Datasets:
title
stringlengths 1
100
| titleSlug
stringlengths 3
77
| Java
int64 0
1
| Python3
int64 1
1
| content
stringlengths 28
44.4k
| voteCount
int64 0
3.67k
| question_content
stringlengths 65
5k
| question_hints
stringclasses 970
values |
---|---|---|---|---|---|---|---|
✅3 Method's || C++ || JAVA || PYTHON || Beginner Friendly🔥🔥🔥 | two-sum | 1 | 1 | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nThe Two Sum problem asks us to find two numbers in an array that sum up to a given target value. We need to return the indices of these two numbers.\n# Approach\n<!-- Describe your approach to solving the problem. -->\n1. One brute force approach is to consider every pair of elements and check if their sum equals the target. This can be done using nested loops, where the outer loop iterates from the first element to the second-to-last element, and the inner loop iterates from the next element to the last element. However, this approach has a time complexity of O(n^2).\n2. A more efficient approach is to use a hash table (unordered_map in C++). We can iterate through the array once, and for each element, check if the target minus the current element exists in the hash table. If it does, we have found a valid pair of numbers. If not, we add the current element to the hash table.\n\n**Approach using a hash table:**\n1. Create an empty hash table to store elements and their indices.\n2. Iterate through the array from left to right.\n3. For each element nums[i], calculate the complement by subtracting it from the target: complement = target - nums[i].\n4. Check if the complement exists in the hash table. If it does, we have found a solution.\n5. If the complement does not exist in the hash table, add the current element nums[i] to the hash table with its index as the value.\n6. Repeat steps 3-5 until we find a solution or reach the end of the array.\n7. If no solution is found, return an empty array or an appropriate indicator.\n\nThis approach has a time complexity of O(n) since hash table lookups take constant time on average. It allows us to solve the Two Sum problem efficiently by making just one pass through the array.\n\n# Code\n# Solution 1: (Brute Force)\n```C++ []\nclass Solution {\npublic:\n vector<int> twoSum(vector<int>& nums, int target) {\n int n = nums.size();\n for (int i = 0; i < n - 1; i++) {\n for (int j = i + 1; j < n; j++) {\n if (nums[i] + nums[j] == target) {\n return {i, j};\n }\n }\n }\n return {}; // No solution found\n }\n};\n\n```\n```Java []\nclass Solution {\n public int[] twoSum(int[] nums, int target) {\n int n = nums.length;\n for (int i = 0; i < n - 1; i++) {\n for (int j = i + 1; j < n; j++) {\n if (nums[i] + nums[j] == target) {\n return new int[]{i, j};\n }\n }\n }\n return new int[]{}; // No solution found\n }\n}\n\n```\n```Python3 []\nclass Solution:\n def twoSum(self, nums: List[int], target: int) -> List[int]:\n n = len(nums)\n for i in range(n - 1):\n for j in range(i + 1, n):\n if nums[i] + nums[j] == target:\n return [i, j]\n return [] # No solution found\n\n```\n\n# Solution 2: (Two-pass Hash Table)\n```C++ []\nclass Solution {\npublic:\n vector<int> twoSum(vector<int>& nums, int target) {\n unordered_map<int, int> numMap;\n int n = nums.size();\n\n // Build the hash table\n for (int i = 0; i < n; i++) {\n numMap[nums[i]] = i;\n }\n\n // Find the complement\n for (int i = 0; i < n; i++) {\n int complement = target - nums[i];\n if (numMap.count(complement) && numMap[complement] != i) {\n return {i, numMap[complement]};\n }\n }\n\n return {}; // No solution found\n }\n};\n\n```\n```Java []\nclass Solution {\n public int[] twoSum(int[] nums, int target) {\n Map<Integer, Integer> numMap = new HashMap<>();\n int n = nums.length;\n\n // Build the hash table\n for (int i = 0; i < n; i++) {\n numMap.put(nums[i], i);\n }\n\n // Find the complement\n for (int i = 0; i < n; i++) {\n int complement = target - nums[i];\n if (numMap.containsKey(complement) && numMap.get(complement) != i) {\n return new int[]{i, numMap.get(complement)};\n }\n }\n\n return new int[]{}; // No solution found\n }\n}\n\n```\n```Python3 []\nclass Solution:\n def twoSum(self, nums: List[int], target: int) -> List[int]:\n numMap = {}\n n = len(nums)\n\n # Build the hash table\n for i in range(n):\n numMap[nums[i]] = i\n\n # Find the complement\n for i in range(n):\n complement = target - nums[i]\n if complement in numMap and numMap[complement] != i:\n return [i, numMap[complement]]\n\n return [] # No solution found\n\n```\n# Solution 3: (One-pass Hash Table)\n```C++ []\nclass Solution {\npublic:\n vector<int> twoSum(vector<int>& nums, int target) {\n unordered_map<int, int> numMap;\n int n = nums.size();\n\n for (int i = 0; i < n; i++) {\n int complement = target - nums[i];\n if (numMap.count(complement)) {\n return {numMap[complement], i};\n }\n numMap[nums[i]] = i;\n }\n\n return {}; // No solution found\n }\n};\n\n```\n```Java []\nclass Solution {\n public int[] twoSum(int[] nums, int target) {\n Map<Integer, Integer> numMap = new HashMap<>();\n int n = nums.length;\n\n for (int i = 0; i < n; i++) {\n int complement = target - nums[i];\n if (numMap.containsKey(complement)) {\n return new int[]{numMap.get(complement), i};\n }\n numMap.put(nums[i], i);\n }\n\n return new int[]{}; // No solution found\n }\n}\n\n```\n```Python3 []\nclass Solution:\n def twoSum(self, nums: List[int], target: int) -> List[int]:\n numMap = {}\n n = len(nums)\n\n for i in range(n):\n complement = target - nums[i]\n if complement in numMap:\n return [numMap[complement], i]\n numMap[nums[i]] = i\n\n return [] # No solution found\n\n```\n![CUTE_CAT.png](https://assets.leetcode.com/users/images/9c6f9412-c860-47d6-9a2e-7fcf37ff3321_1686334926.180891.png)\n\n**If you are a beginner solve these problems which makes concepts clear for future coding:**\n1. [Two Sum](https://leetcode.com/problems/two-sum/solutions/3619262/3-method-s-c-java-python-beginner-friendly/)\n2. [Roman to Integer](https://leetcode.com/problems/roman-to-integer/solutions/3651672/best-method-c-java-python-beginner-friendly/)\n3. [Palindrome Number](https://leetcode.com/problems/palindrome-number/solutions/3651712/2-method-s-c-java-python-beginner-friendly/)\n4. [Maximum Subarray](https://leetcode.com/problems/maximum-subarray/solutions/3666304/beats-100-c-java-python-beginner-friendly/)\n5. [Remove Element](https://leetcode.com/problems/remove-element/solutions/3670940/best-100-c-java-python-beginner-friendly/)\n6. [Contains Duplicate](https://leetcode.com/problems/contains-duplicate/solutions/3672475/4-method-s-c-java-python-beginner-friendly/)\n7. [Add Two Numbers](https://leetcode.com/problems/add-two-numbers/solutions/3675747/beats-100-c-java-python-beginner-friendly/)\n8. [Majority Element](https://leetcode.com/problems/majority-element/solutions/3676530/3-methods-beats-100-c-java-python-beginner-friendly/)\n9. [Remove Duplicates from Sorted Array](https://leetcode.com/problems/remove-duplicates-from-sorted-array/solutions/3676877/best-method-100-c-java-python-beginner-friendly/)\n10. **Practice them in a row for better understanding and please Upvote for more questions.**\n\n**If you found my solution helpful, I would greatly appreciate your upvote, as it would motivate me to continue sharing more solutions.**\n | 3,674 | Given an array of integers `nums` and an integer `target`, return _indices of the two numbers such that they add up to `target`_.
You may assume that each input would have **_exactly_ one solution**, and you may not use the _same_ element twice.
You can return the answer in any order.
**Example 1:**
**Input:** nums = \[2,7,11,15\], target = 9
**Output:** \[0,1\]
**Explanation:** Because nums\[0\] + nums\[1\] == 9, we return \[0, 1\].
**Example 2:**
**Input:** nums = \[3,2,4\], target = 6
**Output:** \[1,2\]
**Example 3:**
**Input:** nums = \[3,3\], target = 6
**Output:** \[0,1\]
**Constraints:**
* `2 <= nums.length <= 104`
* `-109 <= nums[i] <= 109`
* `-109 <= target <= 109`
* **Only one valid answer exists.**
**Follow-up:** Can you come up with an algorithm that is less than `O(n2)` time complexity? | A really brute force way would be to search for all possible pairs of numbers but that would be too slow. Again, it's best to try out brute force solutions for just for completeness. It is from these brute force solutions that you can come up with optimizations. So, if we fix one of the numbers, say x, we have to scan the entire array to find the next number y which is value - x where value is the input parameter. Can we change our array somehow so that this search becomes faster? The second train of thought is, without changing the array, can we use additional space somehow? Like maybe a hash map to speed up the search? |
Hash Table Concept-->Python3 | two-sum | 0 | 1 | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution:\n def twoSum(self, nums: List[int], target: int) -> List[int]:\n dict={}\n for i,n in enumerate(nums):\n if n in dict:\n return dict[n],i\n else:\n dict[target-n]=i\n #please upvote me it would encourage me alot\n\n``` | 263 | Given an array of integers `nums` and an integer `target`, return _indices of the two numbers such that they add up to `target`_.
You may assume that each input would have **_exactly_ one solution**, and you may not use the _same_ element twice.
You can return the answer in any order.
**Example 1:**
**Input:** nums = \[2,7,11,15\], target = 9
**Output:** \[0,1\]
**Explanation:** Because nums\[0\] + nums\[1\] == 9, we return \[0, 1\].
**Example 2:**
**Input:** nums = \[3,2,4\], target = 6
**Output:** \[1,2\]
**Example 3:**
**Input:** nums = \[3,3\], target = 6
**Output:** \[0,1\]
**Constraints:**
* `2 <= nums.length <= 104`
* `-109 <= nums[i] <= 109`
* `-109 <= target <= 109`
* **Only one valid answer exists.**
**Follow-up:** Can you come up with an algorithm that is less than `O(n2)` time complexity? | A really brute force way would be to search for all possible pairs of numbers but that would be too slow. Again, it's best to try out brute force solutions for just for completeness. It is from these brute force solutions that you can come up with optimizations. So, if we fix one of the numbers, say x, we have to scan the entire array to find the next number y which is value - x where value is the input parameter. Can we change our array somehow so that this search becomes faster? The second train of thought is, without changing the array, can we use additional space somehow? Like maybe a hash map to speed up the search? |
Sum MegaPost - Python3 Solution with a detailed explanation | two-sum | 0 | 1 | If you\'re a newbie and sometimes have a hard time understanding the logic. Don\'t worry, you\'ll catch up after a month of doing Leetcode on a daily basis. Try to do it, even one example per day. It\'d help. I\'ve compiled a bunch on `sum` problems here, go ahead and check it out. Also, I think focusing on a subject and do 3-4 problems would help to get the idea behind solution since they mostly follow the same logic. Of course there are other ways to solve each problems but I try to be as uniform as possible. Good luck. \n\nIn general, `sum` problems can be categorized into two categories: 1) there is any array and you add some numbers to get to (or close to) a `target`, or 2) you need to return indices of numbers that sum up to a (or close to) a `target` value. Note that when the problem is looking for a indices, `sort`ing the array is probably NOT a good idea. \n\n\n **[Two Sum:](https://leetcode.com/problems/two-sum/)** \n \n This is the second type of the problems where we\'re looking for indices, so sorting is not necessary. What you\'d want to do is to go over the array, and try to find two integers that sum up to a `target` value. Most of the times, in such a problem, using dictionary (hastable) helps. You try to keep track of you\'ve observations in a dictionary and use it once you get to the results. \n\nNote: try to be comfortable to use `enumerate` as it\'s sometime out of comfort zone for newbies. `enumerate` comes handy in a lot of problems (I mean if you want to have a cleaner code of course). If I had to choose three built in functions/methods that I wasn\'t comfortable with at the start and have found them super helpful, I\'d probably say `enumerate`, `zip` and `set`. \n \nSolution: In this problem, you initialize a dictionary (`seen`). This dictionary will keep track of numbers (as `key`) and indices (as `value`). So, you go over your array (line `#1`) using `enumerate` that gives you both index and value of elements in array. As an example, let\'s do `nums = [2,3,1]` and `target = 3`. Let\'s say you\'re at index `i = 0` and `value = 2`, ok? you need to find `value = 1` to finish the problem, meaning, `target - 2 = 1`. 1 here is the `remaining`. Since `remaining + value = target`, you\'re done once you found it, right? So when going through the array, you calculate the `remaining` and check to see whether `remaining` is in the `seen` dictionary (line `#3`). If it is, you\'re done! you\'re current number and the remaining from `seen` would give you the output (line `#4`). Otherwise, you add your current number to the dictionary (line `#5`) since it\'s going to be a `remaining` for (probably) a number you\'ll see in the future assuming that there is at least one instance of answer. \n \n \n ```\n class Solution:\n def twoSum(self, nums: List[int], target: int) -> List[int]:\n seen = {}\n for i, value in enumerate(nums): #1\n remaining = target - nums[i] #2\n \n if remaining in seen: #3\n return [i, seen[remaining]] #4\n else:\n seen[value] = i #5\n```\n \n \n\n **[Two Sum II:](https://leetcode.com/problems/two-sum-ii-input-array-is-sorted/)** \n\nFor this, you can do exactly as the previous. The only change I made below was to change the order of line `#4`. In the previous example, the order didn\'t matter. But, here the problem asks for asending order and since the values/indicess in `seen` has always lower indices than your current number, it should come first. Also, note that the problem says it\'s not zero based, meaning that indices don\'t start from zero, that\'s why I added 1 to both of them. \n\n```\nclass Solution:\n def twoSum(self, numbers: List[int], target: int) -> List[int]:\n \n seen = {}\n for i, value in enumerate(numbers): \n remaining = target - numbers[i] \n \n if remaining in seen: \n return [seen[remaining]+1, i+1] #4\n else:\n seen[value] = i \n```\n\nAnother approach to solve this problem (probably what Leetcode is looking for) is to treat it as first category of problems. Since the array is already sorted, this works. You see the following approach in a lot of problems. What you want to do is to have two pointer (if it was 3sum, you\'d need three pointers as you\'ll see in the future examples). One pointer move from `left` and one from `right`. Let\'s say you `numbers = [1,3,6,9]` and your `target = 10`. Now, `left` points to 1 at first, and `right` points to 9. There are three possibilities. If you sum numbers that `left` and `right` are pointing at, you get `temp_sum` (line `#1`). If `temp_sum` is your target, you\'r done! You\'re return it (line `#9`). If it\'s more than your `target`, it means that `right` is poiting to a very large value (line `#5`) and you need to bring it a little bit to the left to a smaller (r maybe equal) value (line `#6`) by adding one to the index . If the `temp_sum` is less than `target` (line `#7`), then you need to move your `left` to a little bit larger value by adding one to the index (line `#9`). This way, you try to narrow down the range in which you\'re looking at and will eventually find a couple of number that sum to `target`, then, you\'ll return this in line `#9`. In this problem, since it says there is only one solution, nothing extra is necessary. However, when a problem asks to return all combinations that sum to `target`, you can\'t simply return the first instace and you need to collect all the possibilities and return the list altogether (you\'ll see something like this in the next example). \n\n```\nclass Solution:\n def twoSum(self, numbers: List[int], target: int) -> List[int]:\n \n for left in range(len(numbers) -1): #1\n right = len(numbers) - 1 #2\n while left < right: #3\n temp_sum = numbers[left] + numbers[right] #4\n if temp_sum > target: #5\n right -= 1 #6\n elif temp_sum < target: #7\n left +=1 #8\n else:\n return [left+1, right+1] #9\n```\n\n\n\n\n[**3Sum**](https://leetcode.com/problems/3sum/)\n\nThis is similar to the previous example except that it\'s looking for three numbers. There are some minor differences in the problem statement. It\'s looking for all combinations (not just one) of solutions returned as a list. And second, it\'s looking for unique combination, repeatation is not allowed. \n\nHere, instead of looping (line `#1`) to `len(nums) -1`, we loop to `len(nums) -2` since we\'re looking for three numbers. Since we\'re returning values, `sort` would be a good idea. Otherwise, if the `nums` is not sorted, you cannot reducing `right` pointer or increasing `left` pointer easily, makes sense? \n\nSo, first you `sort` the array and define `res = []` to collect your outputs. In line `#2`, we check wether two consecutive elements are equal or not because if they are, we don\'t want them (solutions need to be unique) and will skip to the next set of numbers. Also, there is an additional constrain in this line that `i > 0`. This is added to take care of cases like `nums = [1,1,1]` and `target = 3`. If we didn\'t have `i > 0`, then we\'d skip the only correct solution and would return `[]` as our answer which is wrong (correct answer is `[[1,1,1]]`. \n\nWe define two additional pointers this time, `left = i + 1` and `right = len(nums) - 1`. For example, if `nums = [-2,-1,0,1,2]`, all the points in the case of `i=1` are looking at: `i` at `-1`, `left` at `0` and `right` at `2`. We then check `temp` variable similar to the previous example. There is only one change with respect to the previous example here between lines `#5` and `#10`. If we have the `temp = target`, we obviously add this set to the `res` in line `#5`, right? However, we\'re not done yet. For a fixed `i`, we still need to check and see whether there are other combinations by just changing `left` and `right` pointers. That\'s what we are doing in lines `#6, 7, 8`. If we still have the condition of `left < right` and `nums[left]` and the number to the right of it are not the same, we move `left` one index to right (line `#6`). Similarly, if `nums[right]` and the value to left of it is not the same, we move `right` one index to left. This way for a fixed `i`, we get rid of repeative cases. For example, if `nums = [-3, 1,1, 3,5]` and `target = 3`, one we get the first `[-3,1,5]`, `left = 1`, but, `nums[2]` is also 1 which we don\'t want the `left` variable to look at it simply because it\'d again return `[-3,1,5]`, right? So, we move `left` one index. Finally, if the repeating elements don\'t exists, lines `#6` to `#8` won\'t get activated. In this case we still need to move forward by adding 1 to `left` and extracting 1 from `right` (lines `#9, 10`). \n\n```\nclass Solution:\n def threeSum(self, nums: List[int]) -> List[List[int]]:\n \n nums.sort()\n res = []\n\n for i in range(len(nums) -2): #1\n if i > 0 and nums[i] == nums[i-1]: #2\n continue\n left = i + 1 #3\n right = len(nums) - 1 #4\n \n while left < right: \n temp = nums[i] + nums[left] + nums[right]\n \n if temp > 0:\n right -= 1\n \n elif temp < 0:\n left += 1\n \n else:\n res.append([nums[i], nums[left], nums[right]]) #5\n while left < right and nums[left] == nums[left + 1]: #6\n left += 1\n while left < right and nums[right] == nums[right-1]:#7\n right -= 1 #8\n \n right -= 1 #9 \n left += 1 #10\n \n```\n\nAnother way to solve this problem is to change it into a two sum problem. Instead of finding `a+b+c = 0`, you can find `a+b = -c` where we want to find two numbers `a` and `b` that are equal to `-c`, right? This is similar to the first problem. Remember if you wanted to use the exact same as the first code, it\'d return indices and not numbers. Also, we need to re-arrage this problem in a way that we have `nums` and `target`. This code is not a good code and can be optimipized but you got the idea. For a better version of this, check [this](https://leetcode.com/problems/3sum/discuss/7384/My-Python-solution-based-on-2-sum-200-ms-beat-93.37). \n\n```\nclass Solution:\n def threeSum(self, nums: List[int]) -> List[List[int]]:\n res = []\n nums.sort()\n \n for i in range(len(nums)-2):\n if i > 0 and nums[i] == nums[i-1]:\n continue\n output_2sum = self.twoSum(nums[i+1:], -nums[i])\n if output_2sum ==[]:\n continue\n else:\n for idx in output_2sum:\n instance = idx+[nums[i]]\n res.append(instance)\n \n output = []\n for idx in res:\n if idx not in output:\n output.append(idx)\n \n \n return output\n \n \n def twoSum(self, nums, target):\n seen = {}\n res = []\n for i, value in enumerate(nums): #1\n remaining = target - nums[i] #2\n \n if remaining in seen: #3\n res.append([value, remaining]) #4\n else:\n seen[value] = i #5\n \n return res\n```\n\n[**4Sum**](https://leetcode.com/problems/4sum/)\n\nYou should have gotten the idea, and what you\'ve seen so far can be generalized to `nSum`. Here, I write the generic code using the same ideas as before. What I\'ll do is to break down each case to a `2Sum II` problem, and solve them recursively using the approach in `2Sum II` example above. \n\nFirst sort `nums`, then I\'m using two extra functions, `helper` and `twoSum`. The `twoSum` is similar to the `2sum II` example with some modifications. It doesn\'t return the first instance of results, it check every possible combinations and return all of them now. Basically, now it\'s more similar to the `3Sum` solution. Understanding this function shouldn\'t be difficult as it\'s very similar to `3Sum`. As for `helper` function, it first tries to check for cases that don\'t work (line `#1`). And later, if the `N` we need to sum to get to a `target` is 2 (line `#2`), then runs the `twoSum` function. For the more than two numbers, it recursively breaks them down to two sum (line `#3`). There are some cases like line `#4` that we don\'t need to proceed with the algorithm anymore and we can `break`. These cases include if multiplying the lowest number in the list by `N` is more than `target`. Since its sorted array, if this happens, we can\'t find any result. Also, if the largest array (`nums[-1]`) multiplied by `N` would be less than `target`, we can\'t find any solution. So, `break`. \n\n\nFor other cases, we run the `helper` function again with new inputs, and we keep doing it until we get to `N=2` in which we use `twoSum` function, and add the results to get the final output. \n\n```\nclass Solution:\n def fourSum(self, nums: List[int], target: int) -> List[List[int]]:\n nums.sort()\n results = []\n self.helper(nums, target, 4, [], results)\n return results\n \n def helper(self, nums, target, N, res, results):\n \n if len(nums) < N or N < 2: #1\n return\n if N == 2: #2\n output_2sum = self.twoSum(nums, target)\n if output_2sum != []:\n for idx in output_2sum:\n results.append(res + idx)\n \n else: \n for i in range(len(nums) -N +1): #3\n if nums[i]*N > target or nums[-1]*N < target: #4\n break\n if i == 0 or i > 0 and nums[i-1] != nums[i]: #5\n self.helper(nums[i+1:], target-nums[i], N-1, res + [nums[i]], results)\n \n \n def twoSum(self, nums: List[int], target: int) -> List[int]:\n res = []\n left = 0\n right = len(nums) - 1 \n while left < right: \n temp_sum = nums[left] + nums[right] \n\n if temp_sum == target:\n res.append([nums[left], nums[right]])\n right -= 1\n left += 1\n while left < right and nums[left] == nums[left - 1]:\n left += 1\n while right > left and nums[right] == nums[right + 1]:\n right -= 1\n \n elif temp_sum < target: \n left +=1 \n else: \n right -= 1\n \n return res\n```\n[**Combination Sum II**](https://leetcode.com/problems/combination-sum-ii/)\nI don\'t post combination sum here since it\'s basically this problem a little bit easier. \nCombination questions can be solved with `dfs` most of the time. if you want to fully understand this concept and [backtracking](https://www.***.org/backtracking-introduction/), try to finish [this](https://leetcode.com/problems/combination-sum/discuss/429538/General-Backtracking-questions-solutions-in-Python-for-reference-%3A) post and do all the examples. \n\nRead my older post first [here](https://leetcode.com/problems/combinations/discuss/729397/python3-solution-with-detailed-explanation). This should give you a better idea of what\'s going on. The solution here also follow the exact same format except for some minor changes. I first made a minor change in the `dfs` function where it doesn\'t need the `index` parameter anymore. This is taken care of by `candidates[i+1:]` in line `#3`. Note that we had `candidates` here in the previous post. \n\n```\nclass Solution(object):\n def combinationSum2(self, candidates, target):\n """\n :type candidates: List[int]\n :type target: int\n :rtype: List[List[int]]\n """\n res = []\n candidates.sort()\n self.dfs(candidates, target, [], res)\n return res\n \n \n def dfs(self, candidates, target, path, res):\n if target < 0:\n return\n \n if target == 0:\n res.append(path)\n return res\n \n for i in range(len(candidates)):\n if i > 0 and candidates[i] == candidates[i-1]: #1\n continue #2\n self.dfs(candidates[i+1:], target - candidates[i], path+[candidates[i]], res) #3\n```\n\n\nThe only differences are lines `#1, 2, 3`. The difference in problem statement in this one and `combinations` problem of my previous post is >>>candidates must be used once<<< and lines `#1` and `2` are here to take care of this. Line `#1` has two components where first `i > 0` and second `candidates[i] == candidates[i-1]`. The second component `candidates[i] == candidates[i-1]` is to take care of duplicates in the `candidates` variable as was instructed in the problem statement. Basically, if the next number in `candidates` is the same as the previous one, it means that it has already been taken care of, so `continue`. The first component takes care of cases like an input `candidates = [1]` with `target = 1` (try to remove this component and submit your solution. You\'ll see what I mean). The rest is similar to the previous [post](https://leetcode.com/problems/combinations/discuss/729397/python3-solution-with-detailed-explanation)\n\n================================================================\nFinal note: Please let me know if you found any typo/error/ect. I\'ll try to fix them. | 1,045 | Given an array of integers `nums` and an integer `target`, return _indices of the two numbers such that they add up to `target`_.
You may assume that each input would have **_exactly_ one solution**, and you may not use the _same_ element twice.
You can return the answer in any order.
**Example 1:**
**Input:** nums = \[2,7,11,15\], target = 9
**Output:** \[0,1\]
**Explanation:** Because nums\[0\] + nums\[1\] == 9, we return \[0, 1\].
**Example 2:**
**Input:** nums = \[3,2,4\], target = 6
**Output:** \[1,2\]
**Example 3:**
**Input:** nums = \[3,3\], target = 6
**Output:** \[0,1\]
**Constraints:**
* `2 <= nums.length <= 104`
* `-109 <= nums[i] <= 109`
* `-109 <= target <= 109`
* **Only one valid answer exists.**
**Follow-up:** Can you come up with an algorithm that is less than `O(n2)` time complexity? | A really brute force way would be to search for all possible pairs of numbers but that would be too slow. Again, it's best to try out brute force solutions for just for completeness. It is from these brute force solutions that you can come up with optimizations. So, if we fix one of the numbers, say x, we have to scan the entire array to find the next number y which is value - x where value is the input parameter. Can we change our array somehow so that this search becomes faster? The second train of thought is, without changing the array, can we use additional space somehow? Like maybe a hash map to speed up the search? |
[VIDEO] Visualization of O(n) Solution Using a Hash Table | two-sum | 0 | 1 | https://www.youtube.com/watch?v=luicuNOBTAI\n\nInstead of checking every single combination of pairs, the key realization is that for each number in the array, there is only **one** number that can be added to it to reach the target.\n\nWe combine this with a hash table, which can look up values in constant time, to keep track of array elements and its indices as we traverse it. For each array element **x**, we calculate **target - x** and check if we\'ve encountered it in the array before. If we have, then we immediately return the index stored in the hash table and the index of the current element we\'re on.\n\nIn the worst case, the array will only have to be traversed once, resulting in an O(n) solution.\n\n# Code\n```\nclass Solution(object):\n def twoSum(self, nums, target):\n seen = {}\n for i in range(len(nums)):\n diff = target - nums[i]\n if diff in seen:\n return [seen[diff], i]\n else:\n seen[nums[i]] = i\n``` | 4 | Given an array of integers `nums` and an integer `target`, return _indices of the two numbers such that they add up to `target`_.
You may assume that each input would have **_exactly_ one solution**, and you may not use the _same_ element twice.
You can return the answer in any order.
**Example 1:**
**Input:** nums = \[2,7,11,15\], target = 9
**Output:** \[0,1\]
**Explanation:** Because nums\[0\] + nums\[1\] == 9, we return \[0, 1\].
**Example 2:**
**Input:** nums = \[3,2,4\], target = 6
**Output:** \[1,2\]
**Example 3:**
**Input:** nums = \[3,3\], target = 6
**Output:** \[0,1\]
**Constraints:**
* `2 <= nums.length <= 104`
* `-109 <= nums[i] <= 109`
* `-109 <= target <= 109`
* **Only one valid answer exists.**
**Follow-up:** Can you come up with an algorithm that is less than `O(n2)` time complexity? | A really brute force way would be to search for all possible pairs of numbers but that would be too slow. Again, it's best to try out brute force solutions for just for completeness. It is from these brute force solutions that you can come up with optimizations. So, if we fix one of the numbers, say x, we have to scan the entire array to find the next number y which is value - x where value is the input parameter. Can we change our array somehow so that this search becomes faster? The second train of thought is, without changing the array, can we use additional space somehow? Like maybe a hash map to speed up the search? |
1. (Solution) | two-sum | 0 | 1 | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nIt is a Brute Force Method\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\nSubtract the target from the list of element from the starting and find the second number. After that search that second number in the list. if the second number exist in the list then append index in the list i.e index of the first number and the second number.\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\nO(n2)\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution:\n def twoSum(self, nums: List[int], target: int) -> List[int]:\n n = len(nums)\n\n for i in range (n):\n sec_number = target - nums[i]\n \n for j in range (i+1, n):\n if sec_number == nums[j]:\n\n return [i,j]\n # result_list = []\n # sum = 0 \n # k = 2\n # n = len(nums)\n\n # for i in range (k):\n # sum = sum + nums[i]\n\n # if sum == target:\n # return [0, 1]\n\n # else:\n # for i in range (k, n):\n # sum = sum + nums[i] - nums[i-k]\n # if sum == target:\n # result_list.append(i-1)\n # result_list.append(i)\n # return result_list\n\n``` | 2 | Given an array of integers `nums` and an integer `target`, return _indices of the two numbers such that they add up to `target`_.
You may assume that each input would have **_exactly_ one solution**, and you may not use the _same_ element twice.
You can return the answer in any order.
**Example 1:**
**Input:** nums = \[2,7,11,15\], target = 9
**Output:** \[0,1\]
**Explanation:** Because nums\[0\] + nums\[1\] == 9, we return \[0, 1\].
**Example 2:**
**Input:** nums = \[3,2,4\], target = 6
**Output:** \[1,2\]
**Example 3:**
**Input:** nums = \[3,3\], target = 6
**Output:** \[0,1\]
**Constraints:**
* `2 <= nums.length <= 104`
* `-109 <= nums[i] <= 109`
* `-109 <= target <= 109`
* **Only one valid answer exists.**
**Follow-up:** Can you come up with an algorithm that is less than `O(n2)` time complexity? | A really brute force way would be to search for all possible pairs of numbers but that would be too slow. Again, it's best to try out brute force solutions for just for completeness. It is from these brute force solutions that you can come up with optimizations. So, if we fix one of the numbers, say x, we have to scan the entire array to find the next number y which is value - x where value is the input parameter. Can we change our array somehow so that this search becomes faster? The second train of thought is, without changing the array, can we use additional space somehow? Like maybe a hash map to speed up the search? |
Solutions in C++ and Python3 | For Loop | two-sum | 0 | 1 | \n# Code\n```C++ []\nclass Solution {\npublic:\n vector<int> twoSum(vector<int>& nums, int target) {\n vector<int>answer;\n for (int i = 0; i < nums.size(); i++){\n for (int j = i + 1; j < nums.size(); j++){\n if (nums.at(i) + nums.at(j) == target){answer.push_back(i); answer.push_back(j); break;}\n }\n }\n return answer;\n }\n};\n```\n```Python []\nclass Solution:\n def twoSum(self, nums: List[int], target: int) -> List[int]:\n answer = []\n for first in range(len(nums)):\n for second in range(first + 1, len(nums)):\n if nums[first] + nums[second] == target:\n answer.append(first)\n answer.append(second)\n break\n return answer\n```\n\n | 2 | Given an array of integers `nums` and an integer `target`, return _indices of the two numbers such that they add up to `target`_.
You may assume that each input would have **_exactly_ one solution**, and you may not use the _same_ element twice.
You can return the answer in any order.
**Example 1:**
**Input:** nums = \[2,7,11,15\], target = 9
**Output:** \[0,1\]
**Explanation:** Because nums\[0\] + nums\[1\] == 9, we return \[0, 1\].
**Example 2:**
**Input:** nums = \[3,2,4\], target = 6
**Output:** \[1,2\]
**Example 3:**
**Input:** nums = \[3,3\], target = 6
**Output:** \[0,1\]
**Constraints:**
* `2 <= nums.length <= 104`
* `-109 <= nums[i] <= 109`
* `-109 <= target <= 109`
* **Only one valid answer exists.**
**Follow-up:** Can you come up with an algorithm that is less than `O(n2)` time complexity? | A really brute force way would be to search for all possible pairs of numbers but that would be too slow. Again, it's best to try out brute force solutions for just for completeness. It is from these brute force solutions that you can come up with optimizations. So, if we fix one of the numbers, say x, we have to scan the entire array to find the next number y which is value - x where value is the input parameter. Can we change our array somehow so that this search becomes faster? The second train of thought is, without changing the array, can we use additional space somehow? Like maybe a hash map to speed up the search? |
Binbin's very simple solution! dont understand why so many solutions used user.out........> < | two-sum | 0 | 1 | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution:\n def twoSum(self, nums: List[int], target: int) -> List[int]:\n pre = []\n for i in range(len(nums)):\n int2 = nums[i]\n int1 = target - int2\n if int1 not in pre:\n pre.append(int2)\n else:\n return [i,pre.index(int1)]\n \n\n\n\n``` | 1 | Given an array of integers `nums` and an integer `target`, return _indices of the two numbers such that they add up to `target`_.
You may assume that each input would have **_exactly_ one solution**, and you may not use the _same_ element twice.
You can return the answer in any order.
**Example 1:**
**Input:** nums = \[2,7,11,15\], target = 9
**Output:** \[0,1\]
**Explanation:** Because nums\[0\] + nums\[1\] == 9, we return \[0, 1\].
**Example 2:**
**Input:** nums = \[3,2,4\], target = 6
**Output:** \[1,2\]
**Example 3:**
**Input:** nums = \[3,3\], target = 6
**Output:** \[0,1\]
**Constraints:**
* `2 <= nums.length <= 104`
* `-109 <= nums[i] <= 109`
* `-109 <= target <= 109`
* **Only one valid answer exists.**
**Follow-up:** Can you come up with an algorithm that is less than `O(n2)` time complexity? | A really brute force way would be to search for all possible pairs of numbers but that would be too slow. Again, it's best to try out brute force solutions for just for completeness. It is from these brute force solutions that you can come up with optimizations. So, if we fix one of the numbers, say x, we have to scan the entire array to find the next number y which is value - x where value is the input parameter. Can we change our array somehow so that this search becomes faster? The second train of thought is, without changing the array, can we use additional space somehow? Like maybe a hash map to speed up the search? |
✅98.21%🔥HashMap & Time complexity🔥1 line Code 🔥 | two-sum | 1 | 1 | # Problem\n#### The problem statement describes a classic coding interview question. You are given an array of integers (nums) and an integer (target). Your task is to find two distinct numbers in the array that add up to the target. You need to return the indices of these two numbers.\n\n---\n# Solution\n\n##### 1. The twoSum function takes two arguments: nums, which is the list of integers, and target, which is the desired sum.\n\n##### 2. The solution uses a nested loop. The outer loop iterates through the elements of the nums list using enumerate. The outer loop variable i represents the index, and x represents the element at that index.\n\n##### 3.The inner loop also uses enumerate but starts from the i+1 index. This ensures that you don\'t use the same element twice (as the problem specifies). The inner loop variable j represents the index, and y represents the element at that index.\n\n##### 4.The condition if x + y == target checks whether the sum of the current elements x and y is equal to the target.\n\n##### 5.If a pair of elements is found that satisfies the condition, the next function returns a tuple (i, j) representing the indices of the two elements that add up to the target.\n---\n\n# Code\n```Python3 []\nclass Solution:\n def twoSum(self, nums: List[int], target: int) -> List[int]:\n return next((i, j) for i, x in enumerate(nums) for j, y in enumerate(nums[i+1:], i+1) if x + y == target)\n\n```\n```python []\nclass Solution:\n def twoSum(self, nums: List[int], target: int) -> List[int]:\n return next((i, j) for i, x in enumerate(nums) for j, y in enumerate(nums[i+1:], i+1) if x + y == target)\n\n```\n```C# []\npublic class Solution\n{\n public int[] TwoSum(int[] nums, int target)\n {\n for (int i = 0; i < nums.Length; i++)\n {\n for (int j = i + 1; j < nums.Length; j++)\n {\n if (nums[i] + nums[j] == target)\n {\n return new int[] { i, j };\n }\n }\n }\n throw new ArgumentException("No solution found");\n }\n}\n\n```\n```javascript []\nvar twoSum = function(nums, target) {\n const numToIndex = new Map(); // Create a Map to store numbers and their indices\n\n for (let i = 0; i < nums.length; i++) {\n const complement = target - nums[i];\n\n // Check if the complement exists in the Map\n if (numToIndex.has(complement)) {\n return [numToIndex.get(complement), i];\n }\n\n // Store the current number and its index in the Map\n numToIndex.set(nums[i], i);\n }\n\n throw new Error("No solution found");\n};\n```\n```C []\nint* twoSum(int* nums, int numsSize, int target, int* returnSize) {\n int* result = (int*)malloc(2 * sizeof(int)); // Allocate memory for the result array\n if (result == NULL) {\n *returnSize = 0;\n return NULL; // Return NULL if memory allocation fails\n }\n\n for (int i = 0; i < numsSize; i++) {\n for (int j = i + 1; j < numsSize; j++) {\n if (nums[i] + nums[j] == target) {\n result[0] = i;\n result[1] = j;\n *returnSize = 2; // Set the return size to 2\n return result; // Return the result array\n }\n }\n }\n\n *returnSize = 0; // If no solution found, set return size to 0\n free(result); // Free the allocated memory before returning NULL\n return NULL; // Return NULL if no solution is found\n}\n```\n```Java []\npublic class Solution {\n public int[] twoSum(int[] nums, int target) {\n Map<Integer, Integer> numToIndex = new HashMap<>();\n for (int i = 0; i < nums.length; i++) {\n int complement = target - nums[i];\n if (numToIndex.containsKey(complement)) {\n return new int[]{numToIndex.get(complement), i};\n }\n numToIndex.put(nums[i], i);\n }\n throw new IllegalArgumentException("No solution found");\n }\n}\n\n```\n```C++ []\nclass Solution {\npublic:\n std::vector<int> twoSum(std::vector<int>& nums, int target) {\n std::unordered_map<int, int> numToIndex;\n for (int i = 0; i < nums.size(); i++) {\n int complement = target - nums[i];\n if (numToIndex.find(complement) != numToIndex.end()) {\n return {numToIndex[complement], i};\n }\n numToIndex[nums[i]] = i;\n }\n throw std::invalid_argument("No solution found");\n }\n};\n\n```\n\n | 34 | Given an array of integers `nums` and an integer `target`, return _indices of the two numbers such that they add up to `target`_.
You may assume that each input would have **_exactly_ one solution**, and you may not use the _same_ element twice.
You can return the answer in any order.
**Example 1:**
**Input:** nums = \[2,7,11,15\], target = 9
**Output:** \[0,1\]
**Explanation:** Because nums\[0\] + nums\[1\] == 9, we return \[0, 1\].
**Example 2:**
**Input:** nums = \[3,2,4\], target = 6
**Output:** \[1,2\]
**Example 3:**
**Input:** nums = \[3,3\], target = 6
**Output:** \[0,1\]
**Constraints:**
* `2 <= nums.length <= 104`
* `-109 <= nums[i] <= 109`
* `-109 <= target <= 109`
* **Only one valid answer exists.**
**Follow-up:** Can you come up with an algorithm that is less than `O(n2)` time complexity? | A really brute force way would be to search for all possible pairs of numbers but that would be too slow. Again, it's best to try out brute force solutions for just for completeness. It is from these brute force solutions that you can come up with optimizations. So, if we fix one of the numbers, say x, we have to scan the entire array to find the next number y which is value - x where value is the input parameter. Can we change our array somehow so that this search becomes faster? The second train of thought is, without changing the array, can we use additional space somehow? Like maybe a hash map to speed up the search? |
Two sums || 3 easy methods in Python | two-sum | 0 | 1 | # Intuition\nMethod 1: A brute-force solution to find two numbers in the nums list that add up to the target value.\n\nMethod 2: By list concept\n\nMethod 3: By Dictionary (more efficient solution)\n# Approach\nMethod 1: \nThe code uses nested loops to iterate over each pair of numbers in the nums list. The outer loop runs from 0 to len(nums)-1, and the inner loop runs from i+1 to len(nums)-1, where i is the current index of the outer loop. Within the nested loops, constant time operations are performed, such as checking if the sum of two numbers equals the target, appending indices to the a list, and using break and continue statements.\nTherefore, the overall time complexity of the code is O(n^2) due to the nested loops.\n\nMethod 2: \nThe code uses one loop to iterate over the number and subtract from target and if that subtracted number is present in list then return the index of both number. \n(here if condition of a==i means that possibly the target is 10 and present number in list might be [5,5] but it will return the same index so we need to skip)\n\nMethod 3: \nThe dictionary will help us to find the complement of each number more efficiently. In Method 2, Change the loop variable from i to num using the enumerate() function. This allows us to directly access the numbers from the nums list instead of using indexing.\nReplaced the variable p with complement to improve code readability.\nReplaced if p in nums with if complement in num_dict. This change allows us to check if the complement exists in the num_dict dictionary, which provides a more efficient lookup compared to the in operator on a list.\nModified the return statement to return [num_dict[complement], i] instead of i, a. This returns the indices of the two numbers that add up to the target, as required.\n\n\n# Complexity\n- Time complexity:\n\nMethod 1: \nO(n^2) due to nested loops\n\nMethod 2: \nO(n^2) because the the code uses a single loop that iterates over each element in the nums list which takes O(n) and index() method is called within the loop which takes O(n) time in the worst case to call the index of element.\n\nMethod 3: \n**O(n)** The use of the dictionary (num_dict) allows for efficient lookup of complements in constant time, improving the overall time complexity to O(n) compared to the previous methods with a time complexity of O(n^2) when using the brute force and index() method.\n\n\n- Space complexity:\nthe space complexity of the code is O(1) in all 3 methods.\n\n$$KINDLY$$ $$UPVOTE$$\n# Code\n\nMethod 1: \n```\nclass Solution:\n def twoSum(self, nums: List[int], target: int) -> List[int]:\n a=[]\n for i in range(len(nums)):\n for j in range(i+1,len(nums)):\n if (nums[i]+nums[j]==target):\n a.append(i)\n a.append(j)\n break \n return a\n```\nMethod 2:\n```\nclass Solution:\n def twoSum(self, nums: List[int], target: int) -> List[int]:\n a=0\n for i in range(len(nums)):\n p = target-nums[i]\n if p in nums:\n a=nums.index(p)\n if a==i:\n continue\n break\n return i,a\n```\nMethod 3:\n```\nclass Solution:\n def twoSum(self, nums: List[int], target: int) -> List[int]:\n num_dict = {}\n for i, num in enumerate(nums):\n complement = target - num\n if complement in num_dict:\n return [num_dict[complement], i]\n num_dict[num] = i\n return []\n``` | 70 | Given an array of integers `nums` and an integer `target`, return _indices of the two numbers such that they add up to `target`_.
You may assume that each input would have **_exactly_ one solution**, and you may not use the _same_ element twice.
You can return the answer in any order.
**Example 1:**
**Input:** nums = \[2,7,11,15\], target = 9
**Output:** \[0,1\]
**Explanation:** Because nums\[0\] + nums\[1\] == 9, we return \[0, 1\].
**Example 2:**
**Input:** nums = \[3,2,4\], target = 6
**Output:** \[1,2\]
**Example 3:**
**Input:** nums = \[3,3\], target = 6
**Output:** \[0,1\]
**Constraints:**
* `2 <= nums.length <= 104`
* `-109 <= nums[i] <= 109`
* `-109 <= target <= 109`
* **Only one valid answer exists.**
**Follow-up:** Can you come up with an algorithm that is less than `O(n2)` time complexity? | A really brute force way would be to search for all possible pairs of numbers but that would be too slow. Again, it's best to try out brute force solutions for just for completeness. It is from these brute force solutions that you can come up with optimizations. So, if we fix one of the numbers, say x, we have to scan the entire array to find the next number y which is value - x where value is the input parameter. Can we change our array somehow so that this search becomes faster? The second train of thought is, without changing the array, can we use additional space somehow? Like maybe a hash map to speed up the search? |
3 Best Solutions explained | two-sum | 1 | 1 | https://youtu.be/--qiegimDZM | 114 | Given an array of integers `nums` and an integer `target`, return _indices of the two numbers such that they add up to `target`_.
You may assume that each input would have **_exactly_ one solution**, and you may not use the _same_ element twice.
You can return the answer in any order.
**Example 1:**
**Input:** nums = \[2,7,11,15\], target = 9
**Output:** \[0,1\]
**Explanation:** Because nums\[0\] + nums\[1\] == 9, we return \[0, 1\].
**Example 2:**
**Input:** nums = \[3,2,4\], target = 6
**Output:** \[1,2\]
**Example 3:**
**Input:** nums = \[3,3\], target = 6
**Output:** \[0,1\]
**Constraints:**
* `2 <= nums.length <= 104`
* `-109 <= nums[i] <= 109`
* `-109 <= target <= 109`
* **Only one valid answer exists.**
**Follow-up:** Can you come up with an algorithm that is less than `O(n2)` time complexity? | A really brute force way would be to search for all possible pairs of numbers but that would be too slow. Again, it's best to try out brute force solutions for just for completeness. It is from these brute force solutions that you can come up with optimizations. So, if we fix one of the numbers, say x, we have to scan the entire array to find the next number y which is value - x where value is the input parameter. Can we change our array somehow so that this search becomes faster? The second train of thought is, without changing the array, can we use additional space somehow? Like maybe a hash map to speed up the search? |
Easy Python Solution With Explanation 🔥🔥 | two-sum | 0 | 1 | # Approach\nThis code defines a Python class called `Solution` with a method named `twoSum`. The purpose of this method is to find two numbers in a list (`nums`) that add up to a specific target number (`target`). Here\'s a simple explanation of how it works:\n\n1. Create an empty dictionary called `numsList` to store numbers from the list `nums` and their corresponding indices.\n \n2. Loop through each element (`n`) in the `nums` list along with its index (`i`).\n\n3. Calculate the difference (`diff`) between the `target` and the current number `n`. This difference represents the value we need to find in the list in order to reach the target.\n\n4. Check if the `diff` is already in the `numsList` dictionary. If it is, it means we have found a pair of numbers whose sum equals the target. In this case, return a list containing the indices of those two numbers: `[numsList[diff], i]`. This pair of indices will identify the two numbers in the original list that add up to the target.\n\n5. If the `diff` is not in the `numsList` dictionary, it means we haven\'t seen this number before. So, we add the current number `n` to the `numsList` dictionary, with its index `i` as the associated value. This allows us to look up this number later if we encounter its complement in the list.\n\n6. Repeat steps 3 to 5 for each number in the `nums` list until a pair of numbers that adds up to the `target` is found, at which point the function returns the indices of those numbers.\n\nIn summary, this code efficiently finds a pair of numbers in the `nums` list that add up to the given `target`, using a dictionary to keep track of the numbers seen so far and their indices.\n\n# Code\n```\nclass Solution:\n def twoSum(self, nums: List[int], target: int) -> List[int]:\n numsList = {}\n for i,n in enumerate(nums):\n diff = target-n\n if diff in numsList:\n return [numsList[diff], i]\n else:\n numsList[n] = i\n```\n\n**Please upvote if you like the solution.\nHappy Coding! \uD83D\uDE0A** | 27 | Given an array of integers `nums` and an integer `target`, return _indices of the two numbers such that they add up to `target`_.
You may assume that each input would have **_exactly_ one solution**, and you may not use the _same_ element twice.
You can return the answer in any order.
**Example 1:**
**Input:** nums = \[2,7,11,15\], target = 9
**Output:** \[0,1\]
**Explanation:** Because nums\[0\] + nums\[1\] == 9, we return \[0, 1\].
**Example 2:**
**Input:** nums = \[3,2,4\], target = 6
**Output:** \[1,2\]
**Example 3:**
**Input:** nums = \[3,3\], target = 6
**Output:** \[0,1\]
**Constraints:**
* `2 <= nums.length <= 104`
* `-109 <= nums[i] <= 109`
* `-109 <= target <= 109`
* **Only one valid answer exists.**
**Follow-up:** Can you come up with an algorithm that is less than `O(n2)` time complexity? | A really brute force way would be to search for all possible pairs of numbers but that would be too slow. Again, it's best to try out brute force solutions for just for completeness. It is from these brute force solutions that you can come up with optimizations. So, if we fix one of the numbers, say x, we have to scan the entire array to find the next number y which is value - x where value is the input parameter. Can we change our array somehow so that this search becomes faster? The second train of thought is, without changing the array, can we use additional space somehow? Like maybe a hash map to speed up the search? |
(VIDEO) Step-by-Step Visualization of O(n) Solution | two-sum | 0 | 1 | https://youtu.be/luicuNOBTAI\n\nInstead of checking every single combination of pairs, the key realization is that for each number in the array, there is only **one** number that can be added to it to reach the target.\n\nWe combine this with a hash table, which can look up values in constant time, to keep track of array elements and its indices as we traverse it. For each array element **x**, we calculate **target - x** and check if we\'ve encountered it in the array before.\n\nIn the worst case, the array will only have to be traversed once, resulting in an O(n) solution.\n\n# Code\n```\nclass Solution(object):\n def twoSum(self, nums, target):\n seen = {}\n for i in range(len(nums)):\n diff = target - nums[i]\n if diff in seen:\n return [seen[diff], i]\n else:\n seen[nums[i]] = i\n``` | 91 | Given an array of integers `nums` and an integer `target`, return _indices of the two numbers such that they add up to `target`_.
You may assume that each input would have **_exactly_ one solution**, and you may not use the _same_ element twice.
You can return the answer in any order.
**Example 1:**
**Input:** nums = \[2,7,11,15\], target = 9
**Output:** \[0,1\]
**Explanation:** Because nums\[0\] + nums\[1\] == 9, we return \[0, 1\].
**Example 2:**
**Input:** nums = \[3,2,4\], target = 6
**Output:** \[1,2\]
**Example 3:**
**Input:** nums = \[3,3\], target = 6
**Output:** \[0,1\]
**Constraints:**
* `2 <= nums.length <= 104`
* `-109 <= nums[i] <= 109`
* `-109 <= target <= 109`
* **Only one valid answer exists.**
**Follow-up:** Can you come up with an algorithm that is less than `O(n2)` time complexity? | A really brute force way would be to search for all possible pairs of numbers but that would be too slow. Again, it's best to try out brute force solutions for just for completeness. It is from these brute force solutions that you can come up with optimizations. So, if we fix one of the numbers, say x, we have to scan the entire array to find the next number y which is value - x where value is the input parameter. Can we change our array somehow so that this search becomes faster? The second train of thought is, without changing the array, can we use additional space somehow? Like maybe a hash map to speed up the search? |
simple answer with for loop | two-sum | 0 | 1 | # Approach\n<!-- Describe your approach to solving the problem. -->\nCreate an empty dictionary called num_dict to store numbers and their indices.\nIterate through the nums array using a for loop, keeping track of the current index and the current number.\nCalculate the complement, which is target - num, where num is the current number in the iteration.\nCheck if the complement is already in the num_dict dictionary. If it is, return the indices of the two numbers that add up to the target.\nIf the complement is not in the dictionary, add the current number and its index to the num_dict dictionary for future reference.\nIf no solution is found after iterating through the entire nums array, return an empty list to indicate that there is no valid pair of numbers that add up to the target.\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\nO(n)\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\nO(n)\n# Code\n```\nclass Solution(object):\n def twoSum(self, nums, target):\n """\n :type nums: List[int]\n :type target: int\n :rtype: List[int]\n """\n num_dict = {} # Use a dictionary to store the numbers and their indices\n\n for i, num in enumerate(nums):\n complement = target - num\n # Check if the complement is in the dictionary\n if complement in num_dict:\n return [num_dict[complement], i]\n # Store the current number and its index in the dictionary\n num_dict[num] = i\n\n # If no solution is found, return an empty list\n return []\n``` | 2 | Given an array of integers `nums` and an integer `target`, return _indices of the two numbers such that they add up to `target`_.
You may assume that each input would have **_exactly_ one solution**, and you may not use the _same_ element twice.
You can return the answer in any order.
**Example 1:**
**Input:** nums = \[2,7,11,15\], target = 9
**Output:** \[0,1\]
**Explanation:** Because nums\[0\] + nums\[1\] == 9, we return \[0, 1\].
**Example 2:**
**Input:** nums = \[3,2,4\], target = 6
**Output:** \[1,2\]
**Example 3:**
**Input:** nums = \[3,3\], target = 6
**Output:** \[0,1\]
**Constraints:**
* `2 <= nums.length <= 104`
* `-109 <= nums[i] <= 109`
* `-109 <= target <= 109`
* **Only one valid answer exists.**
**Follow-up:** Can you come up with an algorithm that is less than `O(n2)` time complexity? | A really brute force way would be to search for all possible pairs of numbers but that would be too slow. Again, it's best to try out brute force solutions for just for completeness. It is from these brute force solutions that you can come up with optimizations. So, if we fix one of the numbers, say x, we have to scan the entire array to find the next number y which is value - x where value is the input parameter. Can we change our array somehow so that this search becomes faster? The second train of thought is, without changing the array, can we use additional space somehow? Like maybe a hash map to speed up the search? |
Two Sum: faster than hashmap in worst case. uses sort | two-sum | 0 | 1 | # Better than Hashmap in worst case\n\nI\'ve seen a lot of solutions that iterate over the list and do hashmap lookup. These solutions often say that they are "worst case $$O(n)$$" time complexity. However, this is false because worst case hashmap lookup is $$O(n)$$, so those solutions are actually worst case $$O(n^2)$$. \n\nThose hashmap solutions have a place, since expected lookup complexity is $$O(1)$$, and thus the expected overall time complexity is $$O(n)$$. But, it\'s worth looking at what\'s the best possible solution for true worst case time complexity. Here\'s a solution that beats those solutions in the worst case.\n\nMy solution uses list sort, which has TC: $$O(nlog(n))$$, to solve this problem and thus has a better worst-case time complexity than using hashmaps.\n\n# Complexity\n- Time complexity (Expected and Worst Case): $$O(nlog(n))$$\n- Space complexity: $$O(n)$$\n\n# Overview\n\n1. Sort $$nums$$, the input list, while preserving original indices\n2. use a two-pointer technique to iterate from left and right simulatenously\n3. compare values at left index and right index, and move them accordingly\n4. when the values sum to target, return the original indices\n\n# Code\n```\nclass Solution:\n def twoSum(self, nums: List[int], target: int) -> List[int]:\n # TC O(nlog(n)), SC: O(n)\n\n # modify nums such that every element is a tuple (originalIndex, value)\n for index, value in enumerate(nums):\n nums[index] = (value, index)\n \n # sort nums by value\n nums.sort()\n\n # use a two-pointer technique to search from left and right.\n leftI = 0\n rightI = len(nums) - 1\n \n # this solution is guaranteed to converge. once it does, return the two originalIndex\'s of those values\n while (True):\n # get value on left and value on right. \n leftV, leftOriginalI = nums[leftI]\n rightV, rightOriginalI = nums[rightI]\n\n # compare to target\n if leftV + rightV == target:\n return (leftOriginalI, rightOriginalI)\n elif leftV + rightV > target:\n # if it\'s too large, move right pointer left\n rightI -= 1\n else:\n # if it\'s too small, move left pointer right\n leftI += 1\n\n \n \n\n \n\n``` | 0 | Given an array of integers `nums` and an integer `target`, return _indices of the two numbers such that they add up to `target`_.
You may assume that each input would have **_exactly_ one solution**, and you may not use the _same_ element twice.
You can return the answer in any order.
**Example 1:**
**Input:** nums = \[2,7,11,15\], target = 9
**Output:** \[0,1\]
**Explanation:** Because nums\[0\] + nums\[1\] == 9, we return \[0, 1\].
**Example 2:**
**Input:** nums = \[3,2,4\], target = 6
**Output:** \[1,2\]
**Example 3:**
**Input:** nums = \[3,3\], target = 6
**Output:** \[0,1\]
**Constraints:**
* `2 <= nums.length <= 104`
* `-109 <= nums[i] <= 109`
* `-109 <= target <= 109`
* **Only one valid answer exists.**
**Follow-up:** Can you come up with an algorithm that is less than `O(n2)` time complexity? | A really brute force way would be to search for all possible pairs of numbers but that would be too slow. Again, it's best to try out brute force solutions for just for completeness. It is from these brute force solutions that you can come up with optimizations. So, if we fix one of the numbers, say x, we have to scan the entire array to find the next number y which is value - x where value is the input parameter. Can we change our array somehow so that this search becomes faster? The second train of thought is, without changing the array, can we use additional space somehow? Like maybe a hash map to speed up the search? |
✅Beats 100% || C++ || JAVA || PYTHON || Beginner Friendly🔥🔥🔥 | add-two-numbers | 1 | 1 | # Intuition:\nThe Intuition is to iterate through two linked lists representing non-negative integers in reverse order, starting from the least significant digit. It performs digit-wise addition along with a carry value and constructs a new linked list to represent the sum. The process continues until both input lists and the carry value are exhausted. The resulting linked list represents the sum of the input numbers in the correct order.\n\n# Explanation: \n1. Create a placeholder node called `dummyHead` with a value of 0. This node will hold the resulting linked list.\n2. Initialize a pointer called `tail` and set it to `dummyHead`. This pointer will keep track of the last node in the result list.\n3. Initialize a variable called `carry` to 0. This variable will store the carry value during addition.\n4. Start a loop that continues until there are no more digits in both input lists (`l1` and `l2`) and there is no remaining carry value.\n5. Inside the loop:\n - Check if there is a digit in the current node of `l1`. If it exists, assign its value to a variable called `digit1`. Otherwise, set `digit1` to 0.\n - Check if there is a digit in the current node of `l2`. If it exists, assign its value to a variable called `digit2`. Otherwise, set `digit2` to 0.\n - Add the current digits from `l1` and `l2`, along with the carry value from the previous iteration, and store the sum in a variable called `sum`.\n - Calculate the unit digit of `sum` by taking the modulus (`%`) of `sum` by 10. This digit will be placed in a new node for the result.\n - Update the `carry` variable by dividing `sum` by 10 and taking the integer division (`/`) part. This gives us the carry value for the next iteration.\n - Create a new node with the calculated digit as its value.\n - Attach the new node to the `tail` node of the result list.\n - Move the `tail` pointer to the newly added node.\n - Move to the next nodes in both `l1` and `l2`, if they exist. If either list is exhausted, set the corresponding pointer to `nullptr`.\n6. After the loop, obtain the actual result list by skipping the `dummyHead` node.\n7. Delete the `dummyHead` node.\n8. Return the resulting list.\n\n# Code\n```C++ []\nclass Solution {\npublic:\n ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {\n ListNode* dummyHead = new ListNode(0);\n ListNode* tail = dummyHead;\n int carry = 0;\n\n while (l1 != nullptr || l2 != nullptr || carry != 0) {\n int digit1 = (l1 != nullptr) ? l1->val : 0;\n int digit2 = (l2 != nullptr) ? l2->val : 0;\n\n int sum = digit1 + digit2 + carry;\n int digit = sum % 10;\n carry = sum / 10;\n\n ListNode* newNode = new ListNode(digit);\n tail->next = newNode;\n tail = tail->next;\n\n l1 = (l1 != nullptr) ? l1->next : nullptr;\n l2 = (l2 != nullptr) ? l2->next : nullptr;\n }\n\n ListNode* result = dummyHead->next;\n delete dummyHead;\n return result;\n }\n};\n```\n```Java []\nclass Solution {\n public ListNode addTwoNumbers(ListNode l1, ListNode l2) {\n ListNode dummyHead = new ListNode(0);\n ListNode tail = dummyHead;\n int carry = 0;\n\n while (l1 != null || l2 != null || carry != 0) {\n int digit1 = (l1 != null) ? l1.val : 0;\n int digit2 = (l2 != null) ? l2.val : 0;\n\n int sum = digit1 + digit2 + carry;\n int digit = sum % 10;\n carry = sum / 10;\n\n ListNode newNode = new ListNode(digit);\n tail.next = newNode;\n tail = tail.next;\n\n l1 = (l1 != null) ? l1.next : null;\n l2 = (l2 != null) ? l2.next : null;\n }\n\n ListNode result = dummyHead.next;\n dummyHead.next = null;\n return result;\n }\n}\n```\n```Python3 []\nclass Solution:\n def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode:\n dummyHead = ListNode(0)\n tail = dummyHead\n carry = 0\n\n while l1 is not None or l2 is not None or carry != 0:\n digit1 = l1.val if l1 is not None else 0\n digit2 = l2.val if l2 is not None else 0\n\n sum = digit1 + digit2 + carry\n digit = sum % 10\n carry = sum // 10\n\n newNode = ListNode(digit)\n tail.next = newNode\n tail = tail.next\n\n l1 = l1.next if l1 is not None else None\n l2 = l2.next if l2 is not None else None\n\n result = dummyHead.next\n dummyHead.next = None\n return result\n```\n\n![CUTE_CAT.png](https://assets.leetcode.com/users/images/aad37c06-5cd4-4eec-8ccc-6ceaae6e4a6d_1687514630.867168.png)\n\n**If you are a beginner solve these problems which makes concepts clear for future coding:**\n1. [Two Sum](https://leetcode.com/problems/two-sum/solutions/3619262/3-method-s-c-java-python-beginner-friendly/)\n2. [Roman to Integer](https://leetcode.com/problems/roman-to-integer/solutions/3651672/best-method-c-java-python-beginner-friendly/)\n3. [Palindrome Number](https://leetcode.com/problems/palindrome-number/solutions/3651712/2-method-s-c-java-python-beginner-friendly/)\n4. [Maximum Subarray](https://leetcode.com/problems/maximum-subarray/solutions/3666304/beats-100-c-java-python-beginner-friendly/)\n5. [Remove Element](https://leetcode.com/problems/remove-element/solutions/3670940/best-100-c-java-python-beginner-friendly/)\n6. [Contains Duplicate](https://leetcode.com/problems/contains-duplicate/solutions/3672475/4-method-s-c-java-python-beginner-friendly/)\n7. [Add Two Numbers](https://leetcode.com/problems/add-two-numbers/solutions/3675747/beats-100-c-java-python-beginner-friendly/)\n8. [Majority Element](https://leetcode.com/problems/majority-element/solutions/3676530/3-methods-beats-100-c-java-python-beginner-friendly/)\n9. [Remove Duplicates from Sorted Array](https://leetcode.com/problems/remove-duplicates-from-sorted-array/solutions/3676877/best-method-100-c-java-python-beginner-friendly/)\n10. **Practice them in a row for better understanding and please Upvote the post for more questions.**\n\n\n**If you found my solution helpful, I would greatly appreciate your upvote, as it would motivate me to continue sharing more solutions.** | 921 | You are given two **non-empty** linked lists representing two non-negative integers. The digits are stored in **reverse order**, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
**Example 1:**
**Input:** l1 = \[2,4,3\], l2 = \[5,6,4\]
**Output:** \[7,0,8\]
**Explanation:** 342 + 465 = 807.
**Example 2:**
**Input:** l1 = \[0\], l2 = \[0\]
**Output:** \[0\]
**Example 3:**
**Input:** l1 = \[9,9,9,9,9,9,9\], l2 = \[9,9,9,9\]
**Output:** \[8,9,9,9,0,0,0,1\]
**Constraints:**
* The number of nodes in each linked list is in the range `[1, 100]`.
* `0 <= Node.val <= 9`
* It is guaranteed that the list represents a number that does not have leading zeros. | null |
[VIDEO] Step-by-Step Visualization and Explanation | add-two-numbers | 0 | 1 | ERROR: type should be string, got "https://www.youtube.com/watch?v=Fs5xgNNoP5c\\n\\nFirst we create a new ListNode, `head`, which will hold our answer. We then traverse the two lists, and at every node, we add the values together, create a new node with the sum, and link it to `head`. However, the problem is complicated by the need to keep track of <i>carries</i>. Here\\'s how we deal with it. After adding two digits together:\\n\\n- The <i>non-carry</i> part is obtained by doing `total % 10`. By taking the remainder of a number after dividing by 10, we only get what\\'s left in the ones place. For example, if the total is 15, then 15 % 10 = 5, so we create a new ListNode with value 5 and link it to `head`\\n- The <i>carry</i> is obtained by doing `total // 10` (floor division by 10). By dividing by 10 and rounding down, we get the carry value. So 15 // 10 = 1 (1.5 rounded down is 1) so that corresponds to a carry of 1.\\n\\nWe then keep repeating this until all lists have reached the end AND there are no more carry values. At the end, `head.next`holds the very first node of our answer, so we return `head.next`.\\n\\n# Code\\n```\\n# Definition for singly-linked list.\\n# class ListNode(object):\\n# def __init__(self, val=0, next=None):\\n# self.val = val\\n# self.next = next\\nclass Solution(object):\\n def addTwoNumbers(self, l1, l2):\\n head = ListNode()\\n current = head\\n carry = 0\\n while (l1 != None or l2 != None or carry != 0):\\n l1_value = l1.val if l1 else 0\\n l2_value = l2.val if l2 else 0\\n total = l1_value + l2_value + carry\\n current.next = ListNode(total % 10)\\n carry = total // 10\\n # Move list pointers forward\\n l1 = l1.next if l1 else None\\n l2 = l2.next if l2 else None\\n current = current.next\\n return head.next\\n```" | 6 | You are given two **non-empty** linked lists representing two non-negative integers. The digits are stored in **reverse order**, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
**Example 1:**
**Input:** l1 = \[2,4,3\], l2 = \[5,6,4\]
**Output:** \[7,0,8\]
**Explanation:** 342 + 465 = 807.
**Example 2:**
**Input:** l1 = \[0\], l2 = \[0\]
**Output:** \[0\]
**Example 3:**
**Input:** l1 = \[9,9,9,9,9,9,9\], l2 = \[9,9,9,9\]
**Output:** \[8,9,9,9,0,0,0,1\]
**Constraints:**
* The number of nodes in each linked list is in the range `[1, 100]`.
* `0 <= Node.val <= 9`
* It is guaranteed that the list represents a number that does not have leading zeros. | null |
(PYTHON) In-Place, O(N) 90%+ Speed, 60%+ Space. Easy to Understand. | add-two-numbers | 0 | 1 | # Intuition\nFor each pair of Nodes in l1 and l2, find their "raw" sum along with the carryover. Use modulo to get the digit and floor division to get the carry over. Then connect the remainder of l2 to the end of l1 (if it is longer). Continue the original process, ommiting the l2.val sum. \n\n# Complexity\n- Time complexity:\nShould be O(N), as we traverse both lists exactly once using only O(1) operations for each iteration.\n\n- Space complexity:\nWe create at most 1 new node, giving us O(N) space complexity.\n\n# Code\n```\n# Definition for singly-linked list.\n# class ListNode:\n# def __init__(self, val=0, next=None):\n# self.val = val\n# self.next = next\nclass Solution:\n def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]:\n carry_over = 0\n head = l1\n l1_prev = None\n while l1 and l2:\n raw_val = carry_over + l1.val + l2.val\n # What digit goes in node\n l1.val = raw_val % 10\n # What carries over\n carry_over = raw_val // 10\n # Increment prev\n l1_prev = l1\n # Incerement pointers\n l1 = l1.next\n l2 = l2.next\n\n # If l1 ran out BEFORE l2\n if l2:\n l1_prev.next = l2\n l1 = l2\n\n # We now may have more l1, then continue carryover process\n while l1:\n raw_val = carry_over + l1.val\n # What digit goes in node\n l1.val = raw_val % 10\n # What carries over\n carry_over = raw_val // 10\n # Incerement pointers\n l1_prev = l1\n l1 = l1.next\n if carry_over > 0:\n l1_prev.next = ListNode(val = carry_over)\n return head\n\n\n\n\n``` | 3 | You are given two **non-empty** linked lists representing two non-negative integers. The digits are stored in **reverse order**, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
**Example 1:**
**Input:** l1 = \[2,4,3\], l2 = \[5,6,4\]
**Output:** \[7,0,8\]
**Explanation:** 342 + 465 = 807.
**Example 2:**
**Input:** l1 = \[0\], l2 = \[0\]
**Output:** \[0\]
**Example 3:**
**Input:** l1 = \[9,9,9,9,9,9,9\], l2 = \[9,9,9,9\]
**Output:** \[8,9,9,9,0,0,0,1\]
**Constraints:**
* The number of nodes in each linked list is in the range `[1, 100]`.
* `0 <= Node.val <= 9`
* It is guaranteed that the list represents a number that does not have leading zeros. | null |
Python Code For Beginners Full Recursion | add-two-numbers | 0 | 1 | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\n\nclass Solution:\n def helper(self,l1,l2,carry):\n if not l1 and not l2:\n if carry > 0:\n return ListNode(carry)\n return None\n \n if l1 and not l2:\n val = (l1.val+carry)\n carry = val//10\n head = ListNode(val%10)\n head.next = self.helper(l1.next,l2,carry)\n return head\n\n if l2 and not l1:\n val = (l2.val+carry)\n carry = val//10\n head = ListNode(val%10)\n head.next = self.helper(l1,l2.next,carry)\n return head\n \n val = (l1.val+l2.val+carry)\n carry = val//10\n head = ListNode(val%10)\n head.next = self.helper(l1.next,l2.next,carry)\n return head\n\n def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]:\n return self.helper(l1,l2,0)\n``` | 1 | You are given two **non-empty** linked lists representing two non-negative integers. The digits are stored in **reverse order**, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
**Example 1:**
**Input:** l1 = \[2,4,3\], l2 = \[5,6,4\]
**Output:** \[7,0,8\]
**Explanation:** 342 + 465 = 807.
**Example 2:**
**Input:** l1 = \[0\], l2 = \[0\]
**Output:** \[0\]
**Example 3:**
**Input:** l1 = \[9,9,9,9,9,9,9\], l2 = \[9,9,9,9\]
**Output:** \[8,9,9,9,0,0,0,1\]
**Constraints:**
* The number of nodes in each linked list is in the range `[1, 100]`.
* `0 <= Node.val <= 9`
* It is guaranteed that the list represents a number that does not have leading zeros. | null |
Python 99.90 % beats || Easy Solution | add-two-numbers | 0 | 1 | # Your upvote is my motivation!\n\n\n# Code\n```\n# Definition for singly-linked list.\n# Definition for singly-linked list.\nclass ListNode:\n def __init__(self, val=0, next=None):\n self.val = val\n self.next = next\nclass Solution:\n def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]:\n dummyHead = ListNode(0)\n curr = dummyHead\n carry = 0\n while l1 != None or l2 != None or carry != 0:\n l1Val = l1.val if l1 else 0\n l2Val = l2.val if l2 else 0\n columnSum = l1Val + l2Val + carry\n carry = columnSum // 10\n newNode = ListNode(columnSum % 10)\n curr.next = newNode\n curr = newNode\n l1 = l1.next if l1 else None\n l2 = l2.next if l2 else None\n return dummyHead.next\n\n\n<!-- ========================================================= -->\n# Long Approach to understand\n<!-- Same Approach but diff way -- 99.9% beats in Memory -->\n\n newhead = ListNode(-1)\n temphead = newhead\n c = 0\n\n while l1 and l2:\n cur_digit = l1.val + l2.val + c # 25\n\n if cur_digit >= 10:\n c = cur_digit // 10 #2\n cur_digit = cur_digit % 10 #5\n else:\n c = 0\n \n new_node = ListNode(cur_digit)\n temphead.next = new_node\n temphead = new_node\n \n l1 = l1.next\n l2 = l2.next\n \n while l1:\n cur_digit = l1.val + c\n if cur_digit >= 10:\n c = cur_digit // 10 #2\n cur_digit = cur_digit % 10 #5\n else:\n c = 0\n new_node = ListNode(cur_digit)\n temphead.next = new_node\n temphead = new_node\n l1 = l1.next\n \n while l2:\n cur_digit = l2.val + c\n if cur_digit >= 10:\n c = cur_digit // 10 #2\n cur_digit = cur_digit % 10 #5\n else:\n c = 0\n new_node = ListNode(cur_digit)\n temphead.next = new_node\n temphead = new_node\n l2 = l2.next\n \n if c == 0:\n return newhead.next\n else:\n new_node = ListNode(c)\n temphead.next = new_node\n return newhead.next\n\n``` | 18 | You are given two **non-empty** linked lists representing two non-negative integers. The digits are stored in **reverse order**, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
**Example 1:**
**Input:** l1 = \[2,4,3\], l2 = \[5,6,4\]
**Output:** \[7,0,8\]
**Explanation:** 342 + 465 = 807.
**Example 2:**
**Input:** l1 = \[0\], l2 = \[0\]
**Output:** \[0\]
**Example 3:**
**Input:** l1 = \[9,9,9,9,9,9,9\], l2 = \[9,9,9,9\]
**Output:** \[8,9,9,9,0,0,0,1\]
**Constraints:**
* The number of nodes in each linked list is in the range `[1, 100]`.
* `0 <= Node.val <= 9`
* It is guaranteed that the list represents a number that does not have leading zeros. | null |
2. Add Two Numbers | add-two-numbers | 0 | 1 | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\n# Definition for singly-linked list.\n# class ListNode:\n# def __init__(self, val=0, next=None):\n# self.val = val\n# self.next = next\nclass Solution:\n def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]:\n # Creating a dummy node for reference\n dummynode= ListNode(0)\n current=dummynode\n carry=0\n\n while l1!= None or l2 != None or carry !=0:\n # Checking if a node exists in the list\n l1value = l1.val if l1 else 0\n l2value = l2.val if l2 else 0\n sum= l1value+l2value+carry\n carry = sum //10 # Adding quotient value to carry\n current.next= ListNode(sum%10) # Adding remainder value to the node\n # Updating list node pointers\n current= current.next\n l1=l1.next if l1 else None\n l2=l2.next if l2 else None\n\n return dummynode.next \n\n\n\n\n\n \n\n \n``` | 2 | You are given two **non-empty** linked lists representing two non-negative integers. The digits are stored in **reverse order**, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
**Example 1:**
**Input:** l1 = \[2,4,3\], l2 = \[5,6,4\]
**Output:** \[7,0,8\]
**Explanation:** 342 + 465 = 807.
**Example 2:**
**Input:** l1 = \[0\], l2 = \[0\]
**Output:** \[0\]
**Example 3:**
**Input:** l1 = \[9,9,9,9,9,9,9\], l2 = \[9,9,9,9\]
**Output:** \[8,9,9,9,0,0,0,1\]
**Constraints:**
* The number of nodes in each linked list is in the range `[1, 100]`.
* `0 <= Node.val <= 9`
* It is guaranteed that the list represents a number that does not have leading zeros. | null |
✅Mastering Adding Two Number 💡 Beginner's Guide | add-two-numbers | 1 | 1 | # Adding Two Numbers - LeetCode Problem #2\n---\n---\n\n## \uD83D\uDCA1Approach 1: Recursive Approach\n---\n\n### \u2728Explanation\nIn this approach, we recursively traverse both linked lists `l1` and `l2`, adding their corresponding nodes and handling carry if necessary. We create a new linked list `p` to store the sum.\n\n### \uD83D\uDCDDDry Run\nLet\'s dry run this approach with an example:\n- `l1` = 2 -> 4 -> 3\n- `l2` = 5 -> 6 -> 4\nAdding the numbers:\n- First, we add 2 and 5, resulting in 7.\n- Then, we add 4 and 6, resulting in 10 (with a carry of 1).\n- Finally, we add 3 and 4 with the carry, resulting in 8 (with no carry).\n\nThe resulting linked list `p` will be 7 -> 0 -> 8.\n\n### \uD83D\uDD0DEdge Cases\nThis approach handles cases where the linked lists have different lengths or carry values.\n\n### \uD83D\uDD78\uFE0FComplexity Analysis\n- Time Complexity: O(max(N, M)), where N and M are the lengths of `l1` and `l2`.\n- Space Complexity: O(max(N, M)), as the result linked list can be at most one element longer than the longer of the two input lists.\n\n### \uD83E\uDDD1\uD83C\uDFFB\u200D\uD83D\uDCBBCodes\n\n```cpp []\nclass Solution {\npublic:\n ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {\n if (!l1 && !l2) return NULL;\n else if (!l1) return l2;\n else if (!l2) return l1;\n\n int a = l1->val + l2->val;\n ListNode* p = new ListNode(a % 10);\n p->next = addTwoNumbers(l1->next, l2->next);\n if (a >= 10) p->next = addTwoNumbers(p->next, new ListNode(1));\n return p;\n }\n};\n```\n\n```java []\npublic class Solution {\n public ListNode addTwoNumbers(ListNode l1, ListNode l2) {\n if (l1 == null && l2 == null) return null;\n else if (l1 == null) return l2;\n else if (l2 == null) return l1;\n\n int a = l1.val + l2.val;\n ListNode p = new ListNode(a % 10);\n p.next = addTwoNumbers(l1.next, l2.next);\n if (a >= 10) p.next = addTwoNumbers(p.next, new ListNode(1));\n return p;\n }\n}\n```\n\n```python []\nclass Solution:\n def addTwoNumbers(self, l1, l2):\n if not l1 and not l2:\n return None\n elif not l1:\n return l2\n elif not l2:\n return l1\n\n a = l1.val + l2.val\n p = ListNode(a % 10)\n p.next = self.addTwoNumbers(l1.next, l2.next)\n if a >= 10:\n p.next = self.addTwoNumbers(p.next, ListNode(1))\n return p\n```\n\n```csharp []\npublic class Solution {\n public ListNode AddTwoNumbers(ListNode l1, ListNode l2) {\n if (l1 == null && l2 == null) return null;\n else if (l1 == null) return l2;\n else if (l2 == null) return l1;\n\n int a = l1.val + l2.val;\n ListNode p = new ListNode(a % 10);\n p.next = AddTwoNumbers(l1.next, l2.next);\n if (a >= 10) p.next = AddTwoNumbers(p.next, new ListNode(1));\n return p;\n }\n}\n```\n\n```javascript []\nvar addTwoNumbers = function(l1, l2) {\n if (!l1 && !l2) return null;\n else if (!l1) return l2;\n else if (!l2) return l1;\n\n var a = l1.val + l2.val;\n var p = new ListNode(a % 10);\n p.next = addTwoNumbers(l1.next, l2.next);\n if (a >= 10) p.next = addTwoNumbers(p.next, new ListNode(1));\n return p;\n};\n```\n\n---\n## \uD83D\uDCCA Analysis\n![image.png](https://assets.leetcode.com/users/images/2ba3ca9d-dcbb-4a59-b042-98e8dba381ef_1699356651.288471.png)\n\n\n---\n# \uD83D\uDCA1Approach 2: Using Dummy Node and Iteration\n---\n## \u2728Explanation\n\nThe problem statement requires us to add two numbers represented by two linked lists, where each node contains a single digit. We need to return the sum as a new linked list.\n\nThe third approach involves using a dummy node to simplify the code. It also uses an iterative process to construct the result linked list.\n\nHere are the steps for this approach:\n\n1. Create a dummy node `dummy_head` to hold the result. Initialize it with a value of 0.\n\n2. Initialize two pointers, `p` and `q`, both pointing to `dummy_head`. These pointers will be used to construct the result linked list.\n\n3. Initialize a carry variable `carry` to 0. This will store the carry generated during addition.\n\n4. Loop through the input linked lists `l1` and `l2` until both are empty.\n\n5. Within the loop, add the values of the current nodes in `l1` and `l2`, along with the carry. Calculate the sum as `(l1->val + l2->val + carry)`. Also, update the carry as `(l1->val + l2->val + carry) / 10`.\n\n6. Create a new node with the value `(l1->val + l2->val + carry) % 10`, and set this value as the next node of `p`.\n\n7. Update `p` to point to the newly created node.\n\n8. Move the pointers `l1` and `l2` to their next nodes.\n\n9. After the loop, check if there is any remaining carry. If so, create a new node with the carry and attach it to the result.\n\n10. Finally, return `dummy_head->next`, which is the actual result.\n\n## \uD83D\uDCDDDry Run\n\nLet\'s dry run this approach with an example:\n\n- Input:\n - `l1`: 2 -> 4 -> 3\n - `l2`: 5 -> 6 -> 4\n\n- Initialize `dummy_head` with value 0.\n\n- Initialize pointers:\n - `p` is at `dummy_head`\n - `q` is at `dummy_head`\n - `l1` points to 2\n - `l2` points to 5\n\n- Begin the loop:\n - Calculate the sum with carry: `(2 + 5) % 10 = 7`.\n - Set `p->next` to a new node with the value 7.\n - Update `carry` to `(2 + 5) / 10 = 0`.\n - Move `p` to the new node (7).\n - Move `q` to the new node (7).\n - Move `l1` to 4 and `l2` to 6.\n\n- Continue the loop:\n - Calculate the sum with carry: `(4 + 6) % 10 = 0`.\n - Set `p->next` to a new node with the value 0.\n - Update `carry` to `(4 + 6) / 10 = 1`.\n - Move `p` to the new node (0).\n - Move `q` to the new node (0).\n - Move `l1` to 3 and `l2` to 4.\n\n- Continue the loop:\n - Calculate the sum with carry: `(3 + 4 + 1) % 10 = 8`.\n - Set `p->next` to a new node with the value 8.\n - Update `carry` to `(3 + 4 + 1) / 10 = 0`.\n - Move `p` to the new node (8).\n - Move `q` to the new node (8).\n - Move `l1` to null and `l2` to null.\n\n- Loop ends, but there\'s no remaining carry.\n\n- Return `dummy_head->next`, which is the actual result: 7 -> 0 -> 8.\n\n## \uD83D\uDD0DEdge Cases\n\nThis approach efficiently handles cases where the linked lists have different lengths or carry values. It ensures that the result is correct and accurately represents the sum of the numbers.\n\n## \uD83D\uDD78\uFE0FComplexity Analysis\n\n- Time Complexity: O(max(N, M)), where N and M are the lengths of `l1` and `l2`. The algorithm iterates through both linked lists once.\n- Space Complexity: O(max(N, M)), as we only use a few extra variables, such as `dummy_head`, `p`, `q`, and `carry`, to construct the result linked list.\n\n## \uD83E\uDDD1\uD83C\uDFFB\u200D\uD83D\uDCBBCodes\n\n\n```cpp []\nclass Solution {\npublic:\nListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {\n ListNode* dummy_head = new ListNode(0);\n ListNode* p = dummy_head;\n ListNode* q = dummy_head;\n int carry = 0;\n \n while (l1 || l2) {\n int x = l1 ? l1->val : 0;\n int y = l2 ? l2->val : 0;\n \n int _sum = x + y + carry;\n carry = _sum / 10;\n \n p->next = new ListNode(_sum % 10);\n p = p->next;\n \n if (l1) l1 = l1->next;\n if (l2) l2 = l2->next;\n }\n \n if (carry > 0) {\n p->next = new ListNode(carry);\n }\n \n ListNode* result = dummy_head->next;\n delete dummy_head;\n \n return result;\n}\n};\n```\n\n```python []\nclass Solution:\n def addTwoNumbers(self, l1, l2):\n dummy_head = ListNode(0)\n p = dummy_head\n q = dummy_head\n carry = 0\n\n while l1 or l2:\n x = l1.val if l1 else 0\n y = l2.val if l2 else 0\n\n _sum = x + y + carry\n carry = _sum // 10\n\n p.next = ListNode(_sum % 10)\n p = p.next\n\n if l1:\n l1 = l1.next\n if l2:\n l2 = l2.next\n\n if carry > 0:\n p.next = ListNode(carry)\n\n result = dummy_head.next\n return result\n\n```\n\n```java []\npublic class Solution {\n public ListNode addTwoNumbers(ListNode l1, ListNode l2) {\n ListNode dummy_head = new ListNode(0);\n ListNode p = dummy_head;\n ListNode q = dummy_head;\n int carry = 0;\n\n while (l1 != null || l2 != null) {\n int x = (l1 != null) ? l1.val : 0;\n int y = (l2 != null) ? l2.val : 0;\n\n int _sum = x + y + carry;\n carry = _sum / 10;\n\n p.next = new ListNode(_sum % 10);\n p = p.next;\n\n if (l1 != null) l1 = l1.next;\n if (l2 != null) l2 = l2.next;\n }\n\n if (carry > 0) {\n p.next = new ListNode(carry);\n }\n\n ListNode result = dummy_head.next;\n return result;\n }\n}\n```\n\n```csharp []\npublic class Solution {\n public ListNode AddTwoNumbers(ListNode l1, ListNode l2) {\n ListNode dummy_head = new ListNode(0);\n ListNode p = dummy_head;\n ListNode q = dummy_head;\n int carry = 0;\n\n while (l1 != null || l2 != null) {\n int x = (l1 != null) ? l1.val : 0;\n int y = (l2 != null) ? l2.val : 0;\n\n int _sum = x + y + carry;\n carry = _sum / 10;\n\n p.next = new ListNode(_sum % 10);\n p = p.next;\n\n if (l1 != null) l1 = l1.next;\n if (l2 != null) l2 = l2.next;\n }\n\n if (carry > 0) {\n p.next = new ListNode(carry);\n }\n\n ListNode result = dummy_head.next;\n return result;\n }\n}\n```\n\n```javascript []\n\nvar addTwoNumbers = function (l1, l2) {\n let dummy_head = new ListNode(0);\n let p = dummy_head;\n let q = dummy_head;\n let carry = 0;\n\n while (l1 || l2) {\n const x = l1 ? l1.val : 0;\n const y = l2 ? l2.val : 0;\n\n const _sum = x + y + carry;\n carry = Math.floor(_sum / 10);\n\n p.next = new ListNode(_sum % 10);\n p = p.next;\n\n if (l1) l1 = l1.next;\n if (l2) l2 = l2.next;\n }\n\n if (carry > 0) {\n p.next = new ListNode(carry);\n }\n\n const result = dummy_head.next;\n return result;\n}\n\n```\n\n```ruby []\n\ndef add_two_numbers(l1, l2)\n dummy_head = ListNode.new(0)\n p = dummy_head\n q = dummy_head\n carry = 0\n\n while l1 || l2\n x = l1 ? l1.val : 0\n y = l2 ? l2.val : 0\n\n _sum = x + y + carry\n carry = _sum / 10\n\n p.next = ListNode.new(_sum % 10)\n p = p.next\n\n if l1\n l1 = l1.next\n end\n\n if l2\n l2 = l2.next\n end\n end\n\n if carry > 0\n p.next = ListNode.new(carry)\n end\n\n result = dummy_head.next\n return result\nend\n```\n---\n## \uD83D\uDCCA Analysis\n| Language | Runtime | Memory |\n|----------|---------|--------|\n| C++ | 24 ms | 71.5 MB |\n| Java | 2 ms | 39.8 MB |\n| Python | 68 ms | 14.3 MB |\n| C# | 116 ms | 26.3 MB |\n| JavaScript | 108 ms | 46.7 MB |\n\n---\n\n---\n\n# Consider UPVOTING\u2B06\uFE0F\n\n![image.png](https://assets.leetcode.com/users/images/853344be-bb84-422b-bdec-6ad5f07d0a7f_1696956449.7358863.png)\n\n\n# DROP YOUR SUGGESTIONS IN THE COMMENT\n\n## Keep Coding\uD83E\uDDD1\u200D\uD83D\uDCBB\n\n -- *MR.ROBOT SIGNING OFF*\n\n | 3 | You are given two **non-empty** linked lists representing two non-negative integers. The digits are stored in **reverse order**, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
**Example 1:**
**Input:** l1 = \[2,4,3\], l2 = \[5,6,4\]
**Output:** \[7,0,8\]
**Explanation:** 342 + 465 = 807.
**Example 2:**
**Input:** l1 = \[0\], l2 = \[0\]
**Output:** \[0\]
**Example 3:**
**Input:** l1 = \[9,9,9,9,9,9,9\], l2 = \[9,9,9,9\]
**Output:** \[8,9,9,9,0,0,0,1\]
**Constraints:**
* The number of nodes in each linked list is in the range `[1, 100]`.
* `0 <= Node.val <= 9`
* It is guaranteed that the list represents a number that does not have leading zeros. | null |
Easy way of suming for pyhton | add-two-numbers | 0 | 1 | # Intuition\n<!-- Transfer to int and then back to linked list -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\n# Definition for singly-linked list.\n# class ListNode:\n# def __init__(self, val=0, next=None):\n# self.val = val\n# self.next = next\nclass Solution:\n def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]:\n num1 = 0 \n num2 = 0\n count= 1\n while(l1):\n num1+=l1.val*count\n count = count*10\n l1=l1.next \n count = 1\n while(l2):\n num2+=l2.val*count\n count = count*10\n l2=l2.next \n result = num1+ num2\n finalh= ListNode(-1)\n helper = finalh\n if (result==0):\n return ListNode(0)\n while(result!=0):\n helper.next = ListNode(result%10)\n result = result//10\n helper = helper.next\n return finalh.next\n\n\n``` | 0 | You are given two **non-empty** linked lists representing two non-negative integers. The digits are stored in **reverse order**, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
**Example 1:**
**Input:** l1 = \[2,4,3\], l2 = \[5,6,4\]
**Output:** \[7,0,8\]
**Explanation:** 342 + 465 = 807.
**Example 2:**
**Input:** l1 = \[0\], l2 = \[0\]
**Output:** \[0\]
**Example 3:**
**Input:** l1 = \[9,9,9,9,9,9,9\], l2 = \[9,9,9,9\]
**Output:** \[8,9,9,9,0,0,0,1\]
**Constraints:**
* The number of nodes in each linked list is in the range `[1, 100]`.
* `0 <= Node.val <= 9`
* It is guaranteed that the list represents a number that does not have leading zeros. | null |
listNode, newNode | add-two-numbers | 0 | 1 | # Code\n```\nclass ListNode:\n def __init__(self, val=0, next=None):\n self.val = val\n self.next = next\nclass Solution:\n def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]:\n dummy = ListNode(0)\n curr = dummy\n carry = 0\n while l1 != None or l2 != None or carry != 0:\n l1val = l1.val if l1 != None else 0\n l2val = l2.val if l2 != None else 0\n whole_sum = l1val + l2val + carry\n carry = whole_sum // 10\n newNode = ListNode(whole_sum % 10)\n curr.next = newNode \n curr = curr.next\n l1 = l1.next if l1 != None else l1\n l2 = l2.next if l2 != None else l2\n \n return dummy.next\n\n``` | 0 | You are given two **non-empty** linked lists representing two non-negative integers. The digits are stored in **reverse order**, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
**Example 1:**
**Input:** l1 = \[2,4,3\], l2 = \[5,6,4\]
**Output:** \[7,0,8\]
**Explanation:** 342 + 465 = 807.
**Example 2:**
**Input:** l1 = \[0\], l2 = \[0\]
**Output:** \[0\]
**Example 3:**
**Input:** l1 = \[9,9,9,9,9,9,9\], l2 = \[9,9,9,9\]
**Output:** \[8,9,9,9,0,0,0,1\]
**Constraints:**
* The number of nodes in each linked list is in the range `[1, 100]`.
* `0 <= Node.val <= 9`
* It is guaranteed that the list represents a number that does not have leading zeros. | null |
Easy | Solution | Python |Linked List | add-two-numbers | 0 | 1 | # Code\n```\n# Definition for singly-linked list.\n# class ListNode:\n# def __init__(self, val=0, next=None):\n# self.val = val\n# self.next = next\nclass Solution:\n def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode:\n d = n = ListNode(0)\n num1 = num2 = ""\n while l1:\n num1 += str(l1.val)\n l1 = l1.next\n while l2:\n num2 += str(l2.val)\n l2 = l2.next\n res = str(int(num1[::-1]) + int(num2[::-1]))[::-1]\n for i in res:\n d.next = ListNode(i)\n d = d.next\n return n.next \n```\nDo upvote if you like the Solution :) | 59 | You are given two **non-empty** linked lists representing two non-negative integers. The digits are stored in **reverse order**, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
**Example 1:**
**Input:** l1 = \[2,4,3\], l2 = \[5,6,4\]
**Output:** \[7,0,8\]
**Explanation:** 342 + 465 = 807.
**Example 2:**
**Input:** l1 = \[0\], l2 = \[0\]
**Output:** \[0\]
**Example 3:**
**Input:** l1 = \[9,9,9,9,9,9,9\], l2 = \[9,9,9,9\]
**Output:** \[8,9,9,9,0,0,0,1\]
**Constraints:**
* The number of nodes in each linked list is in the range `[1, 100]`.
* `0 <= Node.val <= 9`
* It is guaranteed that the list represents a number that does not have leading zeros. | null |
100% Beats | Java | C++ | Python | Javascript | C# | PHP | add-two-numbers | 1 | 1 | \n### steps\n1. Initialize a dummy node and a current node to keep track of the result linked list.\n2. Initialize carry to 0.\n3. Traverse both input linked lists simultaneously.\n4. At each step, calculate the sum of the current nodes\' values along with the carry.\n5. Calculate the carry for the next iteration as sum / 10.\n6. Create a new node with the value sum % 10 and append it to the result list.\n7. Move to the next nodes in both input lists.\n8. Repeat steps 4-7 until you have processed all digits in both input lists.\n9. If there is still a carry left after the loop, create an additional node with the carry as its value and append it to the result list.\n10. Return the next node of the dummy node, which represents the head of the result linked list.\n\n\n``` java []\nclass Solution {\n public ListNode addTwoNumbers(ListNode l1, ListNode l2) {\n ListNode dummy = new ListNode(0); // Dummy node to simplify result list handling\n ListNode current = dummy; // Current node to build the result list\n int carry = 0; // Initialize carry to 0\n\n while (l1 != null || l2 != null) {\n int x = (l1 != null) ? l1.val : 0; // Get the current digit from l1 or set to 0 if null\n int y = (l2 != null) ? l2.val : 0; // Get the current digit from l2 or set to 0 if null\n\n int sum = x + y + carry; // Calculate the sum of digits and carry\n carry = sum / 10; // Calculate the carry for the next iteration\n\n // Create a new node with the value sum % 10 and append it to the result list\n current.next = new ListNode(sum % 10);\n current = current.next; // Move to the next node in the result list\n\n // Move to the next nodes in both input lists if they are not null\n if (l1 != null) l1 = l1.next;\n if (l2 != null) l2 = l2.next;\n }\n\n // If there is still a carry left after the loop, create an additional node for it\n if (carry > 0) {\n current.next = new ListNode(carry);\n }\n\n return dummy.next; // Return the next node of the dummy node, which is the head of the result list\n }\n}\n```\n``` C++ []\nclass Solution {\npublic:\n ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {\n ListNode* dummy_head = new ListNode(0); // Dummy head to simplify the code\n ListNode* current = dummy_head;\n int carry = 0;\n\n while (l1 || l2) {\n int x = (l1) ? l1->val : 0;\n int y = (l2) ? l2->val : 0;\n int sum = x + y + carry;\n\n carry = sum / 10;\n current->next = new ListNode(sum % 10);\n current = current->next;\n\n if (l1) l1 = l1->next;\n if (l2) l2 = l2->next;\n }\n\n if (carry > 0) {\n current->next = new ListNode(carry);\n }\n\n return dummy_head->next; // Return the actual result, not the dummy head.\n\n }\n};\n```\n``` Python []\n\ndef addTwoNumbers(l1, l2):\n dummy = ListNode()\n current = dummy\n p, q = l1, l2\n carry = 0\n \n while p or q:\n x = p.val if p else 0\n y = q.val if q else 0\n val = carry + x + y\n carry = val // 10\n current.next = ListNode(val % 10)\n current = current.next\n \n if p:\n p = p.next\n if q:\n q = q.next\n \n if carry > 0:\n current.next = ListNode(carry)\n \n return dummy.next\n\n```\n``` javascript []\nvar addTwoNumbers = function(l1, l2) {\n let dummyHead = new ListNode(0); // Create a dummy node to simplify the code.\n let current = dummyHead; // Initialize a current pointer to the dummy node.\n let carry = 0; // Initialize a variable to store the carry value.\n\n while (l1 || l2) {\n const x = l1 ? l1.val : 0;\n const y = l2 ? l2.val : 0;\n const sum = x + y + carry;\n\n carry = Math.floor(sum / 10); // Calculate the carry for the next iteration.\n current.next = new ListNode(sum % 10); // Create a new node with the current digit.\n\n current = current.next; // Move the current pointer to the next node.\n\n if (l1) l1 = l1.next;\n if (l2) l2 = l2.next;\n }\n\n // If there is a carry after processing all digits, add it as a new node.\n if (carry > 0) {\n current.next = new ListNode(carry);\n }\n\n return dummyHead.next; // Return the result, skipping the dummy node.\n}\n```\n\n``` C# []\npublic class Solution {\n public ListNode AddTwoNumbers(ListNode l1, ListNode l2) {\n ListNode dummyHead = new ListNode();\n ListNode current = dummyHead;\n int carry = 0;\n\n while (l1 != null || l2 != null)\n {\n int x = (l1 != null) ? l1.val : 0;\n int y = (l2 != null) ? l2.val : 0;\n\n int sum = x + y + carry;\n carry = sum / 10;\n\n current.next = new ListNode(sum % 10);\n current = current.next;\n\n if (l1 != null) l1 = l1.next;\n if (l2 != null) l2 = l2.next;\n }\n\n if (carry > 0)\n {\n current.next = new ListNode(carry);\n }\n\n return dummyHead.next; \n }\n}\n```\n\n``` PHP []\n\nfunction addTwoNumbers($l1, $l2) {\n $dummy = new ListNode(0);\n $current = $dummy;\n $carry = 0;\n \n while ($l1 !== null || $l2 !== null) {\n $x = ($l1 !== null) ? $l1->val : 0;\n $y = ($l2 !== null) ? $l2->val : 0;\n \n $sum = $x + $y + $carry;\n $carry = (int)($sum / 10);\n \n $current->next = new ListNode($sum % 10);\n $current = $current->next;\n \n if ($l1 !== null) $l1 = $l1->next;\n if ($l2 !== null) $l2 = $l2->next;\n }\n \n if ($carry > 0) {\n $current->next = new ListNode($carry);\n }\n \n return $dummy->next;\n}\n``` | 19 | You are given two **non-empty** linked lists representing two non-negative integers. The digits are stored in **reverse order**, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
**Example 1:**
**Input:** l1 = \[2,4,3\], l2 = \[5,6,4\]
**Output:** \[7,0,8\]
**Explanation:** 342 + 465 = 807.
**Example 2:**
**Input:** l1 = \[0\], l2 = \[0\]
**Output:** \[0\]
**Example 3:**
**Input:** l1 = \[9,9,9,9,9,9,9\], l2 = \[9,9,9,9\]
**Output:** \[8,9,9,9,0,0,0,1\]
**Constraints:**
* The number of nodes in each linked list is in the range `[1, 100]`.
* `0 <= Node.val <= 9`
* It is guaranteed that the list represents a number that does not have leading zeros. | null |
✅Python3 78ms memory efficient🔥🔥 | add-two-numbers | 0 | 1 | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n**Normal list traversal and adding numbers.**\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n- we used **yield** here because it\'s very memory efficient.\n- forward function used to get in-sequence value of linked list, we used yield because it\'s more memory efficient.\n- traverse linked list in given order, if one list is smaller than other than **pad 0 as num**.\n- add respective number with carry.\n- if computed is less or equal to 9 then carry is 0, **create link node** with $$value = val$$.\n- else $$carry = val // 10$$, and $$val = val - 10$$, create node for respective value.\n- at last if we have any carry left then create node with value carry else make last node\'s next as None(becaues this is end)\n- return root\n\n# Complexity\n- Time complexity: O(N)\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: O(N)\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nimport itertools as it\nclass Solution:\n def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]:\n def forward(curr = None):\n if curr:\n yield curr.val\n for i in forward(curr.next):\n yield i\n def add():\n root = ListNode(-1,None)\n ans = root\n straightL1 = forward(l1)\n straightL2 = forward(l2)\n carry = 0\n last = None\n for num1, num2 in it.zip_longest(straightL1, straightL2, fillvalue=0):\n val = carry+num1+num2\n if val <= 9:\n carry = 0\n ans.val = val\n ans.next = ListNode(0, None)\n last = ans\n ans = ans.next\n else:\n carry = val // 10\n val -= 10\n ans.val = val\n ans.next = ListNode(0, None)\n last = ans\n ans = ans.next\n last.next = None\n if carry:\n last.next = ListNode(carry, None)\n return root\n return add()\n```\n# Please like and comment below \uD83D\uDC4B\u2267\u25C9\u1D25\u25C9\u2266 | 3 | You are given two **non-empty** linked lists representing two non-negative integers. The digits are stored in **reverse order**, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
**Example 1:**
**Input:** l1 = \[2,4,3\], l2 = \[5,6,4\]
**Output:** \[7,0,8\]
**Explanation:** 342 + 465 = 807.
**Example 2:**
**Input:** l1 = \[0\], l2 = \[0\]
**Output:** \[0\]
**Example 3:**
**Input:** l1 = \[9,9,9,9,9,9,9\], l2 = \[9,9,9,9\]
**Output:** \[8,9,9,9,0,0,0,1\]
**Constraints:**
* The number of nodes in each linked list is in the range `[1, 100]`.
* `0 <= Node.val <= 9`
* It is guaranteed that the list represents a number that does not have leading zeros. | null |
Beginner | Simple | Python Solution 😁 | add-two-numbers | 0 | 1 | # *Intuition*\n<!-- Describe your first thoughts on how to solve this problem. -->\n- *We get numbers and add them.*\n# *Approach*\n<!-- Describe your approach to solving the problem. -->\n- *The first thing that comes to mind is that we must obtain the numbers from both lists so that we may utilise them for addition later.*\n- *Then we use that number to create a linked list (**reversed**).*\n- *and send its head node back.*\n# Complexity\n- *Time complexity: **O(N)***\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- *Space complexity: **O(N)***\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# *Code*\n### Python\n```\n# Definition for singly-linked list.\n# class ListNode:\n# def __init__(self, val=0, next=None):\n# self.val = val\n# self.next = next\nclass Solution:\n def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]:\n def get_num(head):\n num = 0\n p = 0\n trav = head\n while trav:\n num += trav.val * (10 ** p)\n p += 1\n trav = trav.next\n return num\n\n\n def sum(h1, h2) -> ListNode:\n n1 = get_num(h1)\n n2 = get_num(h2)\n s = str(n1 + n2)\n\n head = ListNode(-1)\n trav = head\n for num in s[::-1]:\n trav.next = ListNode(int(num))\n trav = trav.next\n return head.next\n\n return sum(l1,l2)\n``` | 2 | You are given two **non-empty** linked lists representing two non-negative integers. The digits are stored in **reverse order**, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
**Example 1:**
**Input:** l1 = \[2,4,3\], l2 = \[5,6,4\]
**Output:** \[7,0,8\]
**Explanation:** 342 + 465 = 807.
**Example 2:**
**Input:** l1 = \[0\], l2 = \[0\]
**Output:** \[0\]
**Example 3:**
**Input:** l1 = \[9,9,9,9,9,9,9\], l2 = \[9,9,9,9\]
**Output:** \[8,9,9,9,0,0,0,1\]
**Constraints:**
* The number of nodes in each linked list is in the range `[1, 100]`.
* `0 <= Node.val <= 9`
* It is guaranteed that the list represents a number that does not have leading zeros. | null |
Easy step by step solution | add-two-numbers | 0 | 1 | \n# Approach\n1. Firstly, get all the elements from both LL\n2. Reverse those numbers\n3. Convert them from array to two numbers\n4. Convert the sum of those numbers to array of digits\n5. Create new LL from that array of digits\n\nHope you find it useful and if so, please upvote, cause it`s my first solution\n\n# Complexity\n- Space complexity:\nO(n)\n\n# Code\n```\nclass Solution:\n def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) :\n curr = head = ListNode(0)\n nums1 = []\n nums2 = []\n number1 = 0\n number2 = 0\n while l1:\n nums1.append(l1.val)\n l1 = l1.next\n while l2:\n nums2.append(l2.val)\n l2 = l2.next\n nums1.reverse()\n nums2.reverse()\n for i in range(len(nums1)):\n if i == 0: number1 = nums1[i]\n else: number1 = number1 * 10 + nums1[i]\n for i in range(len(nums2)):\n if i == 0: number2 = nums2[i]\n else: number2 = number2 * 10 + nums2[i]\n sum_nums = [int(char) for char in str(number1 + number2)]\n sum_nums.reverse()\n for element in sum_nums:\n curr.next = ListNode(element)\n curr = curr.next\n curr.next = None\n return head.next\n``` | 2 | You are given two **non-empty** linked lists representing two non-negative integers. The digits are stored in **reverse order**, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
**Example 1:**
**Input:** l1 = \[2,4,3\], l2 = \[5,6,4\]
**Output:** \[7,0,8\]
**Explanation:** 342 + 465 = 807.
**Example 2:**
**Input:** l1 = \[0\], l2 = \[0\]
**Output:** \[0\]
**Example 3:**
**Input:** l1 = \[9,9,9,9,9,9,9\], l2 = \[9,9,9,9\]
**Output:** \[8,9,9,9,0,0,0,1\]
**Constraints:**
* The number of nodes in each linked list is in the range `[1, 100]`.
* `0 <= Node.val <= 9`
* It is guaranteed that the list represents a number that does not have leading zeros. | null |
Represented as linked lists | add-two-numbers | 0 | 1 | # Intuition\nwe need to perform addition similarly to how we add numbers manually, taking care of carrying values when the sum exceeds 9\n\n# Approach\n1. Initialize a dummy node and a pointer current to keep track of the current node in the result linked list.\n\n2. Start iterating through both input linked lists (l1 and l2) from the head while at least one of them has nodes.\n\n3. At each step, calculate the sum of the current nodes in l1 and l2, along with any carry from the previous step.\n\n4. Create a new node with the value as the sum modulo 10 and update the carry for the next step.\n\n5. Move the current pointer to the newly created node.\n\n6. If there are more nodes in l1 or l2, move to the next node in the respective list.\n\n7. After the loop, if there\'s a remaining carry, create a new node with that value.\n\n8. Return the result linked list starting from the second node (the first node is the dummy node).\n\n# Complexity\n- Time complexity:\n\nthe algorithm has a time complexity of O(max(N, M)), where N and M are the lengths of the input linked lists l1 and l2. We iterate through both lists once, so the time complexity is linear with respect to the length of the longer list\n\n- Space complexity:\n\nThe space complexity is O(max(N, M)), which is the space required for the output linked list. The additional space is used for the dummy node, the result linked list, and the carry value. It\'s linear with respect to the length of the longer list.\n\n# Code\n```\n# Definition for singly-linked list.\n# class ListNode:\n# def __init__(self, val=0, next=None):\n# self.val = val\n# self.next = next\n\nclass Solution:\n def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]:\n dummy = ListNode(0)\n current = dummy\n carry = 0\n\n while l1 or l2:\n x = l1.val if l1 else 0\n y = l2.val if l2 else 0\n _sum = x + y + carry\n carry = _sum // 10\n\n current.next = ListNode(_sum % 10)\n current = current.next\n\n if l1:\n l1 = l1.next\n if l2:\n l2 = l2.next\n\n if carry > 0:\n current.next = ListNode(carry)\n\n return dummy.next\n\n``` | 2 | You are given two **non-empty** linked lists representing two non-negative integers. The digits are stored in **reverse order**, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
**Example 1:**
**Input:** l1 = \[2,4,3\], l2 = \[5,6,4\]
**Output:** \[7,0,8\]
**Explanation:** 342 + 465 = 807.
**Example 2:**
**Input:** l1 = \[0\], l2 = \[0\]
**Output:** \[0\]
**Example 3:**
**Input:** l1 = \[9,9,9,9,9,9,9\], l2 = \[9,9,9,9\]
**Output:** \[8,9,9,9,0,0,0,1\]
**Constraints:**
* The number of nodes in each linked list is in the range `[1, 100]`.
* `0 <= Node.val <= 9`
* It is guaranteed that the list represents a number that does not have leading zeros. | null |
✅3 Method's || C++ || JAVA || PYTHON || Beginner Friendly🔥🔥🔥 | longest-substring-without-repeating-characters | 1 | 1 | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nThe intuition behind the 3 solutions is to iteratively find the longest substring without repeating characters by maintaining a sliding window approach. We use two pointers (`left` and `right`) to represent the boundaries of the current substring. As we iterate through the string, we update the pointers and adjust the window to accommodate new unique characters and eliminate repeating characters.\n\n# Approach 1 - Set\n<!-- Describe your approach to solving the problem. -->\n\n1. We use a set (`charSet`) to keep track of unique characters in the current substring.\n2. We maintain two pointers, `left` and `right`, to represent the boundaries of the current substring.\n3. The `maxLength` variable keeps track of the length of the longest substring encountered so far.\n4. We iterate through the string using the `right` pointer.\n5. If the current character is not in the set (`charSet`), it means we have a new unique character.\n6. We insert the character into the set and update the `maxLength` if necessary.\n7. If the character is already present in the set, it indicates a repeating character within the current substring.\n8. In this case, we move the `left` pointer forward, removing characters from the set until the repeating character is no longer present.\n9. We insert the current character into the set and continue the iteration.\n10. Finally, we return the `maxLength` as the length of the longest substring without repeating characters.\n\n# Code\n```C++ []\nclass Solution {\npublic:\n int lengthOfLongestSubstring(string s) {\n int n = s.length();\n int maxLength = 0;\n unordered_set<char> charSet;\n int left = 0;\n \n for (int right = 0; right < n; right++) {\n if (charSet.count(s[right]) == 0) {\n charSet.insert(s[right]);\n maxLength = max(maxLength, right - left + 1);\n } else {\n while (charSet.count(s[right])) {\n charSet.erase(s[left]);\n left++;\n }\n charSet.insert(s[right]);\n }\n }\n \n return maxLength;\n }\n};\n```\n```Java []\nclass Solution {\n public int lengthOfLongestSubstring(String s) {\n int n = s.length();\n int maxLength = 0;\n Set<Character> charSet = new HashSet<>();\n int left = 0;\n \n for (int right = 0; right < n; right++) {\n if (!charSet.contains(s.charAt(right))) {\n charSet.add(s.charAt(right));\n maxLength = Math.max(maxLength, right - left + 1);\n } else {\n while (charSet.contains(s.charAt(right))) {\n charSet.remove(s.charAt(left));\n left++;\n }\n charSet.add(s.charAt(right));\n }\n }\n \n return maxLength;\n }\n}\n\n```\n```Python3 []\nclass Solution:\n def lengthOfLongestSubstring(self, s: str) -> int:\n n = len(s)\n maxLength = 0\n charSet = set()\n left = 0\n \n for right in range(n):\n if s[right] not in charSet:\n charSet.add(s[right])\n maxLength = max(maxLength, right - left + 1)\n else:\n while s[right] in charSet:\n charSet.remove(s[left])\n left += 1\n charSet.add(s[right])\n \n return maxLength\n\n```\n\n# Approach 2 - Unordered Map\n1. We improve upon the first solution by using an unordered map (`charMap`) instead of a set.\n2. The map stores characters as keys and their indices as values.\n3. We still maintain the `left` and `right` pointers and the `maxLength` variable.\n4. We iterate through the string using the `right` pointer.\n5. If the current character is not in the map or its index is less than `left`, it means it is a new unique character.\n6 We update the `charMap` with the character\'s index and update the `maxLength` if necessary.\n7. If the character is repeating within the current substring, we move the `left` pointer to the next position after the last occurrence of the character.\n8. We update the index of the current character in the `charMap` and continue the iteration.\n9. At the end, we return the `maxLength` as the length of the longest substring without repeating characters.\n\n# Code\n```C++ []\nclass Solution {\npublic:\n int lengthOfLongestSubstring(string s) {\n int n = s.length();\n int maxLength = 0;\n unordered_map<char, int> charMap;\n int left = 0;\n \n for (int right = 0; right < n; right++) {\n if (charMap.count(s[right]) == 0 || charMap[s[right]] < left) {\n charMap[s[right]] = right;\n maxLength = max(maxLength, right - left + 1);\n } else {\n left = charMap[s[right]] + 1;\n charMap[s[right]] = right;\n }\n }\n \n return maxLength;\n }\n};\n```\n```Java []\nclass Solution {\n public int lengthOfLongestSubstring(String s) {\n int n = s.length();\n int maxLength = 0;\n Map<Character, Integer> charMap = new HashMap<>();\n int left = 0;\n \n for (int right = 0; right < n; right++) {\n if (!charMap.containsKey(s.charAt(right)) || charMap.get(s.charAt(right)) < left) {\n charMap.put(s.charAt(right), right);\n maxLength = Math.max(maxLength, right - left + 1);\n } else {\n left = charMap.get(s.charAt(right)) + 1;\n charMap.put(s.charAt(right), right);\n }\n }\n \n return maxLength;\n }\n}\n\n```\n```Python3 []\nclass Solution:\n def lengthOfLongestSubstring(self, s: str) -> int:\n n = len(s)\n maxLength = 0\n charMap = {}\n left = 0\n \n for right in range(n):\n if s[right] not in charMap or charMap[s[right]] < left:\n charMap[s[right]] = right\n maxLength = max(maxLength, right - left + 1)\n else:\n left = charMap[s[right]] + 1\n charMap[s[right]] = right\n \n return maxLength\n\n```\n\n# Approach 3 - Integer Array\n1. This solution uses an integer array `charIndex` to store the indices of characters.\n2. We eliminate the need for an unordered map by utilizing the array.\n3. The `maxLength`, `left`, and `right` pointers are still present.\n4. We iterate through the string using the `right` pointer.\n5. We check if the current character has occurred within the current substring by comparing its index in `charIndex` with `left`.\n6. If the character has occurred, we move the `left` pointer to the next position after the last occurrence of the character.\n7. We update the index of the current character in `charIndex`.\n8. At each step, we update the `maxLength` by calculating the length of the current substring.\n9. We continue the iteration until reaching the end of the string.\n10. Finally, we return the `maxLength` as the length of the longest substring without repeating characters.\n\n# Code\n```C++ []\nclass Solution {\npublic:\n int lengthOfLongestSubstring(string s) {\n int n = s.length();\n int maxLength = 0;\n vector<int> charIndex(128, -1);\n int left = 0;\n \n for (int right = 0; right < n; right++) {\n if (charIndex[s[right]] >= left) {\n left = charIndex[s[right]] + 1;\n }\n charIndex[s[right]] = right;\n maxLength = max(maxLength, right - left + 1);\n }\n \n return maxLength;\n }\n};\n```\n```Java []\nclass Solution {\n public int lengthOfLongestSubstring(String s) {\n int n = s.length();\n int maxLength = 0;\n int[] charIndex = new int[128];\n Arrays.fill(charIndex, -1);\n int left = 0;\n \n for (int right = 0; right < n; right++) {\n if (charIndex[s.charAt(right)] >= left) {\n left = charIndex[s.charAt(right)] + 1;\n }\n charIndex[s.charAt(right)] = right;\n maxLength = Math.max(maxLength, right - left + 1);\n }\n \n return maxLength;\n }\n}\n\n```\n```Python3 []\nclass Solution:\n def lengthOfLongestSubstring(self, s: str) -> int:\n n = len(s)\n maxLength = 0\n charIndex = [-1] * 128\n left = 0\n \n for right in range(n):\n if charIndex[ord(s[right])] >= left:\n left = charIndex[ord(s[right])] + 1\n charIndex[ord(s[right])] = right\n maxLength = max(maxLength, right - left + 1)\n \n return maxLength\n\n```\n\n![CUTE_CAT.png](https://assets.leetcode.com/users/images/3831fd95-3bb1-44d1-bc1a-06b3b4317b56_1687028369.5286949.png)\n**If you found my solution helpful, I would greatly appreciate your upvote, as it would motivate me to continue sharing more solutions.**\n\n\n | 818 | Given a string `s`, find the length of the **longest** **substring** without repeating characters.
**Example 1:**
**Input:** s = "abcabcbb "
**Output:** 3
**Explanation:** The answer is "abc ", with the length of 3.
**Example 2:**
**Input:** s = "bbbbb "
**Output:** 1
**Explanation:** The answer is "b ", with the length of 1.
**Example 3:**
**Input:** s = "pwwkew "
**Output:** 3
**Explanation:** The answer is "wke ", with the length of 3.
Notice that the answer must be a substring, "pwke " is a subsequence and not a substring.
**Constraints:**
* `0 <= s.length <= 5 * 104`
* `s` consists of English letters, digits, symbols and spaces. | null |
[VIDEO] Step-by-Step Visualization of Sliding Window | longest-substring-without-repeating-characters | 0 | 1 | https://youtu.be/pY2dYa1m2VM\n\nA brute force solution would first require finding every possible substring, which would run in O(n<sup>2</sup>) time. We\'re not done yet though, because we now have to check every substring for duplicate characters by iterating through every substring. Each check for duplicate characters runs in O(n) time, and we need to do that for every substring generated (which ran in O(n<sup>2</sup>) time), so the brute force approach ends up running in O(n<sup>3</sup>) time.\n\nInstead, we can reduce this to O(n) time by using a sliding window approach and eliminating unnecessary computations. We use two pointers, `l` and `r`, to denote where the substring starts and ends, and a dictionary called `seen` to keep track of the index of each character encountered. Then, we move the right pointer one character at a time to the right to expand our substring.\n\nAt each iteration, we check for two things.\n1. Have we seen the newly added character (at index `r`) before? If we haven\'t, then this is a brand new character and we can just add it to the substring and extend the length\n2. If we have seen it before, is its last known position greater than or equal to the left index? If it is, then that means it\'s repeated somewhere in the substring. If not, then that means it\'s <i>outside</i> of the substring, so we can just add it to the substring and extend the length\n\nSo if both conditions are true, the new character is repeated and we have a problem. We can get rid of the repeated character by moving up the left pointer to be one index past the last recorded index in `seen`. Then, we just keep moving up the right pointer until it reaches the end of the string. Since we only have to loop through the string once, and since hash table lookups run in constant time, this algorithm ends up running in O(n) time.\n\nFor an intuitive proof of why this works and why we don\'t need to check all the other substrings while moving up the left pointer, please see the video - it\'s a bit difficult to explain without a visualization and a concrete example. But basically, all the other substrings will either still contain a repeated character or will be shorter than the last valid substring encountered, so they can be safely ignored.\n\n\n# Code\n```\nclass Solution(object):\n def lengthOfLongestSubstring(self, s):\n seen = {}\n l = 0\n length = 0\n for r in range(len(s)):\n char = s[r]\n if char in seen and seen[char] >= l:\n l = seen[char] + 1\n else:\n length = max(length, r - l + 1)\n seen[char] = r\n\n return length\n``` | 6 | Given a string `s`, find the length of the **longest** **substring** without repeating characters.
**Example 1:**
**Input:** s = "abcabcbb "
**Output:** 3
**Explanation:** The answer is "abc ", with the length of 3.
**Example 2:**
**Input:** s = "bbbbb "
**Output:** 1
**Explanation:** The answer is "b ", with the length of 1.
**Example 3:**
**Input:** s = "pwwkew "
**Output:** 3
**Explanation:** The answer is "wke ", with the length of 3.
Notice that the answer must be a substring, "pwke " is a subsequence and not a substring.
**Constraints:**
* `0 <= s.length <= 5 * 104`
* `s` consists of English letters, digits, symbols and spaces. | null |
[Python3]: sliding window O(N) with explanation | longest-substring-without-repeating-characters | 0 | 1 | **Sliding window**\nWe use a dictionary to store the character as the key, the last appear index has been seen so far as value.\nseen[charactor] = index\n\n move the pointer when you met a repeated character in your window.\n\n\t \n```\nindext 0 1 2 3 4 5 6 7\nstring a c b d b a c d\n ^ ^\n | |\n\t\tleft right\n\t\tseen = {a : 0, c : 1, b : 2, d: 3} \n\t\t# case 1: seen[b] = 2, current window is s[0:4] , \n\t\t# b is inside current window, seen[b] = 2 > left = 0. Move left pointer to seen[b] + 1 = 3\n\t\tseen = {a : 0, c : 1, b : 4, d: 3} \nindext 0 1 2 3 4 5 6 7\nstring a c b d b a c d\n\t\t\t\t\t\t ^ ^\n\t\t\t\t\t | |\n\t\t\t\t left right\t\t\nindext 0 1 2 3 4 5 6 7\nstring a c b d b a c d\n\t\t\t\t\t ^ ^\n\t\t\t\t\t | |\n\t\t\t\t left right\t\t\n\t\t# case 2: seen[a] = 0,which means a not in current window s[3:5] , since seen[a] = 0 < left = 3 \n\t\t# we can keep moving right pointer.\n```\n\n```\nclass Solution:\n def lengthOfLongestSubstring(self, s: str) -> int:\n seen = {}\n l = 0\n output = 0\n for r in range(len(s)):\n """\n If s[r] not in seen, we can keep increasing the window size by moving right pointer\n """\n if s[r] not in seen:\n output = max(output,r-l+1)\n """\n There are two cases if s[r] in seen:\n case1: s[r] is inside the current window, we need to change the window by moving left pointer to seen[s[r]] + 1.\n case2: s[r] is not inside the current window, we can keep increase the window\n """\n else:\n if seen[s[r]] < l:\n output = max(output,r-l+1)\n else:\n l = seen[s[r]] + 1\n seen[s[r]] = r\n return output\n```\n* Time complexity :O(n). \n\tn is the length of the input string.\n\tIt will iterate n times to get the result.\n\n* Space complexity: O(m)\n\tm is the number of unique characters of the input. \n\tWe need a dictionary to store unique characters.\n\n | 819 | Given a string `s`, find the length of the **longest** **substring** without repeating characters.
**Example 1:**
**Input:** s = "abcabcbb "
**Output:** 3
**Explanation:** The answer is "abc ", with the length of 3.
**Example 2:**
**Input:** s = "bbbbb "
**Output:** 1
**Explanation:** The answer is "b ", with the length of 1.
**Example 3:**
**Input:** s = "pwwkew "
**Output:** 3
**Explanation:** The answer is "wke ", with the length of 3.
Notice that the answer must be a substring, "pwke " is a subsequence and not a substring.
**Constraints:**
* `0 <= s.length <= 5 * 104`
* `s` consists of English letters, digits, symbols and spaces. | null |
👾C#,Java,Python3, JavaScript Solutions (easy) | longest-substring-without-repeating-characters | 1 | 1 | See Code and Explanation : **\u2B50[https://zyrastory.com/en/coding-en/leetcode-en/leetcode-3-longest-substring-without-repeating-characters-solution-and-explanation-en/](https://zyrastory.com/en/coding-en/leetcode-en/leetcode-3-longest-substring-without-repeating-characters-solution-and-explanation-en/)\u2B50**\n\n**Examples : C# - HashSet**\n```\npublic class Solution {\n public int LengthOfLongestSubstring(string s) {\n \n if(string.IsNullOrEmpty(s))\n {\n return 0;\n }\n\n HashSet<char> hSet = new HashSet<char>();\n int max = 0;\n int i = 0;\n int j = 0;\n \n while(i<s.Length)\n {\n if(!hSet.Contains(s[i]))\n {\n hSet.Add(s[i]);\n i++;\n \n }\n else\n {\n max = Math.Max(max,hSet.Count);\n hSet.Remove(s[j]);\n j++;\n }\n }\n max = Math.Max(max,hSet.Count);\n return max;\n \n }\n}\n```\n\n**Examples : C# - Dictionary**\n```\npublic class Solution {\n public int LengthOfLongestSubstring(string s) {\n Dictionary<char,int> dict = new Dictionary<char,int>();\n int max = 0;\n \n for (int i = 0;i < s.Length;i++)\n {\n char c = s[i];\n if (!dict.ContainsKey(c))\n {\n dict.Add(c, i);\n max = Math.Max(dict.Count, max);\n }\n else\n {\n i = dict[c] ;\n dict.Clear();\n }\n }\n return max; \n }\n}\n```\n\n\nIf you got any problem about the explanation or you need other programming language solution, please feel free to leave your comment.\n\n\uD83E\uDDE1See more problems solutions - **[Zyrastory - LeetCode Solution](https://zyrastory.com/en/category/coding-en/leetcode-en/)**\n\nThanks! | 7 | Given a string `s`, find the length of the **longest** **substring** without repeating characters.
**Example 1:**
**Input:** s = "abcabcbb "
**Output:** 3
**Explanation:** The answer is "abc ", with the length of 3.
**Example 2:**
**Input:** s = "bbbbb "
**Output:** 1
**Explanation:** The answer is "b ", with the length of 1.
**Example 3:**
**Input:** s = "pwwkew "
**Output:** 3
**Explanation:** The answer is "wke ", with the length of 3.
Notice that the answer must be a substring, "pwke " is a subsequence and not a substring.
**Constraints:**
* `0 <= s.length <= 5 * 104`
* `s` consists of English letters, digits, symbols and spaces. | null |
#Python(🐍) Easy solution O(n) | longest-substring-without-repeating-characters | 0 | 1 | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution:\n def lengthOfLongestSubstring(self, s: str) -> int:\n len_sub=[]\n prev=""\n cnt=0\n i=0\n while i <len(s):\n j=i\n cnt=0\n while(j<len(s) and (s[j] not in prev)):\n prev=prev+s[j]\n cnt+=1\n j+=1\n prev=""\n i+=1\n len_sub.append(cnt)\n print(len_sub)\n if(len_sub==[]):\n return 0\n\n return max(len_sub)\n \n\n``` | 1 | Given a string `s`, find the length of the **longest** **substring** without repeating characters.
**Example 1:**
**Input:** s = "abcabcbb "
**Output:** 3
**Explanation:** The answer is "abc ", with the length of 3.
**Example 2:**
**Input:** s = "bbbbb "
**Output:** 1
**Explanation:** The answer is "b ", with the length of 1.
**Example 3:**
**Input:** s = "pwwkew "
**Output:** 3
**Explanation:** The answer is "wke ", with the length of 3.
Notice that the answer must be a substring, "pwke " is a subsequence and not a substring.
**Constraints:**
* `0 <= s.length <= 5 * 104`
* `s` consists of English letters, digits, symbols and spaces. | null |
Simple Python3 Solution using Sliding window || Beats 99% || 💻🧑💻🤖 | longest-substring-without-repeating-characters | 0 | 1 | \n\n# Code\n```\nclass Solution:\n def lengthOfLongestSubstring(self, s: str) -> int:\n l=len(s)\n if l==0:\n return 0\n dicts={}\n max_len=0\n start=0\n for i in range(l):\n if s[i] in dicts and start<=dicts[s[i]]:\n start = dicts[s[i]]+1\n else:\n max_len=max(max_len,i-start+1)\n dicts[s[i]]=i\n return max_len\n \n```\n![7abc56.jpg](https://assets.leetcode.com/users/images/b0e5a9a2-a2a2-452d-9a1b-33d9fbab7296_1694192336.7716062.jpeg)\n | 25 | Given a string `s`, find the length of the **longest** **substring** without repeating characters.
**Example 1:**
**Input:** s = "abcabcbb "
**Output:** 3
**Explanation:** The answer is "abc ", with the length of 3.
**Example 2:**
**Input:** s = "bbbbb "
**Output:** 1
**Explanation:** The answer is "b ", with the length of 1.
**Example 3:**
**Input:** s = "pwwkew "
**Output:** 3
**Explanation:** The answer is "wke ", with the length of 3.
Notice that the answer must be a substring, "pwke " is a subsequence and not a substring.
**Constraints:**
* `0 <= s.length <= 5 * 104`
* `s` consists of English letters, digits, symbols and spaces. | null |
Simple Explanation | Concise | Thinking Process & Example | longest-substring-without-repeating-characters | 0 | 1 | Lets start with the following example: \n\n**Assume you had no repeating characters** (In below example, just look at *first three* characters)\n\nWe take two pointers, `l` and `r`, both starting at `0`. At every iteration, we update the longest string with non-repeating characters found = `r-l+1` and just keep a note of which character we see at which index\n\n\n<img src="https://assets.leetcode.com/users/images/3e7b9848-1d57-42ed-9629-59f14cfcce89_1595114117.3901849.png" width=400/>\n\n\n```python\n def lengthOfLongestSubstringSimpler(self, s):\n seen = {}\n left, right = 0, 0\n longest = 1\n while right < len(s):\n longest = max(longest, right - left + 1)\n seen[s[right]] = right\n right += 1\n return longest\n```\n\nAfter 3 iterations, if you were keeping a map of when you last saw the character, you\'d have something like this:\n\n<img src="https://assets.leetcode.com/users/images/2f60312a-d377-4786-9449-4a95210f72e2_1595114189.5949714.png" width=300/>\n\nat this point, `longest = r-l+1 = 2 - 0 + 1 = 3`\n\nNow, lets face it - our string _does_ have repeating characters. We look at index 3, we\'re realizing we\'ve seen `a` before. So we now, we can\'t just calculate the value of `longest` like we were doing before. We need to make sure our left pointer, or `l`, is at least past the index where we last saw `a` , thus - we move `l ` to ` seen[right]+1`. We also update our map with last seen of `a` to `3`\n\n<img src="https://assets.leetcode.com/users/images/b7aaad14-993b-47e9-af01-441bbc5dfe20_1595114261.38747.png" width=300/>\n\nAnd this interplay goes on\n\n<img src="https://assets.leetcode.com/users/images/a22de24e-9e66-4e21-ab33-2ac06ce1d0cb_1595114354.4211376.png" width=300/>\n\n\n```python\n def lengthOfLongestSubstring(self, s):\n """\n :type s: str\n :rtype: int \n """\n if len(s) == 0:\n return 0\n seen = {}\n left, right = 0, 0\n longest = 1\n while right < len(s):\n if s[right] in seen:\n left = seen[s[right]]+1\n longest = max(longest, right - left + 1)\n seen[s[right]] = right\n right += 1\n return longest\n```\n\nLife was good, until this test case came into our lives:\n`abba`\n\n<img src="https://assets.leetcode.com/users/images/cce6e442-6d18-4971-bcf2-d2c59ea11a51_1595115276.967406.png" width=200/>\n\nAnd we realised, after 4 iterations, our left pointer was to be moved `seen[s[right]]+1 = seen[a] + 1 = 1` - wait what, left was to move back ? That doesn\'t sound correct - that\'d give us longest to be 3 (bba) which is NOT CORRECT\n\nThus, we need to ensure that `l` always goes to the right of it, or just stays at its position\n\nIn other words;\n\n```python\nclass Solution(object):\n def lengthOfLongestSubstring(self, s):\n """\n :type s: str\n :rtype: int abcabcbb\n """\n if len(s) == 0:\n return 0\n seen = {}\n left, right = 0, 0\n longest = 1\n while right < len(s):\n if s[right] in seen:\n left = max(left,seen[s[right]]+1)\n longest = max(longest, right - left + 1)\n seen[s[right]] = right\n right += 1\n print(left, right, longest)\n return longest\n```\n\nThanks, and don\'t forget to upvote if it helped you !\n\n\n\n**BONUS** Trying to be a strong Java Developer ? Checkout this [awesome hands-on series](https://abhinandandubey.github.io/posts/tags/Advanced-Java-Series) with illustrations! \n | 348 | Given a string `s`, find the length of the **longest** **substring** without repeating characters.
**Example 1:**
**Input:** s = "abcabcbb "
**Output:** 3
**Explanation:** The answer is "abc ", with the length of 3.
**Example 2:**
**Input:** s = "bbbbb "
**Output:** 1
**Explanation:** The answer is "b ", with the length of 1.
**Example 3:**
**Input:** s = "pwwkew "
**Output:** 3
**Explanation:** The answer is "wke ", with the length of 3.
Notice that the answer must be a substring, "pwke " is a subsequence and not a substring.
**Constraints:**
* `0 <= s.length <= 5 * 104`
* `s` consists of English letters, digits, symbols and spaces. | null |
🔥🔥🔥 python3 Easy ( Sliding window Technique )🔥🔥🔥 | longest-substring-without-repeating-characters | 0 | 1 | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution:\n def lengthOfLongestSubstring(self, s: str) -> int:\n start=0\n count=0\n for end in range(1,len(s)+1):\n if len(set(s[start:end]))==len(s[start:end]):\n if (end-start+1)>count:\n count=len(s[start:end])\n else:\n start+=1\n return(count)\n\n``` | 9 | Given a string `s`, find the length of the **longest** **substring** without repeating characters.
**Example 1:**
**Input:** s = "abcabcbb "
**Output:** 3
**Explanation:** The answer is "abc ", with the length of 3.
**Example 2:**
**Input:** s = "bbbbb "
**Output:** 1
**Explanation:** The answer is "b ", with the length of 1.
**Example 3:**
**Input:** s = "pwwkew "
**Output:** 3
**Explanation:** The answer is "wke ", with the length of 3.
Notice that the answer must be a substring, "pwke " is a subsequence and not a substring.
**Constraints:**
* `0 <= s.length <= 5 * 104`
* `s` consists of English letters, digits, symbols and spaces. | null |
beats 99.72% on time and 88.23% on space | longest-substring-without-repeating-characters | 0 | 1 | # Approach\n\nUse a two-pointer approach and maintain a set of unique characters between the two pointers. iterate through string, checking if the next char is unique or not. If it\'s unique, add it to unique chars and advance the leading index. Otherwise, advance the trailing index until the unique chars set is exclusively unique chars. Either way, maintain uniqueChars set to correctly represent the chars between leading and trailing indices. \n\n# Complexity\n- Time complexity: $$O(n)$$\n\n- Space complexity: $$O(n)$$\n\n![Screenshot 2023-10-20 111048.png](https://assets.leetcode.com/users/images/fb5bc4c0-af28-44af-9a29-94bd8b66f31a_1697825461.3826287.png)\n\n# Code\n```\nclass Solution:\n def lengthOfLongestSubstring(self, s: str) -> int:\n # two pointer solution and a set TC O(n), SC O(n)\n # if len(s) is 0 or 1, return it\n if len(s) < 2:\n return len(s)\n\n # init the 2 pointers and keep track of a set of unqiue chars in between [trailingI, leadingI)\n\n trailingI, leadingI = len(s) - 1, len(s) - 2\n uniqueChars = {s[len(s) - 1]}\n result = setSize = 1\n\n while leadingI > -1:\n newChar = s[leadingI]\n if newChar in uniqueChars:\n # advance leftI until it\'s at the previous instance of newChar\n while (s[trailingI] != newChar):\n uniqueChars.remove(s[trailingI])\n setSize -= 1\n trailingI -= 1\n \n # advance both indices\n trailingI -= 1\n leadingI -= 1\n\n else:\n # this char is unique, add it to the set, check the new set size, and advance leadingI\n uniqueChars.add(newChar)\n setSize += 1\n result = max(result, setSize)\n leadingI -= 1\n\n return result\n\n # if there is time...\n # there is a solution to do this in TC O(n), SC O(1) by removing elements from s while we go (destroys s)\n\n # modify algo to go right to left\n # whenever we move rightI (trailingI), delete the elements behind it\n\n``` | 0 | Given a string `s`, find the length of the **longest** **substring** without repeating characters.
**Example 1:**
**Input:** s = "abcabcbb "
**Output:** 3
**Explanation:** The answer is "abc ", with the length of 3.
**Example 2:**
**Input:** s = "bbbbb "
**Output:** 1
**Explanation:** The answer is "b ", with the length of 1.
**Example 3:**
**Input:** s = "pwwkew "
**Output:** 3
**Explanation:** The answer is "wke ", with the length of 3.
Notice that the answer must be a substring, "pwke " is a subsequence and not a substring.
**Constraints:**
* `0 <= s.length <= 5 * 104`
* `s` consists of English letters, digits, symbols and spaces. | null |
Beats 98.7%✅ | O( O(n^2 )✅ | Python (Step by step explanation) | longest-substring-without-repeating-characters | 0 | 1 | # Intuition\nThe problem requires finding the length of the longest substring without repeating characters in a given string. We can approach this by using a sliding window technique to keep track of the current substring without repeating characters and update the maximum length found so far.\n\n# Approach\n1. Initialize two empty strings, `temp` and `ans`, to store the current substring and the longest substring found.\n2. Iterate through each character `i` in the input string `s`.\n3. If `i` is not in the `temp` substring, append it to `temp` to extend the current substring.\n4. If `i` is already in `temp`, it means a repeating character is found. \n - Find the index of the first occurrence of `i` in `temp`.\n - Update `ans` with the longer of `temp` and the previously stored `ans`.\n - Adjust `temp` by removing characters from the beginning up to and including the first occurrence of `i` and then append `i`.\n5. After processing all characters in the input string, check one last time to update `ans` with the longest substring if it ends at the end of the input string.\n6. Return the length of the longest substring found, which is stored in `ans`.\n\n# Complexity\n- Time complexity: O(n^2), where n is the length of the input string `s`. We iterate through the string once.\n- Space complexity: O(min(n, m)), where m is the size of the character set. In the worst case, the entire string is unique (no repeating characters), and both `temp` and `ans` can have a maximum size of n. In practice, space complexity may be smaller depending on the input.\n\n\n# Code\n```\nclass Solution:\n def lengthOfLongestSubstring(self, s: str) -> int:\n temp =""\n ans = ""\n for i in s:\n if i not in temp:\n temp += i\n else:\n ind = temp.index(i)\n ans = temp if len(temp)>len(ans) else ans\n temp = temp[ind + 1:]\n temp += i\n ans = temp if len(temp) > len(ans) else ans \n\n return len(ans) \n \n```\n\n# Please upvote the solution if you understood it.\n![1_3vhNKl1AW3wdbkTshO9ryQ.jpg](https://assets.leetcode.com/users/images/74f8f589-b567-4f68-add6-4481de3ea98d_1697552710.320148.jpeg)\n | 2 | Given a string `s`, find the length of the **longest** **substring** without repeating characters.
**Example 1:**
**Input:** s = "abcabcbb "
**Output:** 3
**Explanation:** The answer is "abc ", with the length of 3.
**Example 2:**
**Input:** s = "bbbbb "
**Output:** 1
**Explanation:** The answer is "b ", with the length of 1.
**Example 3:**
**Input:** s = "pwwkew "
**Output:** 3
**Explanation:** The answer is "wke ", with the length of 3.
Notice that the answer must be a substring, "pwke " is a subsequence and not a substring.
**Constraints:**
* `0 <= s.length <= 5 * 104`
* `s` consists of English letters, digits, symbols and spaces. | null |
Sliding Window Approach (Runtime - beats 94.47%) | Time Complexity O(n) | longest-substring-without-repeating-characters | 0 | 1 | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nThe intuition behind this code is to use a sliding window approach to maintain a substring that doesn\'t contain repeating characters. By keeping track of the most recent index where each character appeared, the algorithm can efficiently adjust the starting point of the current substring when a repeating character is encountered.\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\nThe code uses a sliding window approach with two pointers, `start` and `end`, that define the current substring without repeating characters. The `char_index` dictionary is used to store the most recent index where each character appeared.\n\n- For each character encountered, the code checks if the character is already in `char_index` and if its index is greater than or equal to the current `start` index. If so, it means that the character has appeared previously in the current substring. In this case, the `start` index is moved to the position immediately after the last occurrence of the character.\n- The `char_index` dictionary is updated with the current character\'s index.\n- The length of the current substring is calculated using `end - start + 1`, and the `max_length` is updated if necessary.\n\n# Complexity\n- Time complexity: O(n)\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: O(min(n, m)) - where n is the length of the input string and m is the size of the character set (number of distinct characters in the input string).\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution:\n def lengthOfLongestSubstring(self, s: str) -> int:\n if not s:\n return 0\n char_index = {} \n start = 0 \n max_length = 0 \n for end, char in enumerate(s):\n if char in char_index and char_index[char] >= start:\n start = char_index[char] + 1\n \n char_index[char] = end\n max_length = max(max_length, end - start + 1)\n \n return max_length\n \n``` | 4 | Given a string `s`, find the length of the **longest** **substring** without repeating characters.
**Example 1:**
**Input:** s = "abcabcbb "
**Output:** 3
**Explanation:** The answer is "abc ", with the length of 3.
**Example 2:**
**Input:** s = "bbbbb "
**Output:** 1
**Explanation:** The answer is "b ", with the length of 1.
**Example 3:**
**Input:** s = "pwwkew "
**Output:** 3
**Explanation:** The answer is "wke ", with the length of 3.
Notice that the answer must be a substring, "pwke " is a subsequence and not a substring.
**Constraints:**
* `0 <= s.length <= 5 * 104`
* `s` consists of English letters, digits, symbols and spaces. | null |
Easy well explained python solution (faster than 98%), O(n) time complexity | longest-substring-without-repeating-characters | 0 | 1 | # Intuition\nwe use a **starting point** while iterating over the given string and every time we find a repeated character we calculate the length of the substring between the starting point and the current point - 1.\nevery time we find a repetition we set the starting point to the character next to the last occurrence.\n\n**Ex :** consider the string **`abcdae`**\n\nthe starting point will be $$0$$ initially, we keep iterating until we find the second **`a`**. we calculate then the length of the substring **`abcd`** and then set the starting point to the character next to the first **`a`**, which is **`b`**.\nthen, we will keep iterating until the end since there are no more repetitions and the answer will be $$5$$ (the length of **`bcdae`**).\n\n# Approach\nwe will need $$2$$ variables: \n1. $$`longest`$$ to **save the length of the longest substring found**\n2. $$`offset`$$ for **the starting point**.\n\nwe will also need to save the encountered characters to check repetition, a dictionary will be ideal for this case as it doesn\'t allow repetition. for that we will use an extra variable \n- $$`indexes`$$: to save characters and their indexes, **characters** will be **keys** and **indexes** will be **values**.\n\nwe start then: for every character: \n1. we get its index from indexes dictionary.\n2. if the index wasn\'t null `(meaning that it was encountered before)`, we check if its index is **greater or equal to the offset** `(meaning that its in the current substring)`.\nif so :\n - we calculate the length of the substring : $$i\\,(current\\: position) - offset$$\n - we set the offset to the next character of the last occurrence : $$index\\,(last\\:occurrence) + 1$$\n - if the length of this substring is greater than the length of the current longest substring, we update it\n3. we update the index of the last occurrence of the current character (or add it if this is its first occurrence).\n\nFinally, we return the **maximum** between $$`longest`$$ and **the length of the last substring** `(which is equal to the difference between the length of the string and offset)`as it contains **no repeated characters** and its length is **never compared** to $$`longest`$$ because **we get out of the loop**.\n\n# Complexity\n- Time complexity:\n$$O(n)$$\n\n# Code\n```\nclass Solution:\n def lengthOfLongestSubstring(self, s: str) -> int:\n longest = 0\n indexes = {}\n offset = 0\n for i in range(len(s)):\n char = s[i]\n index = indexes.get(char)\n if index is not None and index >= offset:\n length = i - offset\n offset = index + 1\n if length > longest:\n longest = length\n indexes[char] = i\n return max(longest, (len(s) - offset))\n``` | 12 | Given a string `s`, find the length of the **longest** **substring** without repeating characters.
**Example 1:**
**Input:** s = "abcabcbb "
**Output:** 3
**Explanation:** The answer is "abc ", with the length of 3.
**Example 2:**
**Input:** s = "bbbbb "
**Output:** 1
**Explanation:** The answer is "b ", with the length of 1.
**Example 3:**
**Input:** s = "pwwkew "
**Output:** 3
**Explanation:** The answer is "wke ", with the length of 3.
Notice that the answer must be a substring, "pwke " is a subsequence and not a substring.
**Constraints:**
* `0 <= s.length <= 5 * 104`
* `s` consists of English letters, digits, symbols and spaces. | null |
✅ [video walkthrough] 🔥 Readable code explained by FAANG engineer | median-of-two-sorted-arrays | 0 | 1 | I made a super detailed video walkthrough, since this is a really tough question \uD83D\uDE42 \nPlease upvote if you find this helpful!\n\nhttps://youtu.be/QjrchMRAkew\n\nCode:\n```\nclass Solution:\n def findMedianSortedArrays(self, nums1, nums2):\n if len(nums1) > len(nums2):\n nums1, nums2 = nums2, nums1\n \n m, n = len(nums1), len(nums2)\n left, right = 0, m\n N = m + n\n\n while left <= right:\n A = (left + right) // 2\n B = ((N + 1) // 2) - A\n\n x1 = -float("inf") if A - 1 < 0 else nums1[A - 1]\n y1 = float("inf") if A == m else nums1[A]\n x2 = -float("inf") if B - 1 < 0 else nums2[B - 1]\n y2 = float("inf") if B == n else nums2[B]\n\n if x1 <= y2 and x2 <= y1:\n if N % 2 == 0:\n return (max(x1, x2) + min(y1, y2)) / 2\n else:\n return max(x1, x2)\n elif x1 > y2:\n right = A - 1\n else:\n left = A + 1\n``` | 59 | Given two sorted arrays `nums1` and `nums2` of size `m` and `n` respectively, return **the median** of the two sorted arrays.
The overall run time complexity should be `O(log (m+n))`.
**Example 1:**
**Input:** nums1 = \[1,3\], nums2 = \[2\]
**Output:** 2.00000
**Explanation:** merged array = \[1,2,3\] and median is 2.
**Example 2:**
**Input:** nums1 = \[1,2\], nums2 = \[3,4\]
**Output:** 2.50000
**Explanation:** merged array = \[1,2,3,4\] and median is (2 + 3) / 2 = 2.5.
**Constraints:**
* `nums1.length == m`
* `nums2.length == n`
* `0 <= m <= 1000`
* `0 <= n <= 1000`
* `1 <= m + n <= 2000`
* `-106 <= nums1[i], nums2[i] <= 106` | null |
✅99%🔥||✅Journey From Brute Force to Most 🔥Optimized ✅Three Approaches||🔥Easy to understand | median-of-two-sorted-arrays | 1 | 1 | # Problem Understanding:\nIn simpler terms, you need to **find the middle value of the combined**, sorted array formed by merging nums1 and nums2. If the combined **array has an even number** of elements, you should return the average of the two middle values. **If it has an odd number of elements, you should return the middle value itself.**\n<!-- Describe your first thoughts on how to solve this problem. -->\n# Hint:\n```Hint1 []\nThink of a brute force approach.\n```\n```Hint2 []\nDo you think how two pointer will help us?\n```\n```Hint3 []\nCan you observe the fact that the given arrays are sorted?\n```\n**I would recommend you, don\'t jump directly on solution.**\n# Approach 1: Merge and Sort\n- **Create a new array** with a size equal to the total number of elements in both input arrays.\n- **Insert elements** from both input arrays into the new array.\n- **Sort the new array.**\n- **Find and return the median of the sorted array.**\n\n**Time Complexity**\n- In the worst case TC is **O((n + m) * log(n + m))**.\n\n**Space Complexity**\n - **O(n + m)**, where \u2018n\u2019 and \u2018m\u2019 are the sizes of the arrays.\n# Approach 2: Two-Pointer Method\n\n- **Initialize two pointers**, i and j, both initially set to 0.\n- **Move the pointer** that corresponds to the **smaller value forward at each step.**\n- Continue moving the pointers **until you have processed half of the total number of elements.**\n- Calculate and **return the median** based on the values pointed to by i and j.\n\n\n**Time Complexity**\n- **O(n + m)**, where \u2018n\u2019 & \u2018m\u2019 are the sizes of the two arrays.\n\n**Space Complexity**\n - **O(1)**.\n\n# Approach 3: Binary Search\n\n- **Use binary search to partition the smaller of the two input arrays into two parts.**\n- Find the partition of the **larger array such that the sum of elements on the left side of the partition in both arrays is half of the total elements.**\n- Check if this partition **is valid by verifying** if the largest number on the left side is smaller than the smallest number on the right side.\n- **If the partition is valid,** calculate and return the median.\n\n**Time Complexity**\n- **O(logm/logn)**\n\n**Space Complexity**\n - **O(1)**\n\n---\n\n# SMALL REQUEST : If you found this post even remotely helpful, be kind enough to smash a upvote. I will be grateful.I will be motivated\uD83D\uDE0A\uD83D\uDE0A\n\n---\n\n\n<!-- Describe your approach to solving the problem. -->\n# Code Brute Force- Merge and Sort\n```C++ []\nclass Solution {\npublic:\n double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {\n // Get the sizes of both input arrays.\n int n = nums1.size();\n int m = nums2.size();\n\n // Merge the arrays into a single sorted array.\n vector<int> merged;\n for (int i = 0; i < n; i++) {\n merged.push_back(nums1[i]);\n }\n for (int i = 0; i < m; i++) {\n merged.push_back(nums2[i]);\n }\n\n // Sort the merged array.\n sort(merged.begin(), merged.end());\n\n // Calculate the total number of elements in the merged array.\n int total = merged.size();\n\n if (total % 2 == 1) {\n // If the total number of elements is odd, return the middle element as the median.\n return static_cast<double>(merged[total / 2]);\n } else {\n // If the total number of elements is even, calculate the average of the two middle elements as the median.\n int middle1 = merged[total / 2 - 1];\n int middle2 = merged[total / 2];\n return (static_cast<double>(middle1) + static_cast<double>(middle2)) / 2.0;\n }\n }\n};\n\n```\n```Java []\nimport java.util.Arrays;\n\nclass Solution {\n public double findMedianSortedArrays(int[] nums1, int[] nums2) {\n // Get the sizes of both input arrays.\n int n = nums1.length;\n int m = nums2.length;\n\n // Merge the arrays into a single sorted array.\n int[] merged = new int[n + m];\n int k = 0;\n for (int i = 0; i < n; i++) {\n merged[k++] = nums1[i];\n }\n for (int i = 0; i < m; i++) {\n merged[k++] = nums2[i];\n }\n\n // Sort the merged array.\n Arrays.sort(merged);\n\n // Calculate the total number of elements in the merged array.\n int total = merged.length;\n\n if (total % 2 == 1) {\n // If the total number of elements is odd, return the middle element as the median.\n return (double) merged[total / 2];\n } else {\n // If the total number of elements is even, calculate the average of the two middle elements as the median.\n int middle1 = merged[total / 2 - 1];\n int middle2 = merged[total / 2];\n return ((double) middle1 + (double) middle2) / 2.0;\n }\n }\n}\n\n```\n```python3 []\nclass Solution:\n def findMedianSortedArrays(self, nums1, nums2):\n # Merge the arrays into a single sorted array.\n merged = nums1 + nums2\n\n # Sort the merged array.\n merged.sort()\n\n # Calculate the total number of elements in the merged array.\n total = len(merged)\n\n if total % 2 == 1:\n # If the total number of elements is odd, return the middle element as the median.\n return float(merged[total // 2])\n else:\n # If the total number of elements is even, calculate the average of the two middle elements as the median.\n middle1 = merged[total // 2 - 1]\n middle2 = merged[total // 2]\n return (float(middle1) + float(middle2)) / 2.0\n\n```\n\n\n# Code for Two-Pointer Method\n```C++ []\nclass Solution {\npublic:\n double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {\n int n = nums1.size();\n int m = nums2.size();\n int i = 0, j = 0, m1 = 0, m2 = 0;\n\n // Find median.\n for (int count = 0; count <= (n + m) / 2; count++) {\n m2 = m1;\n if (i != n && j != m) {\n if (nums1[i] > nums2[j]) {\n m1 = nums2[j++];\n } else {\n m1 = nums1[i++];\n }\n } else if (i < n) {\n m1 = nums1[i++];\n } else {\n m1 = nums2[j++];\n }\n }\n\n // Check if the sum of n and m is odd.\n if ((n + m) % 2 == 1) {\n return static_cast<double>(m1);\n } else {\n double ans = static_cast<double>(m1) + static_cast<double>(m2);\n return ans / 2.0;\n }\n }\n};\n\n```\n```Java []\nclass Solution {\n public double findMedianSortedArrays(int[] nums1, int[] nums2) {\n int n = nums1.length;\n int m = nums2.length;\n int i = 0, j = 0, m1 = 0, m2 = 0;\n\n // Find median.\n for (int count = 0; count <= (n + m) / 2; count++) {\n m2 = m1;\n if (i != n && j != m) {\n if (nums1[i] > nums2[j]) {\n m1 = nums2[j++];\n } else {\n m1 = nums1[i++];\n }\n } else if (i < n) {\n m1 = nums1[i++];\n } else {\n m1 = nums2[j++];\n }\n }\n\n // Check if the sum of n and m is odd.\n if ((n + m) % 2 == 1) {\n return (double) m1;\n } else {\n double ans = (double) m1 + (double) m2;\n return ans / 2.0;\n }\n }\n}\n\n```\n```python []\nclass Solution:\n def findMedianSortedArrays(self, nums1, nums2):\n n = len(nums1)\n m = len(nums2)\n i = 0\n j = 0\n m1 = 0\n m2 = 0\n\n # Find median.\n for count in range(0, (n + m) // 2 + 1):\n m2 = m1\n if i < n and j < m:\n if nums1[i] > nums2[j]:\n m1 = nums2[j]\n j += 1\n else:\n m1 = nums1[i]\n i += 1\n elif i < n:\n m1 = nums1[i]\n i += 1\n else:\n m1 = nums2[j]\n j += 1\n\n # Check if the sum of n and m is odd.\n if (n + m) % 2 == 1:\n return float(m1)\n else:\n ans = float(m1) + float(m2)\n return ans / 2.0\n\n```\n\n\n# Code for Binary Search\n```C++ []\nclass Solution {\npublic:\n double findMedianSortedArrays(vector<int> &nums1, vector<int> &nums2) {\n int n1 = nums1.size(), n2 = nums2.size();\n \n // Ensure nums1 is the smaller array for simplicity\n if (n1 > n2)\n return findMedianSortedArrays(nums2, nums1);\n \n int n = n1 + n2;\n int left = (n1 + n2 + 1) / 2; // Calculate the left partition size\n int low = 0, high = n1;\n \n while (low <= high) {\n int mid1 = (low + high) >> 1; // Calculate mid index for nums1\n int mid2 = left - mid1; // Calculate mid index for nums2\n \n int l1 = INT_MIN, l2 = INT_MIN, r1 = INT_MAX, r2 = INT_MAX;\n \n // Determine values of l1, l2, r1, and r2\n if (mid1 < n1)\n r1 = nums1[mid1];\n if (mid2 < n2)\n r2 = nums2[mid2];\n if (mid1 - 1 >= 0)\n l1 = nums1[mid1 - 1];\n if (mid2 - 1 >= 0)\n l2 = nums2[mid2 - 1];\n \n if (l1 <= r2 && l2 <= r1) {\n // The partition is correct, we found the median\n if (n % 2 == 1)\n return max(l1, l2);\n else\n return ((double)(max(l1, l2) + min(r1, r2))) / 2.0;\n }\n else if (l1 > r2) {\n // Move towards the left side of nums1\n high = mid1 - 1;\n }\n else {\n // Move towards the right side of nums1\n low = mid1 + 1;\n }\n }\n \n return 0; // If the code reaches here, the input arrays were not sorted.\n }\n};\n\n\n```\n```Java []\nclass Solution {\n public double findMedianSortedArrays(int[] nums1, int[] nums2) {\n int n1 = nums1.length, n2 = nums2.length;\n \n // Ensure nums1 is the smaller array for simplicity\n if (n1 > n2)\n return findMedianSortedArrays(nums2, nums1);\n \n int n = n1 + n2;\n int left = (n1 + n2 + 1) / 2; // Calculate the left partition size\n int low = 0, high = n1;\n \n while (low <= high) {\n int mid1 = (low + high) >> 1; // Calculate mid index for nums1\n int mid2 = left - mid1; // Calculate mid index for nums2\n \n int l1 = Integer.MIN_VALUE, l2 = Integer.MIN_VALUE, r1 = Integer.MAX_VALUE, r2 = Integer.MAX_VALUE;\n \n // Determine values of l1, l2, r1, and r2\n if (mid1 < n1)\n r1 = nums1[mid1];\n if (mid2 < n2)\n r2 = nums2[mid2];\n if (mid1 - 1 >= 0)\n l1 = nums1[mid1 - 1];\n if (mid2 - 1 >= 0)\n l2 = nums2[mid2 - 1];\n \n if (l1 <= r2 && l2 <= r1) {\n // The partition is correct, we found the median\n if (n % 2 == 1)\n return Math.max(l1, l2);\n else\n return ((double)(Math.max(l1, l2) + Math.min(r1, r2))) / 2.0;\n }\n else if (l1 > r2) {\n // Move towards the left side of nums1\n high = mid1 - 1;\n }\n else {\n // Move towards the right side of nums1\n low = mid1 + 1;\n }\n }\n \n return 0; // If the code reaches here, the input arrays were not sorted.\n }\n}\n\n```\n```python []\nclass Solution:\n def findMedianSortedArrays(self, nums1, nums2):\n n1 = len(nums1)\n n2 = len(nums2)\n \n # Ensure nums1 is the smaller array for simplicity\n if n1 > n2:\n return self.findMedianSortedArrays(nums2, nums1)\n \n n = n1 + n2\n left = (n1 + n2 + 1) // 2 # Calculate the left partition size\n low = 0\n high = n1\n \n while low <= high:\n mid1 = (low + high) // 2 # Calculate mid index for nums1\n mid2 = left - mid1 # Calculate mid index for nums2\n \n l1 = float(\'-inf\')\n l2 = float(\'-inf\')\n r1 = float(\'inf\')\n r2 = float(\'inf\')\n \n # Determine values of l1, l2, r1, and r2\n if mid1 < n1:\n r1 = nums1[mid1]\n if mid2 < n2:\n r2 = nums2[mid2]\n if mid1 - 1 >= 0:\n l1 = nums1[mid1 - 1]\n if mid2 - 1 >= 0:\n l2 = nums2[mid2 - 1]\n \n if l1 <= r2 and l2 <= r1:\n # The partition is correct, we found the median\n if n % 2 == 1:\n return max(l1, l2)\n else:\n return (max(l1, l2) + min(r1, r2)) / 2.0\n elif l1 > r2:\n # Move towards the left side of nums1\n high = mid1 - 1\n else:\n # Move towards the right side of nums1\n low = mid1 + 1\n \n return 0 # If the code reaches here, the input arrays were not sorted.\n\n```\n# SMALL REQUEST : If you found this post even remotely helpful, be kind enough to smash a upvote. I will be grateful.I will be motivated\uD83D\uDE0A\uD83D\uDE0A\n![upvotememe.png](https://assets.leetcode.com/users/images/b5e325fa-1e56-45a4-9f5b-decc2bc50fc9_1695262468.8060796.png)\n\n\n | 802 | Given two sorted arrays `nums1` and `nums2` of size `m` and `n` respectively, return **the median** of the two sorted arrays.
The overall run time complexity should be `O(log (m+n))`.
**Example 1:**
**Input:** nums1 = \[1,3\], nums2 = \[2\]
**Output:** 2.00000
**Explanation:** merged array = \[1,2,3\] and median is 2.
**Example 2:**
**Input:** nums1 = \[1,2\], nums2 = \[3,4\]
**Output:** 2.50000
**Explanation:** merged array = \[1,2,3,4\] and median is (2 + 3) / 2 = 2.5.
**Constraints:**
* `nums1.length == m`
* `nums2.length == n`
* `0 <= m <= 1000`
* `0 <= n <= 1000`
* `1 <= m + n <= 2000`
* `-106 <= nums1[i], nums2[i] <= 106` | null |
🔥99% || Super easy🔥👌 | median-of-two-sorted-arrays | 0 | 1 | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n1. Combine the two input arrays \'nums1\' and \'nums2\' into a single array named \'nums\'.\n2. Sort the combined array \'nums\' in ascending order.\n3. Determine the length of the sorted array \'nums\'.\n4. If the length \'n\' is even, calculate the median as the average of the two middle elements.\n5. If the length \'n\' is odd, simply take the middle element as the median.\n6. Round the calculated median to 5 decimal places.\n7. Return the rounded median as a float.\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity: O(n log n).\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: O(n)\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution:\n def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:\n nums = (nums1 + nums2)\n nums.sort()\n n = len(nums)\n if n%2 == 0:\n res = n//2\n return round((nums[res-1]+nums[res])/2,5)\n else:\n res = n//2\n return round(nums[res],5)\n \n``` | 1 | Given two sorted arrays `nums1` and `nums2` of size `m` and `n` respectively, return **the median** of the two sorted arrays.
The overall run time complexity should be `O(log (m+n))`.
**Example 1:**
**Input:** nums1 = \[1,3\], nums2 = \[2\]
**Output:** 2.00000
**Explanation:** merged array = \[1,2,3\] and median is 2.
**Example 2:**
**Input:** nums1 = \[1,2\], nums2 = \[3,4\]
**Output:** 2.50000
**Explanation:** merged array = \[1,2,3,4\] and median is (2 + 3) / 2 = 2.5.
**Constraints:**
* `nums1.length == m`
* `nums2.length == n`
* `0 <= m <= 1000`
* `0 <= n <= 1000`
* `1 <= m + n <= 2000`
* `-106 <= nums1[i], nums2[i] <= 106` | null |
Median of Two Sorted Arrays | Optimal Code | Python | | median-of-two-sorted-arrays | 0 | 1 | # Complexity\n- Time complexity: $$O(log(n + m))$$\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: $$O(1)$$\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution:\n def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:\n n1 = len(nums1)\n n2 = len(nums2)\n if n1 > n2:\n return self.findMedianSortedArrays(nums2, nums1)\n n = n1 + n2\n left = (n + 1) // 2\n low = 0\n high = n1\n while low <= high:\n mid1 = (low + high) // 2\n mid2 = left - mid1\n l1, l2, r1, r2 = float("-inf"), float("-inf"), float("inf"), float("inf")\n if mid1 < n1: r1 = nums1[mid1]\n if mid2 < n2: r2 = nums2[mid2]\n if mid1 - 1 >= 0: l1 = nums1[mid1 - 1]\n if mid2 - 1 >= 0: l2 = nums2[mid2 - 1]\n if l1 <= r2 and l2 <= r1:\n if n % 2 == 1: return max(l1, l2)\n else: return (float(max(l1, l2)) + float(min(r1, r2))) / 2.0\n if l1 > r2: high = mid1 - 1\n else: low = mid1 + 1\n return 0\n\n\n``` | 1 | Given two sorted arrays `nums1` and `nums2` of size `m` and `n` respectively, return **the median** of the two sorted arrays.
The overall run time complexity should be `O(log (m+n))`.
**Example 1:**
**Input:** nums1 = \[1,3\], nums2 = \[2\]
**Output:** 2.00000
**Explanation:** merged array = \[1,2,3\] and median is 2.
**Example 2:**
**Input:** nums1 = \[1,2\], nums2 = \[3,4\]
**Output:** 2.50000
**Explanation:** merged array = \[1,2,3,4\] and median is (2 + 3) / 2 = 2.5.
**Constraints:**
* `nums1.length == m`
* `nums2.length == n`
* `0 <= m <= 1000`
* `0 <= n <= 1000`
* `1 <= m + n <= 2000`
* `-106 <= nums1[i], nums2[i] <= 106` | null |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
- Downloads last month
- 31