--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - bemgen metrics: - wer model-index: - name: whisper-medium-bemgen-balanced-model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: bemgen type: bemgen metrics: - name: Wer type: wer value: 0.4413347685683531 --- # whisper-medium-bemgen-balanced-model This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the bemgen dataset. It achieves the following results on the evaluation set: - Loss: 0.5412 - Wer: 0.4413 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.7045 | 0.3960 | 200 | 0.9162 | 0.6827 | | 2.687 | 0.7921 | 400 | 0.6818 | 0.5352 | | 1.7185 | 1.1881 | 600 | 0.6266 | 0.4988 | | 1.7232 | 1.5842 | 800 | 0.5674 | 0.4592 | | 1.6083 | 1.9802 | 1000 | 0.5412 | 0.4413 | | 0.7643 | 2.3762 | 1200 | 0.5652 | 0.4280 | | 0.8362 | 2.7723 | 1400 | 0.5455 | 0.4052 | | 0.422 | 3.1683 | 1600 | 0.5771 | 0.3991 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0