csikasote's picture
End of training
442c0ff verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - bemgen
metrics:
  - wer
model-index:
  - name: whisper-medium-bemgen-balanced-model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: bemgen
          type: bemgen
        metrics:
          - name: Wer
            type: wer
            value: 0.4413347685683531

whisper-medium-bemgen-balanced-model

This model is a fine-tuned version of openai/whisper-medium on the bemgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5412
  • Wer: 0.4413

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.7045 0.3960 200 0.9162 0.6827
2.687 0.7921 400 0.6818 0.5352
1.7185 1.1881 600 0.6266 0.4988
1.7232 1.5842 800 0.5674 0.4592
1.6083 1.9802 1000 0.5412 0.4413
0.7643 2.3762 1200 0.5652 0.4280
0.8362 2.7723 1400 0.5455 0.4052
0.422 3.1683 1600 0.5771 0.3991

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0