File size: 2,286 Bytes
67f5f62 442c0ff 67f5f62 442c0ff 67f5f62 442c0ff 67f5f62 442c0ff 67f5f62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- bemgen
metrics:
- wer
model-index:
- name: whisper-medium-bemgen-balanced-model
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: bemgen
type: bemgen
metrics:
- name: Wer
type: wer
value: 0.4413347685683531
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium-bemgen-balanced-model
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the bemgen dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5412
- Wer: 0.4413
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 3.7045 | 0.3960 | 200 | 0.9162 | 0.6827 |
| 2.687 | 0.7921 | 400 | 0.6818 | 0.5352 |
| 1.7185 | 1.1881 | 600 | 0.6266 | 0.4988 |
| 1.7232 | 1.5842 | 800 | 0.5674 | 0.4592 |
| 1.6083 | 1.9802 | 1000 | 0.5412 | 0.4413 |
| 0.7643 | 2.3762 | 1200 | 0.5652 | 0.4280 |
| 0.8362 | 2.7723 | 1400 | 0.5455 | 0.4052 |
| 0.422 | 3.1683 | 1600 | 0.5771 | 0.3991 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|