®åé¡ã¯èŠæãªã®ã§èšç®ã§è§£ããŸã><\r\n\r\nã$\\theta=141.4^\\circ$ãšãããŸãïŒ$\\angle BAP=300^\\circ-2\\theta,\\angle PCB=150^\\circ-\\theta$ ã§ããã®ã§ïŒæ£åŒŠå®çããïŒ\\\r\n$$\\dfrac{AP}{PB}=\\dfrac{\\sin(\\theta-120^\\circ)}{\\sin(300^\\circ-2\\theta)},\\quad \\dfrac{CP}{PB}=\\dfrac{\\sin30^\\circ}{\\sin(150^\\circ-\\theta)}$$\r\nãã㧠$\\angle PAC=x$ ãšãããš\r\n$$\\dfrac{AP}{CP}=\\dfrac{\\sin(2\\theta-180^\\circ-x)}{\\sin x}$$\r\näžæ¹ïŒ\\\r\n$$\\dfrac{AP}{CP}=\\dfrac{\\sin(\\theta-120^\\circ)\\sin(150^\\circ-\\theta)}{\\sin(300^\\circ-2\\theta)\\sin30^\\circ}=\\dfrac{\\sin(\\theta-120^\\circ)}{\\cos(150^\\circ-\\theta)}=\\dfrac{\\sin(\\theta-120^\\circ)}{\\sin(240^\\circ-\\theta)}=\\dfrac{\\sin(\\theta-120^\\circ)}{\\sin(\\theta-60^\\circ)}$$ \r\nã§ããïŒãã㯠$x=\\theta-60^\\circ$ ã®ãšãæãç«ã¡ãŸãïŒ\\\r\nãå³ãã $x$ ã¯äžæã«å®ãŸãã®ã§ $x=\\theta-60^\\circ=81.4^\\circ$ ãšãããïŒçã㯠$\\textbf{412}$ ã§ãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc068/editorial/2240/18"
}
] | ãäžè§åœ¢ $ABC$ ããã³ãã®å
éšã®ç¹ $P$ ã以äžã®æ¡ä»¶ãã¿ãããŸãïŒ
$$â BPA = â BPC = â ABP+120^\circ=141.4^\circ,\quad â PBC = 30^\circ$$
ãã®ãšã, $â PAC$ ã®å€§ããã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$a\/b$ 床ãšè¡šãããã®ã§ïŒ$a + b$ ã解çããŠãã ããïŒ |
OMC067 | https://onlinemathcontest.com/contests/omc067 | https://onlinemathcontest.com/contests/omc067/tasks/2286 | A | OMC067(A) | 100 | 275 | 278 | [
{
"content": "ãäžè§åœ¢ ${PAD}$ ãšäžè§åœ¢ ${PBC}$ ã® ${AD},{BC}$ ãåºèŸºãšã¿ããšãã®é«ãããããã $x,y$ ãšã, æ£æ¹åœ¢ ${ABCD}$ ã®äžèŸºã $a$ ãšãããš, äžè§åœ¢ ${PAD}$ ãšäžè§åœ¢ ${PBC}$ ããšãã«éè§äžè§åœ¢ã§ããããšãã $|x-y|=a$ ãæç«ãã.\\\r\nããã®ãšã ${PAD}$ ãš ${PBC}$ ã®é¢ç©ã®å·®ã¯\r\n$$\\left|\\frac{ax}{2}-\\frac{ay}{2}\\right|=\\frac{a^2}{2}$$\r\nãšãªã, ããã $377-233=144$ ã«çããã®ã§, æ£æ¹åœ¢ ${ABCD}$ ã®é¢ç©ã¯ $a^2=\\textbf{288}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc067/editorial/2286"
}
] | ãæ£æ¹åœ¢ $ABCD$ ã®å€åŽã«ç¹ $P$ ããšã£ããšãã, äžè§åœ¢ $PAD$ ãšäžè§åœ¢ ${PBC}$ ã¯ã©ã¡ããéè§äžè§åœ¢ãšãªã, ãã®é¢ç©ã¯ãããã $233,377$ ãšãªããŸãã. ãã®ãšã, æ£æ¹åœ¢ ${ABCD}$ ã®é¢ç©ãæ±ããŠãã ãã. |
OMC067 | https://onlinemathcontest.com/contests/omc067 | https://onlinemathcontest.com/contests/omc067/tasks/2288 | B | OMC067(B) | 300 | 199 | 252 | [
{
"content": "ãåååŒã¯ä»¥äžãã¹ãŠ $x^{10}-1$ ãæ³ãšãã. $x^{10m+n}\\equiv{x}^n$ ã«æ³šæããŠ,\r\n$$\\begin{aligned}\r\n&\\quad\\\\,\\\\,\\\\, x^{99}+2x^{98}+\\cdots+98x^2+99x+100 \\\\\\\\\r\n&\\equiv{x}^{9}+2x^{8}+\\cdots+9x+10+11x^{9}+12x^{8}+\\cdots+99x+100 \\\\\\\\\r\n&\\equiv(1+11+\\cdots+91)x^9+(2+12+\\cdots+92)x^8+\\cdots+(10+20+\\cdots+100)\r\n\\end{aligned}$$\r\næçµè¡ã® $x^k$ ã®ä¿æ°ã $b_k$ ãšãããš, æ±ããäœãã¯\r\n$$(b_8-b_9)x^8+(b_7-b_9)x^7+âŠ+(b_0-b_9)$$\r\nãšãªãã®ã§, æ±ããå€ã¯\r\n$$a_8+a_7+\\cdots+a_0=(b_8-b_9)+(b_7-b_9)+\\cdots+(b_0-b_9)=10+20+\\cdots+90=\\textbf{450}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc067/editorial/2288"
}
] | ãå€é
åŒ $x^{99}+2x^{98}+\cdots+98x^2+99x+100$ ãå€é
åŒ $x^9+x^8+\cdots+x^2+x+1$ ã§å²ã£ãäœãã¯, å®æ° $a_0,a_1,\ldots,a_8$ ãçšã㊠$a_8x^8+\cdots+a_1x+a_0$ ãšè¡šãããã®ã§, $a_0+a_1+\cdots+a_8$ ã解çããŠãã ãã. |
OMC067 | https://onlinemathcontest.com/contests/omc067 | https://onlinemathcontest.com/contests/omc067/tasks/2287 | C | OMC067(C) | 300 | 150 | 197 | [
{
"content": "ã$a\\lt{b}\\lt{c}$ ãšä»®å®ããŠãäžè¬æ§ã倱ããªã. ãã®ãšã, $6$ æ°ã®ãã¡å°ããæ¹ $3$ ã€ã¯ $a\\/b,b\\/c,a\\/c$ ã§ãããã,\r\n$$\\frac{a}{b}+\\frac{b}{c}+\\frac{a}{c}=\\frac{3}{5},\\quad \\frac{b}{a}+\\frac{c}{b}+\\frac{c}{a}=39$$\r\nãã㧠$p=b\\/a,\\\\,q=c\\/b$ ãšãããš, 以äžã®ããã«æžãæãããã.\r\n$$p+q+pq=39,\\quad \\frac{1}{p}+\\frac{1}{q}+\\frac{1}{pq}=\\frac{3}{5}$$\r\nããã« $p+q=s,\\\\,pq=t$ ãšãããš,\r\n$$s+t=39,\\quad \\frac{s+1}{t}=\\frac{3}{5}$$\r\nããã解ããš, $s=14,t=25$ ãšãªã. ãã£ãŠ, æ±ããå€ã¯\r\n$$\\biggl(\\frac{b}{a}\\biggr)^2+\\biggl(\\frac{c}{b}\\biggr)^2+\\biggl(\\frac{c}{a}\\biggr)^2=p^2+q^2+p^2q^2=s^2-2t+t^2=14^2-2\\times25+25^2=\\textbf{771}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc067/editorial/2287"
}
] | ãçžç°ãªãæ£ã®å®æ° $a,b,c$ ã«å¯Ÿã,
$$\frac{b}{a},\quad \frac{a}{b},\quad \frac{c}{b},\quad \frac{b}{c},\quad \frac{a}{c},\quad \frac{c}{a}$$
ãå€ãå°ããæ¹ããé ã« $x_1\leq{x_2}\leq\cdots\leq{x_6}$ ãšãããŸã.\
ã$x_1+x_2+x_3=\dfrac{3}{5},\\,x_4+x_5+x_6=39$ ãšãªã£ããšãã$x_4^2+x_5^2+x_6^2$ ã®å€ãæ±ããŠãã ãã. |
OMC067 | https://onlinemathcontest.com/contests/omc067 | https://onlinemathcontest.com/contests/omc067/tasks/2289 | D | OMC067(D) | 400 | 32 | 105 | [
{
"content": "ãäžè¬ã«æ£ $n$ è§åœ¢ $A_1A_2\\cdots A_{n}$ ãšããŠèã, ãã®å€æ¥åã®åšé·ã $n$ ã§ãããšããŠãã.\r\nã㟠$\\angle A_iPA_j$ ã¯åŒ§ $A_iA_j$ ãšåŒ§ $A_kA_l$ ã«å¯Ÿããååšè§ã®åã§ããããšã«çæãã. ä»¥äž $A_0=A_n,A_1=A_{n+1}$ ãšãã.\\\r\nãããã§åŒ§ $A_0A_i,A_iA_j,A_jA_k,A_kA_l,A_lA_{n+1}$ ã®é·ãããããã $x_1,x_2,x_3,x_4,x_5$ ãšãããš, ãããã¯ãã¹ãŠæ£æŽæ°ã§ãã, ç·å㯠$n+1$ ã§ãã. 察称æ§ããããããã®å€ã®æåŸ
å€ã¯ $(n+1)\\/5$ ã§ãã. ãããã£ãŠ, äžã®æ³šæãã $\\angle A_iPA_j$ ã®æåŸ
å€ã¯ $180^{\\circ}\\times(n+1)\\/(5n)\\times2$ ã§, ç¹ã« $n=100$ ã§è§£çãã¹ãå€ã¯ $1818+25=\\textbf{1843}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc067/editorial/2289"
}
] | ãæ£ $100$ è§åœ¢ $A_1A_2\cdots A_{100}$ ã«ãããŠ, $1\leq{i}\lt{j}\lt{k}\lt{l}\leq{100}$ ãªããã¹ãŠã®çµã«å¯Ÿãåè§åœ¢ $A_iA_jA_kA_l$ ãèãããšã, ãã®å¯Ÿè§ç·ã®äº€ç¹ $P$ ã«ã€ã㊠$\angle{A}_iPA_j$ ã®å¹³åå€ $K$ ãèããŸã.\
ã$K$ ã床æ°æ³ã§è¡šããæã®å€ã¯, äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã®å€ã解çããŠãã ãã. |
OMC067 | https://onlinemathcontest.com/contests/omc067 | https://onlinemathcontest.com/contests/omc067/tasks/2290 | E | OMC067(E) | 500 | 17 | 73 | [
{
"content": "ã$1$ ä»¥äž $p-1$ 以äžã® $a,b$ ã«å¯Ÿã, $a^{p-8}\\equiv{b}^{p-8} \\pmod{p}$ ã®ãšã, Fermatã®å°å®çãã $a^{p-1}\\equiv{b}^{p-1}\\pmod{p}$ ã§ããããã, $\\mathrm{gcd}(p-8,p-1)=\\mathrm{gcd}(7,p-1)=1$ ã«æ³šæã㊠$a\\equiv{b}\\pmod{p}$ ã§ããããšãããã. ããã¯ã$1^{p-8},2^{p-8},\\cdots,(p-1)^{p-8}$ ã $p$ ã§å²ã£ãäœãã¯ãã¹ãŠçžç°ãªãããšãæå³ããã®ã§, $a_1+a_2+\\cdots+a_p$ ã $p$ ã®åæ°ãšãªã $1$ ä»¥äž $p-1$ 以äžã®æŽæ°ã®çµ $(a_1,a_2,\\cdots,a_p)$ ã®ç·æ°ãæ±ããã°ãã.\\\r\nãäžè¬ã« $a_1+a_2+\\cdots+a_n$ ã $p$ ã®åæ°ãšãªã $1$ ä»¥äž $p-1$ 以äžã®æŽæ°ã®çµ $(a_1,a_2,\\cdots,a_n)$ ã®ç·æ°ã $x_n$ ãšãããš, $a_1+\\cdots+a_{n-1}$ ã $p$ ã®åæ°ã§ãªããšãé©ãã $a_n$ ãäžæã«ååšãããã, 挞ååŒ $x_{n+1}=(p-1)^n-x_{n}$ ãåŸã. $x_1=0$ ãå å³ããŠããã解ãã°, 以äžã®ããã«ãªãããšã容æã«ããã.\r\n$$x_n=\\frac{(p-1)^n+(-1)^n\\times(p-1)}{p}$$\r\nãã㟠$\\varphi$ ãEulerã®totienté¢æ°ãšããã° $\\varphi(625)=500$ ãã\r\n$$(p-1)^p\\equiv6^7\\equiv279936\\equiv-64\\pmod{625}$$\r\nã§ãã, $(p-1)^p$ 㯠$16$ ã®åæ°ã§ããããšãå å³ã㊠$(p-1)^p\\equiv-64\\pmod{10000}$ ãšãªã. ãã£ãŠ\r\n$$x_p=\\frac{(p-1)^p+(-1)^p\\times(p-1)}{p}\\equiv\\frac{-64-6}{7}\\equiv -10\\equiv\\textbf{9990} \\pmod{10000}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc067/editorial/2290"
}
] | ã$p=10^9+7$ ã¯çŽ æ°ã§ã. $a_1^{10^9-1}+a_2^{10^9-1}+\cdots+a_p^{10^9-1}$ ã $p$ ã®åæ°ãšãªããããª, $1$ ä»¥äž $p-1$ 以äžã®æŽæ°ã®é åºä»ããçµ $(a_1,a_2,\ldots,a_p)$ ã®ç·æ°ã $N$ ãšãããŸã. $N$ ã $10000$ ã§å²ã£ãäœããæ±ããŠãã ãã. |
OMC067 | https://onlinemathcontest.com/contests/omc067 | https://onlinemathcontest.com/contests/omc067/tasks/2291 | F | OMC067(F) | 600 | 5 | 25 | [
{
"content": "ã$\\angle{PAR}=\\angle{QAR}$ ãã $DR=RP,QR=RE$ ã§ãã, ç°¡åãªè§åºŠèšç®ã§ $\\angle{DRQ}=\\angle{PRE}$ ãšäœµã㊠$DRQ$ ãš $PRE$ ã¯ååã§ãã, ç¹ã« $DQ=PE$ ã§ãã. ãŸã, ååšè§ã®å®çãã $\\angle{DQC}=\\angle{PEB},\\angle{QDC}=\\angle{EPB}$ ãåŸããã, $DQC$ ãš $PEB$ ã¯ååã§ãã, $DC=13,BE=11$ ãã $BC$ 㯠$18$ ã§äžå®ã§ãã. ãããã£ãŠ, ããšã¯ $A$ ãã $BC$ ã«ããããåç·ã®é·ã $h$ ãæ倧åããã°ãã.\\\r\nãããã§, ååšè§ã®å®çãã $DQC$ ãš $DEA$ ã¯çžäŒŒã§ãããšããã, $AD:AE=13:11$ ã§ãã. ããªãã¡ $D,E$ ãåºå®ãããšã, $A$ ã¯ã¢ããããŠã¹ã®åäžãåã. ãã£ãŠ, $h$ ã®æ倧å€ã¯ãã®åã®ååŸ $143\\/8$ ã§ãã, æ±ããé¢ç©ã®æ倧å€ã¯ $1287\\/8$ ã§ãããã, 解çãã¹ãå€ã¯ $\\textbf{1295}$ ã§ãã.\\\r\nããªã, ãã®æ倧å€ãå®çŸããç¹ $A$ ã¯, 確ãã«åé¡ã®æ¡ä»¶ããã¹ãŠå
足ããããšãããã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc067/editorial/2291"
}
] | ãäžè§åœ¢ $ABC$ ã®èŸº $BC$ äžã« $B,D,E,C$ ã®é ã«äžŠã¶ç¹ $D,E$ ã $DE=6$ ãã¿ãããŠãã, äžè§åœ¢ $ABD,ACE$ ã®å€æ¥åããããã $O_1,O_2$ ãšããŸã. ãŸã, ç·å $AE$ ãš $O_1$ ã $A$ 以å€ã®ç¹ã§äº€ãã£ãã®ã§ããã $P$, ç·å $AD$ ãš $O_2$ ã $A$ 以å€ã®ç¹ã§äº€ãã£ãã®ã§ããã $Q$ ãšãããš, $BP=13,CQ=11$ ãæç«ããŸãã. ããã«, $O_1$ ãš $O_2$ ã¯äžè§åœ¢ $ADE$ ã®å
éšã®ç¹ $R (\neq A)$ ã§äº€ãã, $\angle{PAR}=\angle{QAR}$ ãæç«ããŸãã. ãã®ãšã, $ABC$ ã®é¢ç©ãšããŠããåŸãæ倧å€ã¯, äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã®å€ã解çããŠãã ãã. |
OMC066 (for beginners) | https://onlinemathcontest.com/contests/omc066 | https://onlinemathcontest.com/contests/omc066/tasks/2225 | A | OMC066(A) | 100 | 296 | 306 | [
{
"content": "ãçŽåã®æ¡ãšç°ãªãæ°å $9$ çš®é¡ãã $1$ ã€ãéžã¶ããšã $4$ åç¹°ãè¿ãããšã«ãªãããïŒ$9^4=\\textbf{6561}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc066/editorial/2225"
}
] | ãOMCçåœã§çšããããéµäŸ¿çªå·ã¯ïŒãã¹ãŠïŒåé²æ³è¡šèšã§ïŒã¡ããã© $7$ æ¡ã®æ£æŽæ°ã§ããïŒãã€é£ãåãæ¡ã®æ°åã¯çžç°ãªããŸãïŒãã®ãããªçªå·ãšããŠããåŸããã®ã®ãã¡ïŒç¹ã«æåã® $3$ æ¡ã $120$ ã§ãããã®ã¯äœéããããŸããïŒ |
OMC066 (for beginners) | https://onlinemathcontest.com/contests/omc066 | https://onlinemathcontest.com/contests/omc066/tasks/1920 | B | OMC066(B) | 100 | 291 | 305 | [
{
"content": "ãããæ£æŽæ°ãæ£ã®çŽæ°ãã¡ããã© $3$ åãã€ããšã¯, çŽ æ°ã® $2$ ä¹ã®åœ¢ã«è¡šããããšãšåå€ã§ãã. $44^2 \\lt 2022 \\lt 45^2$ ããæ±ããåæ°ã¯ $44$ 以äžã®çŽ æ°ã®åæ°ã«çãã, ãã㯠$\\textbf{14}$ åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc066/editorial/1920"
}
] | ã$2022$ 以äžã®æ£æŽæ°ã®ãã¡, æ£ã®çŽæ°ãã¡ããã© $3$ åãã€ãã®ã¯ããã€ãããŸããïŒ |
OMC066 (for beginners) | https://onlinemathcontest.com/contests/omc066 | https://onlinemathcontest.com/contests/omc066/tasks/1671 | C | OMC066(C) | 200 | 290 | 303 | [
{
"content": "ãäžæ¹çšåŒã® $2$ 解ãšããŠããåŸããã®ã¯, 解ãšä¿æ°ã®é¢ä¿ããåã $20$ ã§ããããšãã\r\n$$(1,19),(2,18),\\ldots,(9,11),(10,10)$$\r\nã§ãã. $\\alpha$ 㯠$2$ 解ã®ç©ã§ãããã, æ±ããç·å㯠$\\displaystyle\\sum_{k=1}^{10} k(20-k)=\\textbf{715}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc066/editorial/1671"
}
] | ã$x$ ã«ã€ããŠã®äºæ¬¡æ¹çšåŒ
$$x^2-20x+\alpha=0$$
ãäºã€ã®å®æ°è§£ïŒé解ã§ãããïŒããã¡ïŒãã€ãããããã¹ãŠæ£æŽæ°ã§ãããããª, å®æ° $\alpha$ ã®ç·åãæ±ããŠãã ãã. |
OMC066 (for beginners) | https://onlinemathcontest.com/contests/omc066 | https://onlinemathcontest.com/contests/omc066/tasks/1362 | D | OMC066(D) | 200 | 237 | 273 | [
{
"content": "ã$D$ ãã $AC$ ã«ããããåç·ã®è¶³ã $H$ ãšãããšã, $DH=9$ ã§ããããšã瀺ã.\r\n\r\n**蚌æ1.** ã$AC$ ãš $BD$ ã®äº€ç¹ã $E$ ãšããã°, å
è§ã®äºçåç·å®çãã\r\n$$AE:EC=34:16$$\r\nãæç«ãããã, $AH=HC$ ãšããããŠ\r\n$$AH:HE:EC=25:9:16$$\r\nãåŸã. ãã£ãŠ $BC:DH=CE:EH$ ãã $DH=9$ ã§ãã.\r\n\r\n**蚌æ2.**ã$AB$ ãš $DH$ ã®äº€ç¹ã $F$ ãšããã°, $AF=BF=17$ ã§ãã, äžæ¹ã§\r\n$$\\angle{BDF}=\\angle{DBC}=\\angle{FBD}$$\r\nãã $BF=DF=17$ ã§ãã. ãã£ãŠ $FH=BC\\/2=8$ ãã $DH=DF-FH=9$ ãåŸã.\r\n\r\nãäžå¹³æ¹ã®å®çãã $AC=30$ ã§ããããšãšããããŠ, æ±ããé¢ç©ã¯ $(16+9)\\times30\\/2=\\textbf{375}$ ã§ãã. \r\n\r\n**äœè«.**ãä»åã¯äžèŠã§ããã, è§åºŠã®æ¡ä»¶ãã $A,B,C,D$ ã¯åäžååšäžã«ãã. ããã瀺ãã.\\\r\nã$ABC$ ã®å€æ¥åãš $AC$ ã®åçŽäºçåç·ã®äº€ç¹ã®ãã¡, $AC$ ã«é¢ã㊠$B$ ãšå察åŽã«ãããã®ã $D^\\prime$ ãšãããš, ãã㯠$AD^\\prime=CD^\\prime$ ãã¿ãã, ååšè§ã®å®çãã $BD^\\prime$ 㯠$\\angle ABC$ ãäºçåãã. ããªãã¡ $D$ 㯠$D^\\prime$ ã«äžèŽãã.\\\r\nãããªãã¡, å®ã¯ $\\angle ADB=90^\\circ$ ã§ããããšã, 蚌æ2ã«ããã $F$ ã¯ãã®åã®äžå¿ã§ããããšãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc066/editorial/1362"
}
] | ã以äžã®æ¡ä»¶ããã¹ãŠã¿ããåžåè§åœ¢ $ABCD$ ã®é¢ç©ãæ±ããŠãã ãã.
- $AB=34,BC=16,AD=CD,\angle ACB=90^\circ$.
- çŽç· $BD$ 㯠$\angle ABC$ ãäºçåãã. |
OMC066 (for beginners) | https://onlinemathcontest.com/contests/omc066 | https://onlinemathcontest.com/contests/omc066/tasks/2181 | E | OMC066(E) | 300 | 82 | 203 | [
{
"content": "$$C=(x+y)(x^2+y^2-xy)=\\frac{A(3B-A^2)}{2}$$\r\nãã $A=2$ ã§ãããã, $C=3B-4$ ãªãå¥æ°ã®åææ° $B,C$ ã«ã€ããŠèããã°è¯ã, å°ããæ¹ããæ¢çŽ¢ããŠããããšã§ $(B,C)=(27,77)$ ãåŸã. ãã®ãããªå®æ° $x,y$ ã¯ç¢ºãã«ååšãããã, æ±ããæå°å€ã¯ $\\textbf{106}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc066/editorial/2181"
}
] | ãå®æ° $x,y$ ã«å¯Ÿã, 以äžã®ããã« $A,B,C$ ãå®ããŸã.
$$A=x+y,\quad B=x^2+y^2,\quad C=x^3+y^3$$
ãããã以äžã®æ¡ä»¶ãã¿ãããšã, $A+B+C$ ãšããŠããåŸãæå°å€ã解çããŠãã ãã.
- $A,B,C$ ã¯ãããã $1$ ãã倧ããæŽæ°ã§ãã.
- $A,B,C$ ã¯ã©ã®äºã€ãäºãã«çŽ ã§ãã.
- $A,B,C$ ã®ãã¡çŽ æ°ã¯é«ã
äžã€ã§ãã. |
OMC066 (for beginners) | https://onlinemathcontest.com/contests/omc066 | https://onlinemathcontest.com/contests/omc066/tasks/1681 | F | OMC066(F) | 400 | 39 | 146 | [
{
"content": "ãéå $A_n\\setminus A_{n-1}$ ã¯æ£äžè§åœ¢ã®èŸºäžã«çééã«äžŠã¶ $3n$ ç¹ãããªãããšã容æã«ããã. $n$ åã®è¡åã§ãããã®ç¹ã«è³ãã«ã¯, $3$ æ¹åãã¹ãŠã«ç§»åããªãããšãå¿
èŠååæ¡ä»¶ã§ãããã, ãã®ãããªçµè·¯ãšããŠããåŸããã®ã®æ°ã¯\r\n$$3\\times\\left(\\sum_{k=0}^{n}{}_{n}\\mathrm{C}_k-2\\right)+3=3\\times 2^{n}-3$$\r\nç¹ã« $n=10$ ã®ãšããã㯠$3069$ ã§ãã, æ±ãã確ç㯠$\\dfrac{3069}{3^{10}}=\\dfrac{341}{6561}$ ãã, 解çãã¹ãå€ã¯ $\\textbf{6902}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc066/editorial/1681"
}
] | ã$xy$ 座æšå¹³é¢äžã®åç¹ã« $1$ å¹ã®ã¢ãªãããŸã. ã¯ããã«ã¢ãªã¯åç¹ã«å°ãã€ããŸã.\
ããã®ã¢ãªã¯ $x$ 軞ã®æ£æ¹åãåããŠãã, ããŸãã次ã®äžé£ã®è¡åãç¹°ãè¿ãè¡ããŸãïŒ
- é²è¡æ¹åãå€ããªãã, å·Šã« $120^{\circ}$ å転ããã, å³ã« $120^{\circ}$ å転ãã. ãããã¯ç確çã«éžæããã.
- ãã®åŸ, é²è¡æ¹åã«æ²¿ã£ãŠã¡ããã©è·é¢ $1$ ãé²ã¿, å°éããå°ç¹ã«å°ãã€ãã.
ããã®ã¢ãªãã¡ããã© $n$ åç¶ããŠè¡åãçµããæç¹ã§, ãããŸã§ã«ã¢ãªãå°ãã€ããå¯èœæ§ã®ããç¹ã®éåã $A_n$ ãšããŸã. $A_n$ ã¯ã¢ãªã®è¡åã«äŸåããŠå®ãŸããã®ã§ã¯ãªã, $n$ ã®ã¿ã«äŸããã®ã§ããããšã«æ³šæããŠãã ãã.\
ãã¢ãªã $10$ åç¶ããŠè¡åãè¡ããšã, æåŸã«å°ãä»ããç¹ã $A_9$ ã«å±ããªããããªç¢ºçãæ±ããŠãã ãã.\
ããã ã, æ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\displaystyle\frac{a}{b}$ ãšè¡šããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMCT001 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct001 | https://onlinemathcontest.com/contests/omct001/tasks/2874 | A | OMCT001(A) | 100 | 192 | 194 | [
{
"content": "ã解説ã¯æªäœæã§ãïŒãäºæ¿ãã ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct001/editorial/2874"
},
{
"content": "ã$5, 8$ ã«æ³šç®ããã° $25, 81$ ãå«ãŸãïŒ$3$ ã«æ³šç®ããã°æ®ã㯠$36, 49$ ãšäžæã«æ±ºå®ãããã®ã§ïŒè§£çãã¹ã㯠$\\mathbf{25364981}$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct001/editorial/2874/10"
}
] | ã以äžã®æ¡ä»¶ãã¿ããæŽæ°ã®çµ $A\lt B\lt C\lt D$ ã¯äžæã«ååšããããšã蚌æã§ããŸãïŒ
- $A,B,C,D$ ã¯ãã¹ãŠ $2$ æ¡ã®æ£æŽæ°ã§ããïŒåæ¡ã«ã¯ $1,2,3,4,5,6,8,9$ ãã¡ããã©äžåºŠãã€çŸããïŒ
- $A,B,C,D$ ã¯ãã¹ãŠ**å¹³æ¹æ°ã§ãã**ïŒ
ãã®ãããªãã®ã«ã€ããŠïŒ$A,B,C,D$ ããã®é ã«ç¶ããŠè§£çããŠãã ããïŒ |
OMCT001 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct001 | https://onlinemathcontest.com/contests/omct001/tasks/2875 | B | OMCT001(B) | 100 | 184 | 188 | [
{
"content": "ã解説ã¯æªäœæã§ãïŒãäºæ¿ãã ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct001/editorial/2875"
},
{
"content": "ã $2$ æ¡ã®äžè§æ°ã¯ $10,15,21,28,36,45,55,66,78,91$ ã®ã¿ã§ããïŒ\\\r\nããããã®ãã¡ïŒ $3$ ãå«ããã®ã¯ $36$ ã®ã¿ã§ããïŒ $4$ ãå«ããã®ã¯ $45$ ã®ã¿ã§ããïŒ $8$ ãå«ã㧠$7$ ãå«ãŸãªããã®ã¯ $28$ ã®ã¿ã§ããïŒ $9$ ãå«ããã®ã¯ $91$ ã®ã¿ã§ããïŒ\\\r\nã以äžããïŒæ¡ä»¶ãæºãã $(A,B,C,D)$ ã¯$(A,B,C,D)=(28,36,45,91)$ ã«éããïŒéã«ããã¯æ¡ä»¶ãæºããïŒæ
ã«ãçããã¹ãæ°å€ã¯ $\\bf{28364591}$ ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct001/editorial/2875/14"
}
] | ã以äžã®æ¡ä»¶ãã¿ããæŽæ°ã®çµ $A\lt B\lt C\lt D$ ã¯äžæã«ååšããããšã蚌æã§ããŸãïŒ
- $A,B,C,D$ ã¯ãã¹ãŠ $2$ æ¡ã®æ£æŽæ°ã§ããïŒåæ¡ã«ã¯ $1,2,3,4,5,6,8,9$ ãã¡ããã©äžåºŠãã€çŸããïŒ
- $A,B,C,D$ ã¯ãã¹ãŠ**äžè§æ°ã§ãã**ïŒ
ãã®ãããªãã®ã«ã€ããŠïŒ$A,B,C,D$ ããã®é ã«ç¶ããŠè§£çããŠãã ããïŒ\
ããã ãïŒ**äžè§æ°**ãšã¯ïŒããæ£æŽæ° $n$ ã«ã€ã㊠$1+2+\cdots+n$ ã®åœ¢ã«è¡šããæ£æŽæ°ã®ããšã§ãïŒ |
OMCT001 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct001 | https://onlinemathcontest.com/contests/omct001/tasks/2876 | C | OMCT001(C) | 200 | 149 | 169 | [
{
"content": "ã解説ã¯æªäœæã§ãïŒãäºæ¿ãã ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct001/editorial/2876"
}
] | ã以äžã®æ¡ä»¶ãã¿ããæŽæ°ã®çµ $A\lt B\lt C\lt D$ ã¯äœéããããŸããïŒ
- $A,B,C,D$ ã¯ãã¹ãŠ $2$ æ¡ã®æ£æŽæ°ã§ããïŒåæ¡ã«ã¯ $1,2,3,4,5,6,8,9$ ãã¡ããã©äžåºŠãã€çŸããïŒ
- $A,B,C,D$ ã¯ãã¹ãŠ**ä¹ä¹è¡šã«çŸãã**ïŒ
ããã ãïŒæ£æŽæ°ã**ä¹ä¹è¡šã«çŸãã**ãšã¯ïŒ(çžç°ãªããšã¯éããªã) $9$ 以äžã®æ£æŽæ° $2$ ã€ã®ç©ã«è¡šããããšãæããŸãïŒ |
OMCT001 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct001 | https://onlinemathcontest.com/contests/omct001/tasks/2877 | D | OMCT001(D) | 200 | 104 | 129 | [
{
"content": "ã解説ã¯æªäœæã§ãïŒãäºæ¿ãã ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct001/editorial/2877"
},
{
"content": "ã $$(A,B,C,D)=(18,23,54,69),(18,32,54,96),(26,39,54,81),(54,62,81,93)$$ \r\nã® $4$ çµãæ¡ä»¶ãæºããã®ã§ïŒçããã¹ãæ°å€ã¯ $\\bf{54}$ ã§ããïŒ",
"text": "çãã®ã¿",
"url": "https://onlinemathcontest.com/contests/omct001/editorial/2877/12"
}
] | ã以äžã®æ¡ä»¶ãã¿ããæŽæ°ã®çµ $A\lt B\lt C\lt D$ 㯠$4$ éãååšããããšã蚌æã§ããŸãïŒ
- $A,B,C,D$ ã¯ãã¹ãŠ $2$ æ¡ã®æ£æŽæ°ã§ããïŒåæ¡ã«ã¯ $1,2,3,4,5,6,8,9$ ãã¡ããã©äžåºŠãã€çŸããïŒ
- $A\/B=C\/D$ïŒ
ããã $4$ éããã¹ãŠã«ã€ããŠïŒã€ãã« $\\{A,B,C,D\\}$ ã«å«ãŸããå¯äžã®æŽæ°ã解çããŠãã ããïŒ |
OMCT001 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct001 | https://onlinemathcontest.com/contests/omct001/tasks/2878 | E | OMCT001(E) | 300 | 84 | 114 | [
{
"content": "ã解説ã¯æªäœæã§ãïŒãäºæ¿ãã ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct001/editorial/2878"
}
] | ã以äžã®æ¡ä»¶ãã¿ããæŽæ°ã®çµ $A\lt B\lt C\lt D$ ã¯äœéããããŸããïŒ
- $A,B,C,D$ ã¯ãã¹ãŠ $2$ æ¡ã®æ£æŽæ°ã§ããïŒåæ¡ã«ã¯ $1,2,3,4,5,6,8,9$ ãã¡ããã©äžåºŠãã€çŸããïŒ
- $A+B+C+D$ 㯠$7$ ã§å²ããããïŒ |
OMCT001 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct001 | https://onlinemathcontest.com/contests/omct001/tasks/2879 | F | OMCT001(F) | 300 | 62 | 84 | [
{
"content": "ã解説ã¯æªäœæã§ãïŒãäºæ¿ãã ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct001/editorial/2879"
},
{
"content": "ã$\\gcd(A,B,C,D)$ ã $2$ 以å€ã®çŽ å æ°ãæããªãããšãéã«ç€ºããŸã.\r\n\r\n- $\\gcd(A,B,C,D)$ ã $3$ ã®åæ°ã«ãªããïŒ\\\r\næ¡åãã $A+B+C+D$ ã $3$ ã®åæ°ã«ãªããªãïŒ\r\n- $\\gcd(A,B,C,D)$ ã $5$ ã®åæ°ã«ãªããïŒ\\\r\näžäžæ¡ããèªæïŒ\r\n- $\\gcd(A,B,C,D)$ ã $7$ ã®åæ°ã«ãªããïŒ\\\r\n$3,5,6$ ã®äœ¿ãéã$35,56,63$ãããªãã®ã§ $3,5,6$ ã®ã©ãããäœãïŒ\r\n- $\\gcd(A,B,C,D)$ ã $11$ ã®åæ°ã«ãªããïŒ\\\r\nããç®ã«ãªããªãã®ã§èªæïŒ\r\n- $\\gcd(A,B,C,D)$ ã $13$ ã®åæ°ã«ãªããïŒ\\\r\n$2,5,6$ ã®äœ¿ãéã$26,65,52$ãããªãã®ã§ $2,5,6$ ã®ã©ãããäœãïŒ\r\n- $\\gcd(A,B,C,D)$ ã $17$ ã®åæ°ã«ãªããïŒ\\\r\n$(34,51,68,85)$ ã¯æ¡ä»¶ãæºãããªãïŒ\r\n- $\\gcd(A,B,C,D)$ ã $19$ ã®åæ°ã«ãªããïŒ\\\r\n$7$ ãå«ãŸãªã $19$ ã®åæ°ã $3$ ã€ãããªãïŒ\r\n- $\\gcd(A,B,C,D)$ ã $23$ ã®åæ°ã«ãªããïŒ\\\r\n$(23,46,69,92)$ ã¯æ¡ä»¶ãæºãããªãïŒ\r\n- $\\gcd(A,B,C,D)$ ã $29$ 以äžã®åæ°ã«ãªããïŒ\\\r\n$D\\gt 100$ ã«ãªã£ãŠããŸãã®ã§ããããªãïŒ\r\n\r\n以äžãã $\\gcd(A,B,C,D)$ 㯠$2$ 以å€ã®çŽ å æ°ãæããªãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct001/editorial/2879/8"
},
{
"content": "ã$A, B, C, D$ ã®æ倧å
¬çŽæ°ã¯ $1$ ãŸã㯠$2$ ã¹ãã§ããããšã瀺ãïŒ\r\n- ãããã $3$ ã®åæ°ã§ãããšãïŒ$A, B, C, D$ ã®åæ¡ã«ç»å Žãã $8$ åã®æŽæ°ã®å㯠$3$ ã®åæ°ã«ãªããïŒå㯠$38$ ã§ãããã $3$ ã¯å
¬çŽæ°ã«æããªã\r\n- $5$ ã®åæ°ã¯é«ã
äžã€ããç»å Žããªãã®ã§ $5$ ã¯å
¬çŽæ°ã«æããªã\r\n- ãããã $7$ ã®åæ°ã§ãããšãïŒ$3$, $5$ ,$6$ ãç»å Žãããã®ããããã $35$, $56$, $63$ ã®ã¿ã§ããïŒãã®ãšãå¿
ãéè€ããããããã®ã§ $7$ ã¯å
¬çŽæ°ã«æããªã\r\n- äºæ¡ã® $11$ ã®åæ°ã¯ããããåã®äœãšäžã®äœãçããããšãã $11$ ã¯å
¬çŽæ°ã«æããªã\r\n- $13, 17, 19, 23$ ã®ãããããå
¬çŽæ°ã«ãã€ãšãïŒãããã $4, 2, 2, 5$ ã«æ³šç®ããã°ããããççŸ\r\n- $25$ 以äžã®çŽ æ° $p$ ã«ã€ã㊠$10$ ä»¥äž $100$ æªæºã« $p$ ã®åæ°ã¯é«ã
$3$ åããç»å Žããªãã®ã§ããããå
¬çŽæ°ã«æã€ããšã¯ãªã\r\n\r\nã$2$ ãå
¬çŽæ°ã«æ〠$\\iff$ $A, B, C, D$ ã®äžã®äœãããããå¶æ°ããæç«ããããšã«çæããã°ïŒæ±ããã¹ãå Žåã®æ°ã¯ ${}\\_8 \\mathrm{C} {}\\_4\\times4!-4!=\\mathbf{1656}$ ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct001/editorial/2879/9"
}
] | ã以äžã®æ¡ä»¶ãã¿ããæŽæ°ã®çµ $A\lt B\lt C\lt D$ ã¯äœéããããŸããïŒ
- $A,B,C,D$ ã¯ãã¹ãŠ $2$ æ¡ã®æ£æŽæ°ã§ããïŒåæ¡ã«ã¯ $1,2,3,4,5,6,8,9$ ãã¡ããã©äžåºŠãã€çŸããïŒ
- $A,B,C,D$ ã®æ倧å
¬çŽæ°ã¯ $1$ ã§ããïŒ |
OMCT001 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct001 | https://onlinemathcontest.com/contests/omct001/tasks/2880 | G | OMCT001(G) | 400 | 44 | 64 | [
{
"content": "ã解説ã¯æªäœæã§ãïŒãäºæ¿ãã ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct001/editorial/2880"
}
] | ã以äžã®æ¡ä»¶ãã¿ããæŽæ°ã®çµ $A\lt B\lt C\lt D$ ã¯äœéããããŸããïŒ
- $A,B,C,D$ ã¯ãã¹ãŠ $2$ æ¡ã®æ£æŽæ°ã§ããïŒåæ¡ã«ã¯ $1,2,3,4,5,6,8,9$ ãã¡ããã©äžåºŠãã€çŸããïŒ
- $A-B=C-D$ïŒ |
OMCT001 (åäœãã¹ã) | https://onlinemathcontest.com/contests/omct001 | https://onlinemathcontest.com/contests/omct001/tasks/2881 | H | OMCT001(H) | 400 | 31 | 38 | [
{
"content": "ã解説ã¯æªäœæã§ãïŒãäºæ¿ãã ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct001/editorial/2881"
},
{
"content": "ããã£ïŒç©ºããæ°åŒãïŒ\r\n$$(x+1)(x+2)(x+4)(x+6)=x^4+13x^3+56x^2+92x+48$$\r\nãã£ãŠïŒçã㯠$\\bf{13569248}$",
"text": "çãã®ã¿",
"url": "https://onlinemathcontest.com/contests/omct001/editorial/2881/13"
},
{
"content": "ãããã§ã¯ïŒã©ã®ããã«è§£ãæ¢ããããæžããŠã¿ãŸãïŒ\\\r\nããŸãïŒä¿æ°ããã¹ãŠæ£ãªã®ã§ïŒè§£ã¯ãã¹ãŠè² ã§ããããšãããããŸãïŒ$4$ ã€ã®è§£ã $x=-a,-b,-c,-d$ ãšãããšïŒ\r\n$$A=a+b+c+d ,\\quad B=ab+bc+cd+ac+bd+ad, \\quad C=abc+abd+acd+bcd, \\quad D=abcd$$\r\nãšãªããŸãïŒããããå
ã¯åã«ããæšæž¬ãšãªããŸãïŒ\\\r\nã$D$ ã«ã€ããŠã®æ¡ä»¶ãèŠããšïŒ$D$ ãããçšåºŠçµãããã ãšããããŸãïŒ\r\n$1,2,3,4,5,6,8,9$ ã§äœããæ°ã®ãã¡ïŒçŽæ°ãå€ãããªãã®ãæãããšïŒ$24,36,48,72,96$ ãªã©ããããŸãïŒ\r\n$a,b,c,d$ ã¯ããŸã倧ãããªããªãããªã®ã§ïŒ$a,b,c,d$ ãè¯ãæãã«ãªãããã« $D$ ã®åè£ãæ¢ããšïŒ$D=48$ 㧠$(a,b,c,d)=(1,2,4,6)$ ã®ãšãã« $A=13,~ B=56,~ C=92$ ãšãªã£ãŠç¡äºã«èŠã€ãããŸããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omct001/editorial/2881/16"
}
] | ã以äžã®æ¡ä»¶ãã¿ããæŽæ°ã®çµ $(A,B,C,D)$ ã¯äžæã«ååšããããšã蚌æã§ããŸãïŒ
- $A,B,C,D$ ã¯ãã¹ãŠ $2$ æ¡ã®æ£æŽæ°ã§ããïŒåæ¡ã«ã¯ $1,2,3,4,5,6,8,9$ ãã¡ããã©äžåºŠãã€çŸããïŒ
- $x$ ã®æ¹çšåŒ $x^4+Ax^3+Bx^2+Cx+D=0$ ã®è€çŽ æ°è§£ã¯ïŒãã¹ãŠæŽæ°å€ã§ããïŒ
ãã®ãããªãã®ã«ã€ããŠïŒ$A,B,C,D$ ããã®é ã«ç¶ããŠè§£çããŠãã ããïŒ\
ã**ãã®åé¡ã«éãïŒå€§å°é¢ä¿ã®èšå®ãç¡ãããšã«æ³šæããŠãã ãã**ïŒ |
OMC065 (for beginners) | https://onlinemathcontest.com/contests/omc065 | https://onlinemathcontest.com/contests/omc065/tasks/1834 | A | OMC065(A) | 100 | 260 | 261 | [
{
"content": "ããã¹ãŠã®æåãåºå¥ããã° $5!$ éãã§ãã, ãã®ãšãåãæåå㯠$2^2$ åãã€çŸãããã, æ±ããã¹ãå€ã¯ $\\textbf{30}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc065/editorial/1834"
}
] | ã$m,n,n,o,o$ ã® $5$ æåã䞊ã³æ¿ããŠã§ããæååã¯äœéããããŸããïŒ |
OMC065 (for beginners) | https://onlinemathcontest.com/contests/omc065 | https://onlinemathcontest.com/contests/omc065/tasks/1505 | B | OMC065(B) | 200 | 190 | 247 | [
{
"content": "ã$360=2^3\\times 3^2\\times 5$ ã«çæã, åçŽ å æ°ã®åé
ãèããã°, åæ°ãçžç°ãªããšã®æ¡ä»¶ãç¡èŠããã°æ±ããå Žåã®æ°ã¯ ${}_5\\mathrm{C}_2\\times{}_4\\mathrm{C}_2\\times{}_3\\mathrm{C}_2=180$ éãã§ãã. ããã§, åæã« $2$ å䜿ããåŸãæ°ã¯ $1,2,3,6$ ã§ãããã, ($3$ åã«ã¯ãªãåŸãªã), 解çãã¹ãå€ã¯ $180-3\\times 4=\\textbf{168}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc065/editorial/1505"
}
] | ã$abc=360$ ãªã**çžç°ãªã**æ£æŽæ°ã®çµ $(a,b,c)$ ã¯ããã€ãããŸããïŒ\
ããã ã, æ°ã®å
¥ãæ¿ãã«ãã£ãŠäžèŽãããã®ãåºå¥ãããã®ãšããŸã. |
OMC065 (for beginners) | https://onlinemathcontest.com/contests/omc065 | https://onlinemathcontest.com/contests/omc065/tasks/1977 | C | OMC065(C) | 200 | 204 | 228 | [
{
"content": "ã以äžãã, æ±ãã解ã®ç·å㯠$\\dfrac{\\sqrt{89}-1}{2}$ ã§ãã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{92}$ ã§ãã.\r\n- $x\\leq -3$ ã®ãšã, $x^2-3x-28=0$ ã解ãã°ãã, $x=-4$ ãåŸã.\r\n- $-3\\leq x\\leq 5$ ã®ãšã, $x^2-3x-8=0$ ã解ãã°ãã, $x=\\dfrac{3\\pm\\sqrt{41}}{2}$ ãåŸã.\r\n- $x\\geq 5$ ã®ãšã, $x^2-x-22=0$ ã解ãã°ãã, $x=\\dfrac{1+\\sqrt{89}}{2}$ ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc065/editorial/1977"
}
] | ã次㮠$x$ ã®æ¹çšåŒã®å®æ°è§£ã®ç·åãæ±ããŠãã ããïŒ
$$\lvert x^2-2x-15\rvert +\lvert x+3\rvert =10$$
ãã ã, æ±ããç·åã¯æ£æŽæ° $a,b,c$ ã«ãã£ãŠ $ \displaystyle\frac{\sqrt{a}-b}{c} $ ãšè¡šããã®ã§ (ãã ã $a$ ã¯å¹³æ¹å åããããªã), $a+b+c$ ã解çããŠãã ãã. |
OMC065 (for beginners) | https://onlinemathcontest.com/contests/omc065 | https://onlinemathcontest.com/contests/omc065/tasks/2223 | D | OMC065(D) | 200 | 168 | 211 | [
{
"content": "ãæ倧å
¬çŽæ° $g$ ã«ã€ããŠ, $a=Ag,b=Bg$ ãšããã°, æå°å
¬åæ°ã¯ $ABg$ ã§ãããã, æ¡ä»¶ã¯\r\n$$(AB-1)g=2021=43\\times 47$$\r\nç¹ã« $g=1,43,47,2021$ ã®ããããã§ãã, ãããã調ã¹ãããšã§å
šäœã§ã¯ $\\textbf{9}$ çµã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc065/editorial/2223"
}
] | ãæ£æŽæ°ã®çµ $a\lt b$ ã§ãã£ãŠ, ãããã®æå°å
¬åæ°ãšæ倧å
¬çŽæ°ã®å·®ã $2021$ ã§ãããã®ã¯ããã€ãããŸããïŒ |
OMC065 (for beginners) | https://onlinemathcontest.com/contests/omc065 | https://onlinemathcontest.com/contests/omc065/tasks/2161 | E | OMC065(E) | 300 | 64 | 138 | [
{
"content": "ã$1$ ã€ã®ç®ã®æ¡ä»¶ã«ã€ããŠ, åãšããŠããåŸããã®ã¯ $7$ ä»¥äž $195$ 以äžã§ãã, ããããã«ã€ããŠå Žåã®æ°ã¯\r\n$${}\\_{3}\\mathrm{C}\\_{3},{}\\_{3}\\mathrm{C}\\_{3},{}\\_{4}\\mathrm{C}\\_{3},{}\\_{4}\\mathrm{C}\\_{3},\\cdots,{}\\_{49}\\mathrm{C}\\_{3},{}\\_{49}\\mathrm{C}\\_{3},{}\\_{50}\\mathrm{C}\\_{3},{}\\_{49}\\mathrm{C}\\_{3},{}\\_{49}\\mathrm{C}\\_{3},\\cdots,{}\\_{3}\\mathrm{C}\\_{3},{}\\_{3}\\mathrm{C}\\_{3}$$\r\nãšæšç§»ããããšãããã. ãããã£ãŠ, ãããã®ç·åã¯\r\n$$ 4\\times({}\\_3\\mathrm{C}\\_3+\\cdots+{}\\_{49}\\mathrm{C}\\_{3})+{}\\_{50}\\mathrm{C}\\_{3}=\\frac{4}{3!}\\times\\sum\\_{n=1}^{49}n(n-1)(n-2)+{}\\_{50}\\mathrm{C}\\_{3}=\\textbf{940800} $$\r\nããªã, å®éã«ã¯ ${}\\_3\\mathrm{C}\\_3+\\cdots+{}\\_{49}\\mathrm{C}\\_{3}={}\\_{50}\\mathrm{C}\\_{4}$ ã䜿ããšæ©ãã ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc065/editorial/2161"
}
] | ã$100$ 以äžã®æ£æŽæ°ã®çµ $(a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})$ ã§ãã£ãŠ, 以äžã®æ¡ä»¶ãã¿ãããã®ã¯ããã€ãããŸããïŒ
- $a_{1}+a_{2}=a_{3}+a_{4}=a_{5}+a_{6}$
- $a_{1}\lt a_{3}\lt a_{5}\lt a_{6}\lt a_{4}\lt a_{2}$ |
OMC065 (for beginners) | https://onlinemathcontest.com/contests/omc065 | https://onlinemathcontest.com/contests/omc065/tasks/1916 | F | OMC065(F) | 400 | 68 | 139 | [
{
"content": "$$\\angle BEC=\\angle AEB=\\angle AFE+45^\\circ=\\angle BPE+45^\\circ=180^\\circ-\\angle BEP$$\r\nãã $C,E,P$ ã¯å
±ç·ã§ãã, åæ§ã« $C,F,Q$ ãå
±ç·ã§ãã. ãã£ãŠ, $\\tan$ ã®å æ³å®çãå©çšããŠ\r\n$$\\angle{BCP}+\\angle{DCQ}=45^\\circ$$\r\nãã¿ããäžèŸºã®é·ããæ±ããã° $\\textbf{20}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc065/editorial/1916"
}
] | ãæ£æ¹åœ¢ $ABCD$ ã«ãããŠ, 察è§ç· $BD$ äžã®ç¹ $E,F$ ã $\angle EAF=45^\circ$ ãã¿ãããŠãã, $B,E,F,D$ ã®é ã«äžŠãã§ããŸã. äžè§åœ¢ $AEF$ ã®å€æ¥åãšèŸº $AB,AD$ ã®äº€ç¹ããããã $P,Q$ ãšãããšã,
$$PB=12,\quad QD=5$$
ãæç«ããŸãã. ãã®ãšã, $ABCD$ ã®äžèŸºã®é·ããæ±ããŠãã ãã. |
OMC064 (for experts) | https://onlinemathcontest.com/contests/omc064 | https://onlinemathcontest.com/contests/omc064/tasks/1833 | A | OMC064(A) | 300 | 100 | 143 | [
{
"content": "ãæ¹çšåŒã® $4$ 解ã $x=x_1,x_2,x_3,x_4$ ãšãããš, 解ãšä¿æ°ã®é¢ä¿ãã\r\n$$\\begin{cases}\r\n2022=x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4\\\\\\\\\r\nn=x_1x_2x_3x_4\r\n\\end{cases}$$\r\nãã®ãšã, çžå ã»çžä¹å¹³åã®é¢ä¿ãã\r\n$$n\\leq \\left(\\dfrac{2022}{6}\\right)^2=113569$$\r\néã«ãã®ç¯å²ã§æ¡ä»¶ãã¿ããããšã確èªããããã, 解çãã¹ãå€ã¯ $\\textbf{113569}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc064/editorial/1833"
}
] | ã以äžã®æ¡ä»¶ãã¿ããæ£æŽæ° $n$ ã¯ããã€ãããŸããïŒ
- ããå®æ° $p,q$ ãååšã, 以äžã® $x$ ã«ã€ããŠã®å次æ¹çšåŒã®è€çŽ æ°è§£ããã¹ãŠæ£ã®å®æ°ãšãªã.
$$x^4-px^3+2022x^2-qx+n=0$$ |
OMC064 (for experts) | https://onlinemathcontest.com/contests/omc064 | https://onlinemathcontest.com/contests/omc064/tasks/1855 | B | OMC064(B) | 400 | 130 | 161 | [
{
"content": "ãå¹³é¢ $\\alpha ,\\beta ,\\gamma$ ããããã $xy,yz,zx$ å¹³é¢ã§ãããšããŠãã.\\\r\nããã®ãšã, $xy$ å¹³é¢ã«ãã $P$ ã®æé¢ã®ååŸã $R_{xy}$ ãªã©ãšè¡šã, $P$ ã®ååŸã $R_P$ ãšãã.\r\n\r\n**解æ³1.**ãäžè¬æ§ã倱ããçã®äžå¿ã®åº§æšã $x,y,z\\geq 0$ ã«ãã£ãŠ $(x,y,z)$ ãšè¡šããš,\r\n$$\\begin{cases}\r\nR_P^2-z^2=R_{xy}^2=20\\\\\\\\\r\nR_P^2-x^2=R_{yz}^2=27\\\\\\\\\r\nR_P^2-y^2=R_{zx}^2=21\r\n\\end{cases}$$\r\nããããæããã« $R_P^2\\geq 27$ ã§ãã. ãŸãæ¡ä»¶ãã $y^2\\leq R_{xy}^2=20$ ã§ãããã, $R_P^2\\leq 41$ ãæç«ãã.\\\r\nãéã« $R_P^2$ ã $27$ ããã³ $41$ ãšããŠããããæ¡ä»¶ãå
足ã§ãããã, 解çãã¹ãå€ã¯ $27+41=\\textbf{68}$ ã§ãã.\r\n\r\n**解æ³2.**ã$P$ ã®è¡šé¢ãš $x$ 軞ãšã® $2$ 亀ç¹ã®åº§æšã $x_1,x_2$ ãªã©ã§è¡šã. ãã ã, æ¥ããå Žå㯠$x_1=x_2$ ãšãã. ãã®ãšã, äžå¹³æ¹ã®å®çãšæ¹ã¹ãã®å®çãã次åŒãæãç«ã€ããšã確ãããããïŒ\r\n$$4R_{xy}^2=x_1^2+x_2^2+y_1^2+y_2^2$$\r\nããªãã¡, äžããããæé¢ç©ãã次åŒãå°ãã, $x_1^2+x_2^2=28,\\\\, y_1^2+y_2^2=52,\\\\\\, z_1^2+z_2^2=56$ ãåŸã.\r\n$$\\begin{cases}\r\nx_1^2+x_2^2+y_1^2+y_2^2=80\\\\\\\\\r\ny_1^2+y_2^2+z_1^2+z_2^2=108\\\\\\\\\r\nz_1^2+z_2^2+x_1^2+x_2^2=84\r\n\\end{cases}$$\r\nãããšçžå ã»çžä¹å¹³åã®é¢ä¿åŒãã $\\lvert x_1x_2\\vert\\leq 14$ ã§ãã. äžæ¹ã§, äžå¹³æ¹ã®å®çãã\r\n$$R_P^2=R_{yz}^2+\\left(\\frac{|x_1- x_2|}{2}\\right)^2=\\frac{x_1^2+x_2^2+y_1^2+y_2^2+z_1^2+z_2^2}{4}-\\frac{x_1x_2}{2}=34-\\frac{x_1x_2}{2}$$\r\nã以äžãã $\\sqrt{34-7}\\leq R_P\\leq\\sqrt{34+7}$ ãšãªã, åãçµè«ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc064/editorial/1855"
}
] | ãå¹³é¢ $\alpha ,\beta ,\gamma$ ã¯äºãã«çŽäº€ããŠãã, ãã€ãã¹ãŠç $P$ ãšå
±ééšåããã¡ãŸã. ãã®ãšã, 次ã®æ¡ä»¶ããšãã«ã¿ãããããªç $P$ ã®ååŸãšããŠããåŸãæå°å€ã $r$, æ倧å€ã $R$ ãšããŸã. $r^2+R^2$ ã解çããŠãã ãã.
- å¹³é¢ $\alpha ,\beta ,\gamma$ ã®ãã¡, ã©ã® $2$ é¢ã®äº€ç·ãç $P$ ãšå
±ééšåãæã€.
- ç $P$ ã®å¹³é¢ $\alpha ,\beta ,\gamma$ ã«ããæé¢ç©ããããã $20\pi ,27\pi ,21\pi$ ã§ãã. |
OMC064 (for experts) | https://onlinemathcontest.com/contests/omc064 | https://onlinemathcontest.com/contests/omc064/tasks/2174 | C | OMC064(C) | 500 | 95 | 134 | [
{
"content": "ã次ã®äºå®ã«çæããïŒ$d(x)$ ãå¥æ° $\\iff$ $x$ ã¯å¹³æ¹æ°.\\\r\nã$d(n^{d(n)})=N$ ãšãããš, $n^{d(n)}$ 㯠$n$ ãå¹³æ¹æ°ã§ãããã«ãããåžžã«å¹³æ¹æ°ã§ãããã, $N$ ã¯åžžã«å¥æ°ã§ãã. ãããã£ãŠ $d(m^2+47),d(m^2+87)$ ã®ã©ã¡ããäžæ¹ã®ã¿ãå¥æ°ã§ããã®ã§, $m^2+47,m^2+87$ ã®ã©ã¡ããäžæ¹ã®ã¿ãå¹³æ¹æ°ãšãªãïŒä»¥äž, $l$ ã¯æ£æŽæ°ãšããïŒ\\\r\nã$m^2+47=l^2$ ã®ãšã, $(m,l)=(23,24)$ ã«éãããã®ã§, $N=d(24^2)+d(616)=21+16=37$ ã§ãã. ãŸã $m^2+87=l^2$ ã®ãšã, $(m,l)=(43,44),(13,16)$ ãã $N=d(1896)+d(44^2)=16+15=31$ ãŸã㯠$N=d(216)+d(16^2)=16+9=25$ ã§ãã. 以äžãã $d(n^{d(n)})=25,31,37$ ãæ¡ä»¶ã§ããïŒ\\\r\nã$n$ ãçŽ å æ°ã $k$ çš®é¡ãã€ãšä»®å®ãããš, $d(n^{d(n)})\\geq d(n^{2^k})\\geq (2^k+1)^k$ ãã $k=0,1,2$ ã§ãããã, éè² æŽæ° $a\\geq b$ ããã³çŽ æ° $p,q$ ãçšã㊠$n=p^a\\times q^b$ ãšè¡šããïŒãã®ãšã,\r\n$$d(n^{d(n)})=d((p^a\\times q^b)^{(a+1)(b+1)})=(a(a+1)(b+1)+1)(b(a+1)(b+1)+1)$$\r\nç¹ã« $a\\geq b$ ãšäœµã㊠$37\\geq (b(b+1)^2+1)^2$ ã§ãããã, $b=0,1$ ã§ããïŒ\\\r\nã$b=0$ ã®ãšã, $d(n^{d(n)})=a^2+a+1=25,31,37$ ã解ã㊠$a=5$ ãåŸã.\\\r\nã$b=1$ ã®ãšã, $d(n^{d(n)})=(2a^2+2a+1)(2a+3)=25,31,37$ ã解ã㊠$a=1$ ãåŸã.\\\r\nã以äžãã, çµå± $n=pq$ ãŸã㯠$p^5$ ãšè¡šãããšãã«éã£ãŠ, ãããã $m=13,43$ ãååšããŠåé¡æã®çåŒãæºããïŒãã®ããã«è¡šãã $n$ ãå°ããé ã«äžŠã¹ããš $6,10,14,15,21,22,26,32,33,34$ ã§ãããã, ç·å㯠$\\textbf{213}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc064/editorial/2174"
}
] | ãæ£ã®æŽæ° $x$ ã«å¯Ÿã㊠$d(x)$ 㧠$x$ ã®æ£ã®çŽæ°ã®åæ°ãè¡šãããšã«ããŸã.\
ã次ã®åŒãã¿ããæ£æŽæ° $m$ãååšãããããªæ£æŽæ° $n$ ã®ãã¡, å°ããæ¹ãã $10$ çªç®ãŸã§ã®ç·åãæ±ããŠãã ãã.
$$d(n^{d(n)})=d(m^2+47)+d(m^2+87)$$ |
OMC064 (for experts) | https://onlinemathcontest.com/contests/omc064 | https://onlinemathcontest.com/contests/omc064/tasks/1904 | D | OMC064(D) | 500 | 54 | 94 | [
{
"content": "ãæ°çŽç·äžã®ç§»åã«ãªããããŠèãã. ããªãã¡, åº§æš $0$ ããã¹ã¿ãŒãã, 以äžã®ç§»å $A,B$ ãç¹°ãè¿ã㊠$100$ ãžè³ã.\r\n\r\n- 移å $A$ïŒèªèº«ã®ãã座æšã $+2$ ãã.\r\n- 移å $B$ïŒèªèº«ã®ãã座æšã $-1$ ãã.\r\n\r\nå
šäœã§ç§»å $A,B$ ãè¡ã£ãåæ°ããããã $x,y$ ãšè¡šãã°, $S_n\\geq 1$ ã®ãšã $n=3m+50\\ (m\\geq 0)$ ãšè¡šã, \r\n$$(x,y)=(m+50,2m)$$\r\nãŸã, åã座æšã $2$ åéããªããšããæ¡ä»¶ã¯, ãå $B$ ã®éã«ã¯æäœã§ã $2$ ã€ã® $A$ ãå
¥ããå¿
èŠãããããšè¡šçŸã§ããããšãããã. ããªãã¡, $2m$ åã® $B$ ã®éããããã« $A$ ã $2$ åãã€å
¥ããæåå\r\n$$BAABAA\\cdots BAAB$$\r\nã«å¯ŸããŠ, æ®ãã® $52-3m$ åã® $A$ ãå ããã°ãã. ããããç¹ã« $m\\leq 17$ ã§ãã, \r\n$$S_{3m+50}={}\\_{(52-3m)+2m}\\mathrm{C}\\_{2m}={}\\_{52-m}\\mathrm{C}\\_{2m}$$\r\nãããçšã㊠$p_{3m+50}$ ãããããèšç®ããããšã§,\r\n$$p_{50}=0,\\quad p_{53}=17,\\quad p_{56}=\\cdots =p_{65}=47,\\quad p_{68}=\\cdots =p_{77}=43$$\r\n$$p_{80}=p_{83}=41,\\quad p_{86}=\\cdots =p_{95}=37,\\quad p_{98}=17,\\quad p_{101}=7$$ \r\nã§ããã®ã§, 解çãã¹ãå€ã¯ $7+2\\times (17+41)+4\\times (37+43+47)=\\textbf{631}$ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc064/editorial/1904"
}
] | ã$n$ ãæ£æŽæ°ãšããŸã. æ°å $\\{a_i\\}_{i=0,1,\cdots,n}$ ã以äžã®æ¡ä»¶ãã¿ãããŸãïŒ
- $a_0=0,\\,a_{n}=100$
- ä»»æã® $i=1,\ldots,n$ ã«å¯Ÿã, $a_{i}-a_{i-1}$ 㯠$2$ ãŸã㯠$-1$
- $a_0,a_1,\ldots,a_{n}$ ã¯ãã¹ãŠç°ãªã.
ãã®ãããªæ°åã®åæ°ã $S_n$ ãšãã, ããã« $p_n$ ã以äžã§å®ããŸãïŒ
$$p_n=
\begin{cases}
S_nã«å«ãŸããæ倧ã®çŽ å æ°\ \ (S_n\geq 2)\\\\
0\ \ (S_n\leq 1)
\end{cases}$$
ãã®ãšã, $p_1+p_2+\cdots +p_{2022}$ ãæ±ããŠãã ãã. |
OMC064 (for experts) | https://onlinemathcontest.com/contests/omc064 | https://onlinemathcontest.com/contests/omc064/tasks/266 | E | OMC064(E) | 700 | 12 | 33 | [
{
"content": "ã$ABC$ ã®å€æ¥åã«ãããŠåŒ§ $BAC$ ã®äžç¹ã $M$ ãšãããš, well-known factãšã㊠$A,D,E,M$ ã¯åäžååšäžã«ãã, $MBC$ ãš $MDE$ ã¯çžäŒŒãªäºç蟺äžè§åœ¢, ããã§ã¯ç¹ã«æ£äžè§åœ¢ã§ãã.\\\r\nãäžè¬ã«ããããç·å $BC,DE$ äžã«ãã $BK:KC=EL:LD$ ãã¿ããç¹ã®çµ $(K,L)$ ãèãããš, $K$ ã $B$ ãã $C$ ãŸã§åããããšã, $\\angle BKL$ ã®å€§ããã¯ç矩å調æžå°ã, äžæ¹ã§ $\\angle DLK$ ã®å€§ããã¯ç矩å調å¢å ãã. ããªãã¡ $\\angle BKL=\\angle DLK$ ãªãçµ $(K,L)$ ã¯é«ã
$1$ ã€ãããªã, ååšããã°ããã $(P,Q)$ ã§ãã.\\\r\nãããã§, $\\angle BME$ ã®äºçåç·ãšç·å $BC,DE$ ã®äº€ç¹ããããã $P^\\prime,Q^\\prime$ ãšãããš, ããã㯠$MBC$ ãš $MDE$ ã®çžäŒŒã«ãããŠå¯Ÿå¿ããããšãåãããã, çµå±ãããã $P,Q$ ã«äžèŽãã.\\\r\nã$MC$ ã«é¢ã㊠$B,E$ ãå察åŽã«ããããšãã, $\\angle BMC\\lt \\angle BME=2\\angle BMP$ ãã $BP\\gt CP$ ã«çæãã.\r\n\r\n**æ¹é1.**ã$PQ$ ã«é¢ã㊠$D,E$ ãšå¯Ÿç§°ãªç¹ããããã $D^\\prime,E^\\prime$ ãšãããš, ããããçŽç· $CM,BM$ äžã«ãã, $MD^\\prime E^\\prime$ ã¯æ£äžè§åœ¢ã§ãã. ããªãã¡çŽç· $D^\\prime E^\\prime$ 㯠$BC$ ã«å¹³è¡ã§ãããã, ãããã\r\n$$10:9=(BC-DE):PQ=BE^\\prime:PQ=ME^\\prime:MQ$$\r\n$ME^\\prime=10,MQ=9$ ãšããã°, $E^\\prime Q=x$ ãšãã㊠$ME^\\prime Q$ ã«äœåŒŠå®çãé©çšããããšã§\r\n$$MQ^2=E^\\prime M^2+E^\\prime Q^2-2E^\\prime M\\times E^\\prime Q\\cos60^\\circ \\implies x^2-10x+19=0$$\r\n$D^\\prime Q\\lt E^\\prime Q$ ãã $x\\gt 5$ ã«çæããã° $x=5+\\sqrt{6}$ ãåŸã. ãã£ãŠä»¥äžãã, 解çãã¹ãå€ã¯ $\\textbf{66}$ ã§ãã.\r\n$$ \\frac{CP}{BP}=\\frac{D^\\prime Q}{E^\\prime Q}=\\frac{10-x}{x}=\\frac{31-10\\sqrt{6}}{19}$$\r\n\r\n**æ¹é2.**ãæ±ããæ¯ã $t$ ãšããã°ïŒ$BC$ ã®äžç¹ $N$ ã«ã€ããŠçŽè§äžè§åœ¢ $MNP$ ã«äžå¹³æ¹ã®å®çãé©çšããŠ\r\n$$\\left(\\dfrac{MP}{BC}\\right)^2=\\left(\\dfrac{\\sqrt{3}}{2}\\right)^2+\\left(\\dfrac{1-t}{2(1+t)}\\right)^2\\implies MP=\\frac{\\sqrt{t^2+t+1}}{t+1}BC$$\r\näžæ¹ã§, $MP:MQ=BC:DE$ ã§ããããšãã,\r\n$$\\dfrac{9}{10}(BC-DE)=PQ=MP-MQ=MP\\left(1-\\frac{DE}{BC}\\right)=\\frac{\\sqrt{t^2+t+1}}{t+1}(BC-DE)$$\r\n以äžãã, $t\\lt 1$ ãšäœµã㊠$\\displaystyle t=\\frac{31-10\\sqrt{6}}{19}$ ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc064/editorial/266"
}
] | ã$AB\gt AC,\angle A=60^\circ$ ãªãéè§äžè§åœ¢ $ABC$ ã«ãããŠ, ãããã蟺 $AB,AC$ äžã®ç¹ $D,E$ ã $BD=CE$ ã, ããããç·å $BC,DE$ äžã®ç¹ $P,Q$ ã $BP:PC=EQ:QD$ ãã¿ãããŸã. ãã®ãšã,
$$\angle BPQ=\angle DQP,\quad (BC-DE):PQ=10:9$$
ãæç«ãããªãã°, $\displaystyle\frac{CP}{BP}=\frac{a-b\sqrt{c}}{d}$ ãšè¡šããŸã. ãã ã, $a,b,d$ ã¯æ倧å
¬çŽæ°ã $1$ ã§, $c$ ã¯å¹³æ¹å åããããªããã®ãšããŸã. $a+b+c+d$ ã解çããŠãã ãã. |
OMC064 (for experts) | https://onlinemathcontest.com/contests/omc064 | https://onlinemathcontest.com/contests/omc064/tasks/2717 | F | OMC064(F) | 700 | 8 | 47 | [
{
"content": "ãæäœã«ããã茪ã«çãŸã人æ°ã¯åžžã«å¶æ°äººã§ããïŒ ç¹ã«å
šå¡ã亀äºã« $2$ ã€ã®ã°ã«ãŒãã«åå²ãããšãïŒããããã®ã°ã«ãŒãããå¶æ°äººã茪ãã匟ãããããšã容æã«åããïŒãããã£ãŠ $1$ åã§æäœãçµããããšã¯ãªãïŒ\\\r\nãäžæ¹ã§ïŒ$2$ åã§æäœãçµããããããïŒãããæ°ãäžãããïŒ\r\n\r\n**解æ³1.**ãããã§ïŒä»¥äžã®ããã«ããïŒ\r\n$$S(m,n)=\\sum_{k=0}^m {n \\choose {2k}}{n \\choose {2m-2k}},\\quad T(m,n)=\\sum_{k=0}^{m-1} {n \\choose {2k+1}}{n \\choose {2m-2k-1}}$$\r\nããŸïŒ$(1+x)^n(1+x)^n=(1+x)^{2n}$ ã®äž¡èŸºã® $x^{2m}$ ã®ä¿æ°ãæ¯èŒããŠïŒ\r\n$$S(m,n)+T(m,n)= {{2n} \\choose {2m}}$$\r\näžæ¹ã§ïŒ$(1+x)^n(1-x)^n=(1-x^2)^n$ ã®äž¡èŸºã® $x^{2m}$ ã®ä¿æ°ãæ¯èŒããŠïŒ\r\n$$S(m,n)-T(m,n)= {n \\choose m} (-1)^m$$\r\nããããé£ç«ãããããšã§ïŒä»¥äžã®ããã«æ±ããããïŒ\r\n$$S(m,n)=\\dfrac{1}{2} \\left( {{2n} \\choose {2m}} + {n \\choose m} (-1)^m \\right)$$\r\nãããŸïŒåã°ã«ãŒãããäžåºŠã«åŒŸããã人ã®éåãéžãã ãšãïŒããäžæ¹ã®ã°ã«ãŒãããã®æåã®æ¹æ³ã¯ã¡ããã© $2$ éãããããšã«çæããã°ïŒ$N$ ã¯ä»¥äžã®ããã«èšç®ã§ããïŒãã ãïŒ$1$ åç®ã®æäœã§ $2m$ 人ã匟ããïŒããã«äžæ¹ã®ã°ã«ãŒããã $2k$ 人ã匟ãããããšãæå³ããïŒãããã£ãŠïŒç·å㯠$m=1,3,5,\\ldots,1011$ ã«æž¡ãïŒ\r\n$$ \\begin{aligned} N &= \\sum_m 2^4S(m,1011)\\\\\\\\\r\n&= 2^3\\sum_m \\left( {2022 \\choose {2m}} - {1011 \\choose m} \\right) \\\\\\\\\r\n&= 2^3(2^{2020} - 2^{1010}) \\\\\\\\\r\n&= 2^{1013}(2^{1010}-1)\r\n\\end{aligned}$$ \r\nããã $2021=43\\times 47$ ã§å²ã£ãäœã㯠$\\textbf{1902}$ ã§ããïŒ \r\n\r\n**解æ³2.**ã$1$ åç®ã®æäœã§åã°ã«ãŒããããããã $a,b$ 人ãæ®ããšããã°ïŒåæ§ã«æ±ããæ°ã¯ä»¥äžã§ãäžããããïŒ\r\n$$\\begin{aligned}\r\n2^4\\Biggl(\\sum_{a,b}\\binom{1011}{a}\\binom{1011}{b}\\Biggr)\r\n\\end{aligned}$$\r\nãã ãïŒ $a, b$ 㯠$1$ ä»¥äž $1011 $以äžã®å¥æ°ã§ïŒ$(a+b)\\/2$ ãå¶æ°ãšãªããã®å
šäœãæž¡ãïŒããã¯ããã«\r\n$$\\begin{aligned}\r\n\\left(\\sum_{a}\\binom{1011}{a}\\right)\\left(\\sum_{b}\\binom{1011}{b}\\right)\r\n-\\left(\\sum_{a}(-1)^{(a-1)\\/2}\\binom{1011}{a}\\right)\\left(\\sum_{b}(-1)^{(b-1)\\/2}\\binom{1011}{b}\\right)\r\n\\end{aligned}$$\r\nã® $8$ åã«çããïŒãã ãïŒç·åã¯ãããã $1,3,\\ldots,1011$ ãæž¡ãïŒãã®è¡šçŸã«ãããŠïŒåéšåã¯å®¹æã«èšç®ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc064/editorial/2717"
}
] | ãå圢ã®èŒªã«äžŠãã $2022$ 人ã®çåŸãããŸã.\
ãããã§, 以äžã®æäœãã¡ããã© $\ell$ åç¹°ãè¿ãããšãã, $\ell$ åç®ã®æäœã«ãã£ãŠå
šå¡ã茪ã®å€ã«åºãŸãã.
- å人ã茪ã«ãã£ãŠå·Šå³ã®çåŸã®äžæ¹ãäžæã«æåãã. å¶æ° ($0$ ãå«ã) 人ã«æåããã人ã¯äžæã«èŒªã®å€ã«åºã. ãã ã, 茪ã«äžŠãã çåŸã $1$ 人ã§ãããšã, èªèº«ã茪ã«ãã£ãŠå·Šå³ã«äœçœ®ãããšã¿ãªã.
ãã®ãšãïŒ$\ell$ ãæå°ãšãªãããã«æäœãè¡ãæ¹æ³ã¯ $N$ éãã§ã. $N$ ã $2021$ ã§å²ã£ãäœããæ±ããŠãã ãã.\
ããã ãïŒãã¹ãŠã®çåŸã¯åºå¥ãããã®ãšãïŒåãã® $2022$ 人ã®äžŠã³æ¹ã¯åºå®ããŸãïŒ |
OMC063 (for beginners) | https://onlinemathcontest.com/contests/omc063 | https://onlinemathcontest.com/contests/omc063/tasks/1874 | A | OMC063(A) | 100 | 264 | 266 | [
{
"content": "ãäºã $q$ å¹ãããšãããš, æ¡ä»¶ããã«ããã ã·ã¯ $q-37$ å¹, 鶎㯠$137-2q$ 矜ãã, 足ã®æ°ã«ã€ããŠ\r\n$$2(137-2q)+4q+6(q-37)=334$$\r\nããã解ãããšã§ $q=47$ ãåŸããã, æ±ããã¹ãå€ã¯ $43\\times 47=\\textbf{2021}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc063/editorial/1874"
}
] | ã鶎ãšäºãšã«ããã ã·ããã, ãããã®é ã®æ°ã¯åèšã§ $100$, 足ã®æ¬æ°ã¯åèšã§ $334$ ã§ã.\
ãããã«äºãã«ããã ã·ãã $37$ å€ããããšã, 鶎ã $p$ 矜, äºã $q$ å¹ãããšã㊠$pq$ ã解çããŠãã ãã. \
ããã ã, 鶎, äº, ã«ããã ã·ã«ã¯ãããã足ã $2$ æ¬, $4$ æ¬, $6$ æ¬ãããŸã. |
OMC063 (for beginners) | https://onlinemathcontest.com/contests/omc063 | https://onlinemathcontest.com/contests/omc063/tasks/2374 | B | OMC063(B) | 100 | 257 | 263 | [
{
"content": "ã$n\\geq 5$ ã®ãšã, $n!+5$ ã $5$ ãã倧ãã $5$ ã®åæ°ãšãªãããäžé©ã§ãã. $n\\leq 4$ ã®ç¯å²ã§èª¿ã¹ãã°,\r\n$$(n,p)=(2,7),(3,11),(4,29)$$\r\nã解ãšãªã. ãããã£ãŠ, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{163}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc063/editorial/2374"
}
] | ã$n!+5=p$ ãã¿ããæ£æŽæ° $n$ ããã³çŽ æ° $p$ ã®çµ $(n,p)$ ãã¹ãŠã«ã€ããŠ, $np$ ã®ç·åãæ±ããŠãã ãã. |
OMC063 (for beginners) | https://onlinemathcontest.com/contests/omc063 | https://onlinemathcontest.com/contests/omc063/tasks/1572 | C | OMC063(C) | 200 | 224 | 255 | [
{
"content": "ã$mn+m+n=(m+1)(n+1)-1$ ã«çæããã°, $2$ ä»¥äž $101$ 以äžã®åææ°ã®æ°ãæ±ããããšã«çãã, ãã㯠$\\textbf{74}$ åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc063/editorial/1572"
}
] | ããã (çžç°ãªããšã¯éããªã) æ£æŽæ° $m,n$ ã«ãã£ãŠ $mn+m+n$ ã®åœ¢åŒã«è¡šãã, $100$ 以äžã®æ£æŽæ°ã¯ããã€ãããŸããïŒ |
OMC063 (for beginners) | https://onlinemathcontest.com/contests/omc063 | https://onlinemathcontest.com/contests/omc063/tasks/1321 | D | OMC063(D) | 200 | 148 | 195 | [
{
"content": "ãäžè§åœ¢ $OAD$ ã¯æ£äžè§åœ¢ã§ãã,\r\n$$\\angle DAE=\\angle OAE-\\angle OAD=\\dfrac{1}{2}(180^\\circ-30^\\circ)-60^\\circ=15^\\circ$$\r\nãæç«ããããšã«çæãããš, $AE=AO=AD$ ãã\r\n$$\\angle AEF=\\dfrac{1}{2}(180^\\circ-15^\\circ)=82.5^\\circ$$\r\nãã£ãŠåè§åœ¢ $OAEF$ ã«ãããå
è§ã®åãèããããšã§ $\\angle BFE=67.5^\\circ$ ã ãã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{137}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc063/editorial/1321"
}
] | ã$O$ ãäžå¿ãšããååšäžã« $4$ ç¹ $A,C,D,B$ ããã®é ã«äžŠãã§ãã, 以äžã®æ¡ä»¶ãã¿ãããŸã.
$$\angle AOC=\angle COD=\angle DOB=30^\circ$$
åçŽç· $AC$ äžã« $AO=AE$ ãªãç¹ $E$ ããšã, ç·å $OB$ ãšçŽç· $DE$ ã®äº€ç¹ã $F$ ãšãããšã, è§ $BFE$ ã®å€§ããã床æ°æ³ã§æ±ããŠãã ãã.\
ããã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $p,q$ ã«ãã£ãŠ $\dfrac{p}{q}$ 床ãšè¡šãããã®ã§, $p+q$ ã解çããŠãã ãã. |
OMC063 (for beginners) | https://onlinemathcontest.com/contests/omc063 | https://onlinemathcontest.com/contests/omc063/tasks/290 | E | OMC063(E) | 300 | 59 | 104 | [
{
"content": "ã察è§ç·ãäžæ¬ãã€æžã足ããŠããããšãèãããš, æ±ããé åã®æ°ã¯ $(1+$察è§ç·ã®æ¬æ°$+$å
éšã®å¯Ÿè§ç·ã®äº€ç¹æ°$)$ ã§è¡šãããããšã容æã«ããã. æ£ $n$ è§åœ¢ã®å¯Ÿè§ç·ã¯ $n(n-3)\\/2$ æ¬ã§, ãããã®å
éšã®äº€ç¹ã¯ $n$ é ç¹ãã $4$ ã€ãéžãã§ã§ããåè§åœ¢ãšäžå¯Ÿäžã«å¯Ÿå¿ãããã ${}\\_{n}\\mathrm{C}\\_{4}$ åã§ãã.\\\r\nããã£ãŠæ±ããé åæ°ã¯ä»¥äžã§äžããã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{5796}$ ã§ãã.\r\n$$1+\\dfrac{n(n-3)}{2}+{}\\_{n}\\mathrm{C}\\_{4}=\\dfrac{1}{24}(n^4-6n^3+23n^2-42n+24)$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc063/editorial/290"
},
{
"content": "ãé ç¹ïŒèŸºïŒé¢ã®æ°ããããã $v,e,f$ ã§ãããããªå¹³é¢çã°ã©ãã«ãããŠïŒãªã€ã©ãŒã®å€é¢äœå®çãã $v-e+f=1$ ãæãç«ã€ïŒ(ããã§ã¯ïŒã°ã©ãã®å€åŽã®é åã¯é¢ãšã¿ãªããªããã®ãšããïŒ)\\\r\n ä»åã®å ŽåïŒ å¯Ÿè§ç·ã®äº€ç¹ã®æ°ããã®å¯Ÿè§ç·ãæã€åè§åœ¢ã®éžã³æ¹ã«äžå¯Ÿäžå¯Ÿå¿ããããšãã ${}\\_{n}\\mathrm{C}\\_{4}$ åã§ããã®ã§ïŒ $v={}\\_{n}\\mathrm{C}\\_{4}+n$ \\\r\n ãŸãïŒå¯Ÿè§ç·ã®äº€ç¹ã®æ¬¡æ°ã¯ãããã $4$ ã§ããïŒæ£ $n$ è§åœ¢ã®é ç¹ã®æ¬¡æ°ã¯ãããã $n-1$ ã§ããããšããïŒ $e=(4\\times{}\\_{n}\\mathrm{C}\\_{4}+n(n-1))\\div2$\\\r\n 以äžããïŒ $f=-v+e+1=\\dfrac{1}{24}(n^4-6n^3+23n^3-42n+24)$ ã§ããïŒç¹ã«è§£çãã¹ãæ°å€ã¯ $\\dfrac{6\\cdot23\\cdot42\\cdot24}{24}=\\textbf{5796}$",
"text": "ãªã€ã©ãŒã®å€é¢äœå®çã®å©çš",
"url": "https://onlinemathcontest.com/contests/omc063/editorial/290/119"
}
] | ã$n$ ã $5$ 以äžã®å¥æ°ãšããŸã. æ£ $n$ è§åœ¢ã®å
éšã察è§ç·ã«ãã£ãŠåå²ãããé åã®æ°ã¯, æ£æŽæ° $a,b,c,d,e$ ãçšããŠ
$$\dfrac{1}{a}\left(n^4-bn^3+cn^2-dn+e\right)$$
ãšè¡šããŸã. $\dfrac{bcde}{a}$ ã解çããŠãã ãã. \
ããã ã, æ£ $n$ è§åœ¢ã®å¯Ÿè§ç· $3$ æ¬ã¯, ãã®éžã³æ¹ã«ãããå
éšã®äžç¹ã§äº€ãããªãããšã蚌æã§ããŸã. |
OMC063 (for beginners) | https://onlinemathcontest.com/contests/omc063 | https://onlinemathcontest.com/contests/omc063/tasks/1759 | F | OMC063(F) | 400 | 90 | 138 | [
{
"content": "ãäžãã $k$ æ¡ç®ã®æ°åã $a_k$ ãšãã. æããã« $a_k$ ãš $k$ ã®å¶å¥ã¯äžèŽã, ç¹ã« $a_5=5,\\ a_{10}=0$ ãçŽã¡ã«åŸã. ãŸã, $10a_3+a_4$ ããã³ $10a_7+a_8$ ã $4$ ã§å²ãåããããšãã, $a_4$ ããã³ $a_8$ 㯠$2$ ãŸã㯠$6$ ã§ãã. ããã«, $a_4+a_5+a_6$ ã $3$ ã§å²ãåããããšãã, å¶æ° $k$ ã«å¯Ÿãã $a_k$ ã®å®ãæ¹ã¯ $2$ éãã«çµããã. ããšã¯ $10a_7+a_8$ ã $4$ ã§å²ãåããããš, ããã³ $a_7+a_8+a_9$ ã $3$ ã§å²ãåããããšãå©çšã, æçµçã« $k=7$ ã§æ¡ä»¶ãã¿ããããããããã®åè£ã«ã€ããŠç¢ºèªããããšã§, $\\textbf{3816547290}$ ãå¯äžé©ãã $N$ ãšããŠåŸãããããšãããã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc063/editorial/1759"
}
] | ã以äžã®æ¡ä»¶ããã¹ãŠã¿ãã, $10$ æ¡ã®æ£æŽæ° $N$ ãæ±ããŠãã ãã. ãã ã, ãã®ãã㪠$N$ ã¯äžæçã«ååšããŸã.
- $N$ ã®åæ¡ã«ã¯ $0$ ãã $9$ ãã¡ããã©äžåºŠãã€çŸãã. ãŸã, $N$ ã®æé«äœã¯ $0$ ã§ã¯ãªã.
- ä»»æã® $k=1,2,\cdots, 10$ ã«å¯Ÿã, $N$ ã®äžãã $k$ æ¡ãåãåºããŠåŸãããæŽæ°ã¯, $k$ ã§å²ãåãã.
ããã§, äŸãã° $12345$ ã®äžãã $3$ æ¡ãåãåºããŠåŸãããæŽæ°ã¯ $123$ ã§ã. |
OMC062 | https://onlinemathcontest.com/contests/omc062 | https://onlinemathcontest.com/contests/omc062/tasks/1725 | A | OMC062(A) | 200 | 145 | 171 | [
{
"content": "ã解ãšä¿æ°ã®é¢ä¿ãã, éè² æŽæ° $n$ ã«ã€ããŠ\r\n$$x^{n+2}-8x^{n+1}+x^n=0,\\quad y^{n+2}-8y^{n+1}+y^n=0$$\r\nãã£ãŠ $a_{n+2}=8a_{n+1}-a_{n}$ ãæç«ãã. ãããã, $b_0=2,b_1=1$ ããå§ããã°, $b$ 㯠$2,1,6,5,6,1$ ã®åšæãç¹°ãè¿ãããšãåãã. ãããã, æ±ããã¹ãç·å㯠$(2+1+6+5+6+1)\\times(2022\\/6)=\\textbf{7077}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc062/editorial/1725"
}
] | ãå®æ° $x\lt y$ 㯠$x+y=8,xy=1$ ãã¿ãããŸã. ãã®ãšã, æ£æŽæ° $n$ ã«å¯Ÿã
$$a_n=x^n+y^n$$
ã¯åžžã«æŽæ°å€ãšãªãã®ã§, ããã $7$ ã§å²ã£ãäœãã $b_n$ ãšãããŸã. 以äžã®ç·åãæ±ããŠãã ããïŒ
$$b_1+b_2+b_3+\cdots+b_{2021}+b_{2022}$$ |
OMC062 | https://onlinemathcontest.com/contests/omc062 | https://onlinemathcontest.com/contests/omc062/tasks/2551 | B | OMC062(B) | 300 | 135 | 147 | [
{
"content": "ãäžå¹³æ¹ã®å®çãã $CD^2=AD^2+BC^2-AB^2=40$ ã§ãã, ãã®ãšãPtolemyã®å®çãã $ACÃBD=40+14 \\sqrt{10}$ ã§ãã. ããŸæ±ããé¢ç©ã¯ $AC\\times BD\\/2$ ã§ãããã, 解çãã¹ãå€ã¯ $20+7+10=\\textbf{37}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc062/editorial/2551"
},
{
"content": "$BD$ ã®åçŽäºçåç·ã«ã€ã㊠$C$ ãšå¯Ÿç§°ãªç¹ã $E$ ãšãã. ãã®ãšãïŒ$E$ ã¯å $ABCD$ äžã«ããïŒãŸã $AE$ ã¯ãã®åã®çŽåŸã§ããããïŒ\r\n$$|ABCD|=|ABED|=\\dfrac{7Ã\\sqrt{40}+8Ã5}{2}=7\\sqrt{10}+20$$\r\nã§ããïŒè§£çãã¹ãå€ã¯ $\\textbf{37}$. \\\r\nãªãïŒäœè«ã ãïŒäžèšã®è§£èª¬ãšåãç¹ã®åãæ¹ãããããšã§ïŒä»¥äžã®ããã«Ptolemyã®å®çã®èšŒæãå¯èœã§ãã. :\\\r\n åã«å
æ¥ããåè§åœ¢ $ABCD$ ã«ã€ããŠïŒ$BD$ ã®åçŽäºçåç·ã«ã€ã㊠$C$ ãšå¯Ÿç§°ãªç¹ã $E$ ãšãïŒ$AC$ ãš $BD$ ã®äº€ç¹ã $F$ ãšãããšïŒ$\\angle BAC=\\angle EAD, \\angle ABD=\\angle AED$ ãã $\\angle AFB=\\angle ADE$ ã§ããïŒåè§åœ¢ $ABCD$ ãš $ABED$ ã®é¢ç©ãçããããšããµãŸãïŒ$ABÃBE+ADÃDE=ACÃBD$ ãæç«ãã. $BC=ED, BE=CD$ ããïŒ$ABÃCD+ADÃBC=ACÃBD$ ãšãªãïŒãããã£ãŠãã®å®çã¯ç€ºããã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc062/editorial/2551/180"
}
] | ãåã«å
æ¥ããåè§åœ¢ $ABCD$ ã, 以äžã®æ¡ä»¶ãã¿ãããŠããŸãïŒ
$$AB=7,\quad BC=8,\quad AD=5,\quad AC \perp BD$$
ãã®ãšã, åè§åœ¢$ABCD$ã®é¢ç©ã¯, æ£æŽæ° $a,b,c$ ãçšã㊠$a+b \sqrt c$ ãšè¡šããã®ã§ (ãã ã $c$ ã¯å¹³æ¹å åããããªã), $a+b+c$ ãæ±ããŠãã ãã. |
OMC062 | https://onlinemathcontest.com/contests/omc062 | https://onlinemathcontest.com/contests/omc062/tasks/2616 | C | OMC062(C) | 300 | 112 | 143 | [
{
"content": "ã$a,b,c$ ã $7$ ã§å²ã£ãäœãã¯çžç°ãªãããïŒ$a,b,c$ ã®å€§å°ã®å¶çŽãåãé€ããŠèãïŒ$3!$ ã§å²ãã°ããïŒ\\\r\nã以äžãã $a+b+c$ 㯠$7$ ã®åæ°ã§ããããšã«çæããïŒ\r\n$$\\begin{aligned}\r\n4(a+b+c) &= a+b+c+(a+b)+(a+c)+(b+c)+(a+b+c) \\\\\\\\\r\n&\\equiv 0+1+2+\\cdots+6\\\\\\\\\r\n&\\equiv 0 \\pmod{7}\r\n\\end{aligned}$$\r\nããããïŒ$a,b,c$ ã $7$ ã§å²ã£ãäœãã¯ïŒ$\\\\{1,6\\\\},\\\\{2,5\\\\},\\\\{3,4\\\\}$ ããäžã€ãã€éžæãããå¿
èŠãããããïŒããåŸãçµã¿åãã㯠$\\\\{1,2,4\\\\},\\\\{3,5,6\\\\}$ ãšãããïŒããããïŒå€§å°ã®å¶çŽãç¡èŠããã°é©ããçµã¯ $3!\\times72^2\\times71$ éãããã³ $3!\\times72\\times71^2$ éãã§ããããïŒæ±ããå Žåã®æ°ã¯ $72^2\\times71+72\\times71^2=\\textbf{731016}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc062/editorial/2616"
}
] | ã$1\leq a\lt b\lt c\leq 500$ ãªãæŽæ°ã®çµ $(a,b,c)$ ã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ãã¿ãããã®ã¯ããã€ãããŸããïŒ
- éå $\\{a,b,c\\}$ ã®ç©ºã§ãªã $7$ ã€ã®éšåéåã«ã€ããŠïŒããããã®èŠçŽ ã®ç·åã $7$ ã§å²ã£ãäœãã¯çžç°ãªãïŒ |
OMC062 | https://onlinemathcontest.com/contests/omc062 | https://onlinemathcontest.com/contests/omc062/tasks/2033 | D | OMC062(D) | 400 | 74 | 96 | [
{
"content": "ã$4$ ç¹ $A,B,D,C$ ã®å
±åã¯å®¹æã«åãã. ããã§, 蟺 $BC$ äžã« $AQ=8$ ãªãç¹ $Q(\\neq C)$ ããšãã°, å
ã®äºå®ãšäœµããŠäžè§åœ¢ $ABD$ ãš $AQC$ ã¯çžäŒŒã§ãã, ç¹ã« $\\angle BAD=\\angle QAC$, åæã« $\\angle BAQ=\\angle PAC$ ã§ãã. ãããã£ãŠ,\r\n$$BQ:PC=(14 \\times8):(7 \\times8)=2:1,\\quad BP:QC=(14 \\times7):(8 \\times8)=49:32$$\r\nãã $BQ:QP:PC=34:15:17$ ãåŸã. æ¹ã¹ãã®å®çãã $BP=\\dfrac{49}{\\sqrt{17}}$ ã§ãã, æ±ããå€ã¯ $\\bf{ 2418 }$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc062/editorial/2033"
},
{
"content": "ãåã®è§£æ³ã§ã¯ãªãã®ã§ããå¥è§£çŽ¹ä»ã§ã. ããã§ã¯è¡šèšç°¡ç¥åã®ãã, äžè§åœ¢ $ABC$ ã®é¢ç©ã $|\\triangle ABC|$ ãªã©ãšè¡šãããšã«ããŸã. \r\n\r\nãäžè§åœ¢ $ABD$ ãšäžè§åœ¢ $ACE$ ã¯çžäŒŒã§, çžäŒŒæ¯ã $14:8$ ãªã®ã§, $|\\triangle ACE|=64x$ ãšããã° $|\\triangle ABP|=\\dfrac{14^2x}{2}=98x$ ã§ã. ãšããã§, äžè§åœ¢ $ABC$ ãšäžè§åœ¢ $ADE$ ã¯ååã§ãããã, $$|\\triangle DCP|+ |\\triangle ACE|= |\\triangle ABP|$$ ãšãªãã®ã§ $|\\triangle DCP|=34x$ ã§, $|\\triangle ACP|=34x$ ãåŸããŸã. \r\n\r\nããã£ãŠ $BP:PC=|\\triangle ABP|:|\\triangle ACP| =49:17$ ãåŸãã, ããšã¯æ¬è§£èª¬ãšåæ§ã«æ¹ã¹ãã®å®çãé©çšããããšã§ $BP=\\dfrac{49}{\\sqrt{17}}$ ãåŸãŸã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc062/editorial/2033/76"
},
{
"content": "$4$ ç¹ $A$,$B$,$D$,$C$ ã¯å
±åãªã®ã§ïŒ$BP=x$ ãšçœ®ããšïŒ$BD=\\dfrac{8x}{7}$ ã§ããã\\\r\n $\\triangle ABD$ ã«äžç·å®çãé©çšããã° $x$ ãæ±ãŸãã",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc062/editorial/2033/126"
}
] | ã$AB=14,AC=8$ ãªãäžè§åœ¢ $ABC$ ãš (åãã蟌ããŠ) ååãªäžè§åœ¢ $ADE$ ã«ã€ããŠ, $C$ ã¯èŸº $DE$ äžã«ãã, 蟺 $AD$ ãšèŸº $BC$ ã®äº€ç¹ $P$ ã $AP=PD$ ãã¿ãããŸãã. ãã®ãšã, $BP$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\sqrt{\dfrac{a}{b}}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC062 | https://onlinemathcontest.com/contests/omc062 | https://onlinemathcontest.com/contests/omc062/tasks/2509 | E | OMC062(E) | 400 | 9 | 41 | [
{
"content": "ã以äžã§ã¯ $v_i,w_i$ ãçž®çŽããŠäžã€ã®é ç¹ãšã¿ãªããæ°ããªã°ã©ããèãã (人ã®æãçšããè¡šçŸãèãããšè¯ã).\\\r\nãé£çµæåã®ãµã€ãºã®çµã¿åãããèããã°, 以äžã® $4$ éããããåŸã.\r\n$$\\lbrace6\\rbrace,\\quad \\lbrace4,2\\rbrace,\\quad \\lbrace3,3\\rbrace,\\quad \\lbrace2,2,2\\rbrace$$\r\nãŸã, ããããã®é£çµæåã®ç¶æ
ãšããŠã¯, äžã€ã®ã«ãŒãã, äžã€ã®ãã¹ã®ããããã§ãã.\\\r\nã$n\\ (\\geq 2)$ é ç¹ã®çµã¿åãããåºå®ãããšã, ããããããªãé£çµæåã®äœãæ¹ã $f(n)$ éããããšãã. $v_1,w_1$ ãåºå®ããŠèããã°, åé ç¹ã®äžŠã¹æ¹ã $(n-1)!$ éã, $v_i,w_i$ ã®ç¶æ
ã $2^{n-1}$ éã, ãã¹ã«ããæ¹æ³ã $n$ éããããã,\r\n$$f(n)=(n-1)!\\times 2^{n-1}\\times (1+n)$$\r\nããããã, ããããã®ãµã€ãºã®çµã¿åããããšã«å Žåã®æ°ãèšç®ãããš,\r\n\r\n- $\\lbrace6\\rbrace$ ã®ãšã, $f(6)=26880$ éã.\r\n- $\\lbrace4,2\\rbrace$ ã®ãšã, ${}\\_{6}\\mathrm{C}\\_{2}\\times f(4)\\times f(2)=21600$ éã.\r\n- $\\lbrace3,3\\rbrace$ ã®ãšã, $({}\\_{6}\\mathrm{C}\\_{3}\\div 2!) \\times f(3)^2=10240$ éã.\r\n- $\\lbrace2,2,2\\rbrace$ ã®ãšã, $({}\\_{6}\\mathrm{C}\\_{2}\\times {}\\_{4}\\mathrm{C}\\_{2}\\div 3!)\\times f(2)^3=3240$ éã.\r\n\r\nããããåèšããããšã§, å
šäœã§ã¯ $\\textbf{61960}$ éãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc062/editorial/2509"
}
] | ã$12$ åã®é ç¹ $v_1,\ldots,v_6$ ããã³ $w_1\ldots,w_6$ ããããŸã. ãããã®ãã¡çžç°ãªã $2$ é ç¹ãçµã¶ç¡åã® (åãããããªã) 蟺ãäœæ¬ãåŒãæ¹æ³ã§ãã£ãŠ, 以äžã®æ¡ä»¶ãã¿ãããã®ã¯äœéããããŸããïŒ
- åã $2$ ç¹ãçµã¶èŸºã¯é«ã
$1$ æ¬ã§ãã.
- ããããã®é ç¹ã«æ¥ç¶ãã蟺ã¯é«ã
$1$ æ¬ã§ãã.
- $i=1,\ldots,6$ ã«ã€ããŠ, $v_i$ ãš $w_i$ ãçµã¶èŸºã¯ååšããªã.
- $i=1,\ldots,6$ ã«ã€ããŠ, $v_i$ ãš $w_i$ ã®å°ãªããšãäžæ¹ã«ã¯èŸºãæ¥ç¶ããŠãã.
(çŽæçãªè¡šçŸãšããŠã¯, $6$ 人ãåæã«ä»ã® $1$ 人以äžãšæãçµãã§ããç¶æ³ã«å¯Ÿå¿ããŸã.) |
OMC062 | https://onlinemathcontest.com/contests/omc062 | https://onlinemathcontest.com/contests/omc062/tasks/2536 | F | OMC062(F) | 500 | 17 | 33 | [
{
"content": "ã$b_{ n }=a_{ n }+\\displaystyle \\frac{1}{3}Ã2^{n-1}$ ãšããã°, 以äžã®æŒžååŒãåŸã.\r\n$$b_{ 1 }=\\displaystyle \\frac{16}{3},\\quad b_{ 2 }=\\displaystyle \\frac{146}{3},\\quad b_{ n+2 }=16b_{ n+1 }-55b_{ n }$$\r\nããã解ã㊠$b_{ n }=\\displaystyle \\frac{1}{3}Ã(11^n+5^n)$ãåŸããã, $a_n$ ã®äžè¬é
ã¯\r\n$$a_{ n }=\\displaystyle \\frac{1}{3}Ã(11^n+5^n-2^{n-1}).$$\r\nããŸã $f_{ 2 }(n)$ ã«ã€ããŠèãã.\r\n\r\n- $n$ ãå¶æ°ã®ãšã, $11^n+5^n \\equiv 2 \\pmod{4}$ ãã, ãã㯠$2$ ã§ã¡ããã© $1$ åå²ãåãã.\\\r\nãã ã $n=2$ ã®ãšãã®ã¿, $a_2$ 㯠$2$ 㧠$4$ åå²ãåããããšã«çæãã.\r\n- $n$ ãå¥æ°ã®ãšã, $11^n+5^n$ ã¯ä»¥äžã®ããã«å æ°å解ã§ãããã, $2$ ã§ã¡ããã© $4$ åå²ãåãã.\r\n$$11^n+5^n=(11+5)\\times(11^{n-1}-11^{n-2}Ã5+\\cdots+5^{n-1})$$\r\nãã ã, $n=1,3,5$ ã®ãšã, $a_n$ 㯠$2$ ã§ãããã $0,2,6$ åå²ãåããããšã«çæãã.\r\n\r\nã次ã«, $f_{ 5 }(n)$ ã«ã€ããŠèãã. $a_{ n }$ ã $5$ ã®åæ°ãšãªãã®ã¯, $n=4l+1$ ãšè¡šããããšãã®ã¿ã§ãã. $l=0$ ã®ãšã, $a_1$ 㯠$5$ ã§ã¡ããã© $1$ åå²ãåãã. $l\\geq 1$ ã®ãšã, 以äžãã $a_n$ ã¯ãã¯ã $5$ ã§ã¡ããã© $1$ åå²ãåãã.\r\n$$a_{ n }=11^{4l+1}+5^{4l+1}-2^{4l} \\equiv 11Ã16^l-16^l \\equiv 10Ã16^l \\pmod{25}$$\r\nã以äžãã,\r\n$$\\sum_{n=1}^ {1000} f_{ 2 }(n)=(4+1\\times 499)+(0+2+6+4\\times 497),\\quad \\sum_{n=1} ^{1000} f_{ 5 }(n)=1\\times 250$$\r\nãšããããèšç®ã§ãããã, æ±ããå€ã¯ $\\bf{ 2749 }$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc062/editorial/2536"
}
] | $$a_{ 1 }=5,\quad a_{ 2 }=48,\quad a_{ n+2 }=16a_{ n+1 }-55a_{ n }-9Ã2^{n-1}\ (n=1,2,\ldots)$$
ã§å®ãŸãæ°å $\lbrace a_{ n } \rbrace$ ã«ãããŠ, $a_{ n }$ ã $p$ ã§å²ãåããæ倧ã®åæ°ã $f_{ p }(n)$ ã§è¡šããŸã.\
ããã®ãšã, 以äžã®å€ãæ±ããŠãã ããïŒ
$$\displaystyle \sum_{n=1}^{1000} (f_{ 2 }(n)+f_{ 5 }(n))$$ |
OMC061 (for beginners) | https://onlinemathcontest.com/contests/omc061 | https://onlinemathcontest.com/contests/omc061/tasks/2410 | A | OMC061(A) | 100 | 222 | 228 | [
{
"content": "ã$AM=OB=OM=OA$ ããäžè§åœ¢ $OAM$ ã¯æ£äžè§åœ¢ã§ãã. ãããã $\\angle AOB=2\\angle AOM=120^\\circ$ ã§ãããã, æ±ããé¢ç©ã¯ $6^2\\times\\pi\\times(120\\/360)=\\bf{12} \\pi$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc061/editorial/2410"
}
] | ãäžå¿ã $O$ ãšããæ圢 $OAB$ ã«ã€ããŠ, 匧 $AB$ ã®äžç¹ã $M$ ãšãããš, ç·å $AM$ ããã³ $OB$ ã®é·ãã¯ãšãã« $6$ ã§ãã. ãã®ãšã, æ圢ã®é¢ç© $S$ ã«ã€ããŠ, $S\/\pi$ ãæ±ããŠãã ãã. |
OMC061 (for beginners) | https://onlinemathcontest.com/contests/omc061 | https://onlinemathcontest.com/contests/omc061/tasks/1610 | B | OMC061(B) | 100 | 200 | 224 | [
{
"content": "ã$l$ ãš $c$ ãé£ãåããããªäžŠã¹æ¹ã¯ $2\\times 5!=240$ éããã, $k$ ãš $r$ ãé£ãåãå Žåãåæ§ã§ãã. ãŸã, ããããåæã«é£ãåããããªäžŠã¹æ¹ã¯ $2\\times 2\\times 4!=96$ éãã§ãããã, æ±ããå Žåã®æ°ã¯ $6!-2\\times 240+96=\\textbf{336}$ éã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc061/editorial/1610"
}
] | ã$6$ æå $l,o,c,k,e,r$ ãäžåã«äžŠã¹ããšã, $l$ ãš $c$, $k$ ãš $r$ ãé£ãåããªããããªäžŠã¹æ¹ã¯äœéããããŸããïŒ |
OMC061 (for beginners) | https://onlinemathcontest.com/contests/omc061 | https://onlinemathcontest.com/contests/omc061/tasks/2439 | C | OMC061(C) | 200 | 164 | 203 | [
{
"content": "ã以äžã®ããã«èšç®ã§ãã.\r\n$$\\begin{aligned}\r\n1+1\\times 1!+2\\times 2!+ \\cdots + 2022\\times 2022! &= 2! + 2 \\times 2! + 3 \\times 3!+\\cdots + 2022 \\times 2022! \\\\\\\\\r\n&=3\\times 2!+3\\times 3! + \\cdots +2022\\times 2022!\\\\\\\\\r\n&= 3!+3\\times 3!+\\cdots + 2022\\times 2022! \\\\\\\\\r\n&= \\cdots \\\\\\\\\r\n&= 2023!\r\n\\end{aligned}$$\r\nãã£ãŠLegendreã®å®çãã, æ±ããå€ã¯ $\\bf{2014}$ ã§ãã. \\\r\nããªãïŒ$2023!$ ã $2$ ã§å²ãåããåæ°ã¯, 以äžã®å®çãçšããŠæ±ããŠããã. \r\n\r\n**å®ç.**ã$n$ ã $2$ é²æ³è¡šèšãããšãã« $1$ ã§ããæ¡ã®æ°ã $\\mathrm{popcount}(n)$ ãšãããšã, $n!$ ã $2$ ã§å²ãåããåæ°ã¯ $n-\\mathrm{popcount}(n)$ ãšçãã. (蚌æ㯠[**OMC039(D)ã®è§£èª¬**](https:\\/\\/onlinemathcontest.com\\/contests\\/omc039\\/editorial\\/262) ãåç
§ãã. )\r\n\r\nã$2023_{(10)}=11111100111_{(2)}$ ã§ãããã, $2023!$ 㯠$2$ 㧠$2023-\\mathrm{popcount}(2023)=2014$ åå²ãåãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc061/editorial/2439"
}
] | ã$1+\displaystyle\sum_{k=1}^{2022} (k \times k!)$ 㯠$2$ ã§æ倧äœåå²ãåããŸããïŒ |
OMC061 (for beginners) | https://onlinemathcontest.com/contests/omc061 | https://onlinemathcontest.com/contests/omc061/tasks/2490 | D | OMC061(D) | 300 | 101 | 146 | [
{
"content": "ã$1$ ãã $10$ ãŸã§ã®æŽæ°ãé ç¹ãšã, $k$ ãã $a_k$ ã«èŸºã匵ã£ãæåã°ã©ããèãããš, ãã¹ãŠã®é ç¹ã«ã€ããŠå
¥æ¬¡æ°ã»åºæ¬¡æ°ããšãã« $1$ ã§ããããšãã, åé£çµæåããµã€ã¯ã«ãšãªãããšãåãã. ãã®ãšãæ¡ä»¶ã¯, ãã¹ãŠã®é£çµæåã®å€§ããã®æå°å
¬åæ°ã $30$ ãšãªãããšã§ãã, $10=5+3+2$ ãšåå²ããã»ããªã. ãããã£ãŠæ±ããçãã¯\r\n$${}\\_{10}\\mathrm{C}\\_{5}\\times {}\\_{5}\\mathrm{C}\\_{3} \\times4!\\times 2!\\times 1!=\\textbf{120960}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc061/editorial/2490"
}
] | ãåºå¥ã§ãã $10$ æã®ã«ãŒããå·Šå³äžåã«äžŠãã§ããŸã. ã㟠$(1,2,\cdots,10)$ ã®äžŠã¹æ¿ã $(a_1, a_2, \cdots, a_{10})$ ã«ã€ããŠ, 以äžã®æäœãèããŸãïŒ
- $k=1,2,\cdots,10$ ã«å¯Ÿã, å·Šãã $k$ çªç®ã®ã«ãŒããå·Šãã $a_k$ çªç®ã«æ¥ãããã«äžŠã¹æ¿ãã.
ãã®æäœãç¹°ãè¿ãè¡ã£ããšã, $30$ åç®ã§ã¯ãããŠã«ãŒãã®äžŠã³ãå
ã«æ»ããŸãã. ãã®ãšã, $(a_1, a_2, \cdots, a_{10})$ ãšããŠããåŸããã®ã¯ããã€ãããŸãã. |
OMC061 (for beginners) | https://onlinemathcontest.com/contests/omc061 | https://onlinemathcontest.com/contests/omc061/tasks/2190 | E | OMC061(E) | 300 | 45 | 75 | [
{
"content": "ãæŽæ°ã®éå $X$ ã«ãããŠ, å°ããæ¹ãã $i$ çªç®ã $x_i$ ã§è¡šãã°, $3$ ã€ã®éå $A,B,C$ ã«ã€ããŠ, ã¹ã³ã¢ã®ç·åã¯\r\n$$\\sum_{k=1}^{674} (2k-675)(a_k+b_k+c_k)$$\r\n$A,B,C$ ã«çŸãã $2022$ ã®æ°ã®éå $D$ ãåºå®ããã°, ãããæ倧ãšãªãã®ã¯æããã« $k=1,2,\\ldots,674$ ã«å¯Ÿã\r\n$$\\\\{a_k,b_k,c_k\\\\}=\\\\{d_{3k-2},d_{3k-1},d_{3k}\\\\}$$\r\nãæãç«ã€ãšãã§ãã, ããã« $D$ ãåããã°æããã«ä»¥äžã§äžæã«æ倧ã§ãã.\r\n$$D=\\\\{1,2,\\ldots,1011,10^{1000}-1010,\\ldots,10^{1000}-1,10^{1000}\\\\}$$\r\nãã£ãŠ, 以äžãã $M=(3!)^{674}\\/3!=2^{673}\\times 3^{673}$ ã§ãã, ãã㯠$\\bf{524}$ æ¡ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc061/editorial/2190"
}
] | ãæŽæ°ãããªãéåã«å¯Ÿã, $2$ å
ãéžã¶æ¹æ³ãã¹ãŠã«ã€ããŠ, ããããã®å·®ã®çµ¶å¯Ÿå€ã®ç·åã**ã¹ã³ã¢**ãšåŒã³ãŸã. äŸãã°,
$$|1-2|+|2-3|+|1-3|=4$$
ãã, éå $\\{1,2,3\\}$ ã®ã¹ã³ã¢ã¯ $4$ ã§ã.\
ãã㟠$10^{1000}$ 以äžã®æ£æŽæ°ããçžç°ãªã $2022$ åãéžã³, ãããããããã $674$ åãããªãéå $3$ ã€ãžããã«åå²ããŸã. ãã®ãšã, $3$ éåã®ã¹ã³ã¢ã®ç·åãæ倧ãšãªãæ¹æ³ã¯ $M$ éããããŸã. $M$ ã¯åé²æ³è¡šèšã§äœæ¡ã§ããïŒ\
ããã ã, $M$ ãžã®èšäžã«ããã£ãŠ, $3$ ã€ã®éåã®é åºã¯åºå¥ããªããã®ãšããŸã. ãŸã, å¿
èŠãªãã°
$$\log_{10}{2}\approx 0.3010, \quad \log_{10}{3}\approx 0.4771, \quad \log_{10}{7}\approx 0.8451$$
ãçšããŠãæ§ããŸãã. |
OMC061 (for beginners) | https://onlinemathcontest.com/contests/omc061 | https://onlinemathcontest.com/contests/omc061/tasks/2247 | F | OMC061(F) | 400 | 15 | 104 | [
{
"content": "ã以äžã®ããã« $p,q,r,s$ ããšãã°ããããã¯çžç°ãªãæ£æŽæ°ã§ãã.\r\n$$p=\\frac{a+b+c+d}{a},\\quad q=\\frac{a+b+c+d}{b},\\quad r=\\frac{a+b+c+d}{c},\\quad s=\\frac{a+b+c+d}{d}$$\r\nããã«, $p,q,r,s$ ã¯æ¬¡ã®æ¡ä»¶ãã¿ããïŒ\r\n$$\\frac1p+\\frac1q+\\frac1r+\\frac1s=1$$\r\nãã®ãšã, ãã®ãã㪠$(p,q,r,s)$ ã®çµã¯\r\n$$(2,3,7,42), (2,3,8,24), (2,3,9,18), (2,3,10,15), (2,4,5,20), (2,4,6,12)$$\r\nãšãã®äžŠã¹æ¿ãã«éããã. ãã®ãããªçµãš $(a,b,c,d)$ ãäžå¯Ÿäžã«å¯Ÿå¿ã, $a+b+c+d=\\textrm{lcm}(p,q,r,s)$ ã§ãããã, æ±ããçã㯠$4!\\times(42+24+18+30+20+12)=\\bf{3504}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc061/editorial/2247"
}
] | 以äžã®æ¡ä»¶ãæºããçžç°ãªãæ£æŽæ°ã®çµ $(a,b,c,d)$ ãã¹ãŠã«ã€ããŠ, $a+b+c+d$ ã®ç·åã解çããŠãã ãã.
- $a,b,c,d$ ã¯äºãã«çŽ ã§ãã.
- $b+c+d$ 㯠$a$ ã®åæ°.
- $a+c+d$ 㯠$b$ ã®åæ°.
- $a+b+d$ 㯠$c$ ã®åæ°.
- $a+b+c$ 㯠$d$ ã®åæ°. |
OMC060 (for experts) | https://onlinemathcontest.com/contests/omc060 | https://onlinemathcontest.com/contests/omc060/tasks/243 | A | OMC060(A) | 200 | 158 | 169 | [
{
"content": "ã$X=\\log x$ ãªã©ãšããã°, åºã®å€æå
¬åŒããæå°åãã¹ãå€ã¯\r\n$$81\\dfrac{Y}{X}+72\\dfrac{Z}{Y}+64\\dfrac{X}{Z}$$\r\nçžå ã»çžä¹å¹³åã®é¢ä¿ãããã㯠$3\\sqrt[3]{81\\times72\\times64}=216$ 以äžã§ãã, $8X=9Y=9Z$ ã§çå·ãæç«ãããã, æ±ããæå°å€ã¯ $\\textbf{216}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc060/editorial/243"
}
] | ã$1$ ãã倧ããå®æ° $x,y,z$ ã«å¯Ÿã, $81\log_{x}y+72\log_{y}{z}+64\log_{z}{x}$ ã®ãšãåŸãæå°å€ãæ±ããŠãã ãã. |
OMC060 (for experts) | https://onlinemathcontest.com/contests/omc060 | https://onlinemathcontest.com/contests/omc060/tasks/244 | B | OMC060(B) | 400 | 102 | 160 | [
{
"content": "ãããããã®çåŸããã³ä¿ã $12$ åã®é ç¹ãšã, çåŸãžã®ä¿ã®å²ãåœãŠã«åŸã£ãŠèŸºã貌ã£ãäºéš(ç¡å)ã°ã©ããèãããš, ãã¹ãŠã®é ç¹ã®æ¬¡æ°ã $2$ ã§ããããšãã, ãã®èŸºã¯ããã€ãã®ãµã€ã¯ã«ã«å解ã§ãã. ããã§, 3ã€ç®ã®æ¡ä»¶ãããã®ãµã€ã¯ã«ã®é·ã㯠$4$ ã§ã¯ãªã, ããã«äºéšã°ã©ãã§ããããšãããµã€ã¯ã«ã®é·ãã¯å¥æ°ã§ã¯ãªããã, ããããã $6$ 以äžã§ãã. ãããã, ã°ã©ãã¯é·ã $6$ ã®ãµã€ã¯ã«äºã€ã«å解ãããã, é·ã $12$ ã®ãµã€ã¯ã«äžã€ããæ§æããããããªã. åè
ã®å Žåã®æ°ã¯ä»¥äžã§äžãããã.\r\n$$\\dfrac{1}{2}({}\\_{6}\\mathrm{C}\\_{3})^2\\times\\left(\\dfrac{1}{2}\\times3\\times2\\times2\\right)^2=7200$$\r\nãŸãåŸè
ã®å Žåã®æ°ãåæ§ã« $\\dfrac{1}{2}\\times6\\times5\\times5\\times\\cdots=\\dfrac{1}{2}\\times6!\\times5!=43200$ éãã§ãã.\\\r\nã以äžããæ±ããå Žåã®æ°ã¯ $\\textbf{50400}$ éãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc060/editorial/244"
}
] | ã以äžã®æ¡ä»¶ãã¿ããããã«, $6$ 人ã®çåŸã« $6$ ã€ã®ä¿ãå²ãåœãŠãæ¹æ³ã¯äœéããããŸããïŒ
- å人ã«ã¯ã¡ããã© $2$ ã€ã®çžç°ãªãä¿ãå²ãåœãŠã.
- ããããã®ä¿ã¯ã¡ããã© $2$ 人ã®çåŸãåãæã€.
- ã©ã® $2$ ã€ã®ä¿ã«ã€ããŠã, ãã®äž¡æ¹ãå²ãåœãŠãããçåŸã¯é«ã
$1$ 人ã§ãã.
ãã ã, çåŸããã³ä¿ã¯ãã¹ãŠåºå¥ãããã®ãšããŸã. |
OMC060 (for experts) | https://onlinemathcontest.com/contests/omc060 | https://onlinemathcontest.com/contests/omc060/tasks/274 | C | OMC060(C) | 400 | 109 | 125 | [
{
"content": "ã$M$ 㯠$DF$ ã®äžç¹ã§ãããããšãã, $AB$ ãš $CF$ ã¯å¹³è¡ã§ãã,\r\n$$\\angle DAF=\\angle BAF=\\angle BCF=\\angle MCF$$\r\nããäžè§åœ¢ $ADF$ ãš $CFM$ ã¯çžäŒŒ, ããªãã¡ $AD=2CF$ ã§ãã. äžæ¹ã§æ¹ã¹ãã®å®çãã\r\n$$AD\\times CF=AD\\times BD=DF\\times DG=72$$\r\nã§ãããã, $AD=12,CF=6$ ãåŸã, äžå¹³æ¹ã®å®çãã $AC=6\\sqrt{10}$ ã§ãã.\\\r\nãããã§, $AC$ ãš $DM$ ã®äº€ç¹ã $X$ ãšããã°, å
±å $A,D,E,M$ ã«ãããŠååšè§ã®å®çãã $\\angle EDX=\\angle MAX$ ã§ããããšãã, äžè§åœ¢ $XED$ ãš $XMA$ ã¯çžäŒŒã§ãã. ãã£ãŠ,\r\n$$DE=AM\\times\\dfrac{DX}{AX}=\\sqrt{9^2+12^2}\\times\\dfrac{2\\times18}{2\\times6\\sqrt{10}}=\\sqrt{\\dfrac{405}{2}}$$\r\nç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{407}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc060/editorial/274"
}
] | ãå $\Gamma$ ã«å
æ¥ããäžè§åœ¢ $ABC$ ã«ãããŠ, 蟺 $BC$ ã®äžç¹ã $M$ ãšã, $M$ ãã $AB,AC$ ã«ããããåç·ã®è¶³ããããã $D,E$ ãšããŸã. ãŸã, $M$ ãã $AB$ ã«ããããåç·ãš $\Gamma$ ã®äº€ç¹ã®ãã¡, $BC$ ã«é¢ã㊠$A$ ãšå察åŽã«ãããã®ã $F$, ããäžæ¹ã $G$ ãšããŸã. $DG=4,DM=MF=9$ ãæç«ãããšã, $DE$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\sqrt{\dfrac{a}{b}}$ ãšè¡šãããŸã. $a+b$ ã解çããŠãã ãã. |
OMC060 (for experts) | https://onlinemathcontest.com/contests/omc060 | https://onlinemathcontest.com/contests/omc060/tasks/273 | D | OMC060(D) | 600 | 33 | 80 | [
{
"content": "ãå·Šãã $k$ çªç®ã®ç®±ã $B_k$ ã§è¡šã. ãŸã, \r\n$$\\begin{aligned}\r\nc_k=\\begin{cases}\r\nk&(k\\leq n)\\\\\\\\\r\n2n+1-k&(k\\gt n)\r\n\\end{cases}\r\n\\end{aligned}$$\r\nãšå®ãã. $B_k$ ã«å
¥ã£ãŠããçã« $\\sum^{k-1}\\_{i=1}c_i+1$ ä»¥äž $\\sum^{k}\\_{i=1}c_i$ 以äžã®æŽæ°ãäžã€ãã€æžã蟌ã. ãã®ãšã, $n(n+1)$ 以äžã®æ£ã®æŽæ°ã $1$ ã€ãã€æžã蟌ãŸããããšã«ãªã. ããã§, $a=1,2,\\dots,n+1$ ã«ã€ããŠ, $an$ ã®æžãããçãåã $B_{l_a}$ ã«å
¥ã£ãŠãããšãã. ããªãã¡ $l_a$ 㯠$c_1+\\cdots+c\\_{l_a}\\geq an$ ãšãªãæå°ã®æ£ã®æŽæ°ã§ãã. \\\r\nãæäœã¯åãç®±ã®ã©ã®çãåãåºããŠãåãã§ãããã, ç®±ã®äžã«ããäžçªå€§ããªæ°ãæžãããçã移ããšããŠãã. ãã®ãšã, $s\\lt t$ ãªãæŽæ° $s,t$ ã«ã€ããŠ, $s$ ãæžãããçã $t$ ãæžãããçãããå³ã®ç®±ã«å
¥ãããšã¯ãªã. \\\r\nã$(a-1)n\\lt s\\leq an$ ãªãæŽæ° $s$ ãæžãããçã«æ³šç®ãã. ãã®çã®æçµçãªè¡ãå
ã $B_{L(s)}$ ãšãããš, æçµçã« $B\\_1,B\\_2,\\dots,B\\_{L(s)}$ ã«ã¯ $1,2,\\dots,s$ ãæžãããçããã¹ãŠå
¥ã£ãŠãã, ãŸãå
¥ã£ãŠããçã®åæ°ã®åèšã¯ $n$ ã®åæ°ã§ãããã, ç¹ã« $an$ 以äžã§ãã. äžæ¹, $B_1,B_2,\\dots,B_{L(s)}$ ã«å
¥ã£ãŠããçã®åæ°ã®åèšã¯æäœã«ããå¢å ããªããã, åãã®ç¶æ
ã§ã $B_1,B_2,\\dots,B_{L(s)}$ ã«å
¥ã£ãŠããçã®åæ°ã®åèšã¯ $an$ 以äžã§ãã. ãã£ãŠ $L(s)\\geq l_a$ ãåŸã.\\\r\nãéã«, $(a-1)n+1$ ä»¥äž $an$ 以äžã®æŽæ°ãæžãããä»»æã®çãæçµçã« $B_{l_a}$ ã«å
¥ãããã«æäœãè¡ãã. ããã§,\r\n$$\\sum^{n(n+1)}\\_{s=1}L(s)-\\sum^{2n}\\_{k=1}kc_k$$\r\nã®ãšãåŸãæå°å€ã $f(n)$ ã§ãããã, ããã¯ä»¥äžã®ããã«è¡šããã. \r\n$$f(n)=n\\sum^{n+1}\\_{a=1}l\\_a-\\sum^{2n}\\_{k=1}kc_k$$\r\nãããŸ, $1\\leq a\\leq n$ ã«ã€ã㊠$c_1+\\cdots+c_{l_a}\\geq an\\gt c_1+\\cdots+c_{l_a-1}$ ãã\r\n$$c_{2n-l_a+1}+\\cdots+c_{2n}\\geq an\\gt c_{2n-l_a+2}+\\cdots+c_{2n}$$\r\nããªãã¡\r\n$$c_1+\\cdots+c_{2n-l_a}\\leq (n+1-a)n\\lt c_1+\\cdots+c_{2n-l_a+1}$$\r\nã§ãããã, \r\n- $c_1+\\cdots+c_{l_a}=an$ ã®ãšã $l_{n+1-a}=2n-l_a$, \r\n- $c_1+\\cdots+c_{l_a}\\gt an$ ã®ãšã $l_{n+1-a}=2n-l_a+1$\r\n\r\nã§ãã. ãããã£ãŠ $a\\lt(n+1)\\/2$ ã®ãšã, $l_a\\lt n$ ã§ãããã, \r\n- $an$ ãäžè§æ°ã§ãããšã $l_a+l_{n+1-a}=2n$, \r\n- ããã§ãªããšã $l_a+l_{n+1-a}=2n+1$\r\n\r\nãã¿ãã. \r\nãŸã, $l_{n+1}=2n$, $n$ ãå¥æ°ã®ãšã $l_{(n+1)\\/2}=n $ã§ãããã, $g(n)$ 㧠$an$ ãäžè§æ°ãšãªããã㪠$1\\leq a\\lt(n+1)\\/2$ ã®åæ°ãè¡šããšãããš, \r\n- $n$ ãå¶æ°ã®ãšã, \r\n$$\\begin{aligned}\r\n\\sum^{n+1}\\_{a=1}l_a&=(l_1+l_n)+\\cdots+(l_{n\\/2}+l_{n\\/2+1})+l_{n+1}\\\\\\\\\r\n&=\\frac{n}{2}(2n+1)+2n-g(n)\\\\\\\\\r\n&=\\frac{2n^2+5n}{2}-g(n)\r\n\\end{aligned}$$\r\n- $n$ ãå¥æ°ã®ãšã\r\n$$\\begin{aligned}\r\n\\sum^{n+1}\\_{a=1}l_a&=(l_1+l_n)+\\cdots+(l_{(n-1)\\/2}+l_{(n+3)\\/2})+l_{(n+1)\\/2}+l_{n+1}\\\\\\\\\r\n&=\\frac{n-1}{2}(2n+1)+n+2n-g(n)\\\\\\\\\r\n&=\\frac{2n^2+5n-1}{2}-g(n)\r\n\\end{aligned}$$\r\n\r\nãä»¥äž $g(n)$ ãæ±ããã. $g(n)$ 㯠$b(b+1)\\/2$ ã $n$ ã®åæ°ãšãªããããªæŽæ° $1\\leq b\\lt n$ ã®åæ°ãšäžèŽãã. $b=0$ ã®å Žåãèš±ããšããŠèãã. $2n$ ãäºãã«çŽ ãªæ£ã®æŽæ° $c,d$ ã®ç©ã§è¡šãããšãããš, äžåœå°äœå®çãã $c\\mid b$ ã〠$d\\mid(b+1)$ ãšãªããããªæŽæ° $0\\leq b\\lt2n$ ããã äžã€ååšãã. ãã㯠$d\\mid(2n-b-1)$ ã〠$c\\mid(2n-b)$ ãšåå€ã§ãã. $b,2n-b-1$ ã®ãã¡ã¡ããã©äžæ¹ã $0$ ä»¥äž $n$ æªæºã§ãããã, ããã $b^\\prime$ ãšãããš, $2n\\mid b^\\prime(b^\\prime+1)$ ãšãªã. \\\r\nãéã«, æŽæ° $b$ ã $2n\\mid b(b+1)$ ãã¿ãããªãã°, ããäºãã«çŽ ãªæ£ã®æŽæ° $c,d$ ã§ãã£ãŠ, $2n=cd$ ã〠$c\\mid b$ ã〠$d\\mid (b+1)$ ãªããã®ãååšã, ãã€äžæã§ããããšã容æã«ããã. \\\r\nããã£ãŠ, $2n\\mid b(b+1)$ ãšãªãæŽæ° $0\\leq b\\lt n$ ãš, $2n=cd$ ãªãäºãã«çŽ ãªæŽæ° $c,d$ ($c\\lt d$) ã®çµã¯äžå¯Ÿäžã«å¯Ÿå¿ãã. ãããã£ãŠ $2n$ ã®çŽ å æ°ã®åæ° (éè€ã¯æ°ããªã) ã $p(n)$ ãšããã°, $g(n)=2^{p(n)-1}-1$ ã§ãã. \\\r\nã以äžã®è°è«ããŸãšãããš, $n$ ã $2$ ã§å²ã£ãäœãã $r$ ãšãããšã, \r\n$$\\begin{aligned}\r\nf(n)&=n\\sum_{a=1}^{n+1}l_a-\\sum_{k=1}^{2n}kc_k\\\\\\\\\r\n&=n\\left(\\frac{2n^2+5n-r}{2}-(2^{p(n)-1}-1)\\right)-\\frac{n(n+1)(2n+1)}{2}\\\\\\\\\r\n&=n\\left(n+\\frac{1-r}{2}-2^{p(n)-1}\\right)\r\n\\end{aligned}$$\r\nãšãªã. ç¹ã«, $p(10^6-1)=p(3^3\\cdot 7\\cdot 11\\cdot 13\\cdot 37)=6,\\ p(10^6)=p(2^6\\cdot 5^6)=2$ ã§ãããã, \r\n$$\\begin{aligned}\r\nf(10^6-1)+f(10^6)&=(10^6-1)(10^6-33)+10^6(10^6-3\\/2)\\\\\\\\\r\n&=2\\cdot 10^{12}-\\frac{71}{2}\\cdot 10^6+33\\\\\\\\\r\n&=\\textbf{1999964500033}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc060/editorial/273"
}
] | ã$2n$ åã®ç®±ãå·Šå³äžåã«äžŠãã§ãã, åãå·Šãã $k$ çªç®ã®ç®±ã«ã¯, $k\leq n$ ã®ãšã $k$ å, $k\gt n$ ã®ãšã $2n+1-k$ åã®çãå
¥ã£ãŠããŸã ($k=1,2,\ldots,2n$). ãããã«å¯Ÿã,
- äžçªå³ä»¥å€ã®ç®±ã«å
¥ã£ãçãäžã€éžã³, ãããç®±ããåãåºã, ãã®ç®±ã®äžã€å³ã®ç®±ã«ç§»ã.
ãšããæäœãç¹°ãè¿ããŸã. ã©ã®ç®±ã«ãçã $n$ ã®åæ°åå
¥ã£ãŠããããã«ããããã«å¿
èŠãªæå°ã®æäœã®åæ°ã $f(n)$ ãšããŸã. ãã ã, ãã®æäœãæéåç¹°ãè¿ããŠãã®ãããªç¶æ
ã«ã§ããããšãä¿èšŒãããŸã.\
ããã®ãšã, $f(10^6-1)+f(10^6)$ ãæ±ããŠãã ãã. |