|
--- |
|
base_model: sentence-transformers/all-mpnet-base-v2 |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:505654 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: 'module: stationery & printed material & services group: stationery |
|
& printed material & services supergroup: stationery & printed material & services |
|
example descriptions: munchkin crayons hween printedsheet mask 2 pk printed tape |
|
tour os silver butterfly relax with art m ab hardbacknotebook stickers p val youmeyou |
|
text heat w mandalorian a 5 nbook nediun bubble envelopes 6 pk whs pastel expan |
|
org p poll decoration 1 airtricity payasyoug' |
|
sentences: |
|
- 'retailer: groveify description: rainbow magicbooks' |
|
- 'retailer: crispcorner description: glazed k kreme' |
|
- 'retailer: vitalveg description: may held aop fl' |
|
- source_sentence: 'module: flavoured drinks carbonated cola group: drinks flavoured |
|
rtd supergroup: beverages non alcoholic example descriptions: cola w xcoke zero |
|
15 oml pepsi 240 k coke zero 500 ml d lepsi max chry 600 coke cherry can 009500 |
|
pepsi max 500 ml tuo diet coke cf kloke zero coke zero 250 ml diet coke nin 15 |
|
cocac 3 a 250 ml coca cola 330 ml 10 px coke 125 lzero coke 250 mlreg pmpg 5 p' |
|
sentences: |
|
- 'retailer: vitalveg description: coke 240 k' |
|
- 'retailer: vitalveg description: tala silicone icing' |
|
- 'retailer: bountify description: pah antibac wood 10 l' |
|
- source_sentence: 'module: skin conditioning moisturising group: skin conditioning |
|
moisturising supergroup: personal care example descriptions: ss crmy bdy oil dove |
|
dm spa sr f m 7 nivea creme 50 carmex lime stick talc powder bo dry skn gel garnier |
|
milk bld lpblm orgnl vit a serum nv cr gran oh olay bright eye crm bio oil 2 x |
|
200 ml nvfc srm q 10 prlbst sf aa nt crm 50 aveeno cream 500 ml' |
|
sentences: |
|
- 'retailer: wilko description: radiator m key' |
|
- 'retailer: nourify description: okf lprp tblpbl un' |
|
- 'retailer: crispcorner description: 065 each fredflo 60 biodegradable' |
|
- source_sentence: 'module: cakes gateaux ambient group: cakes gateaux ambient supergroup: |
|
food ambient example descriptions: x 20 pkmcvitiesjaffacakes 1 srn ban lunchbx |
|
js angel slices x 6 spk mr kipling frosty fancies plantastic cherry choc fl hr |
|
kipling angel slices 10 pk brompton choc brownies jschocchunknuffin loaded drip |
|
cake hobnbchoc fjack oreo muffins x 2 mr kipling victoria slices 6 pack mk kip |
|
choc rdsugar m the best brownies odby 5 choc mini' |
|
sentences: |
|
- 'retailer: flavorful description: nr choc brownies' |
|
- 'retailer: producify description: dettol srfc wipe' |
|
- 'retailer: noshify description: garden wheels plate' |
|
- source_sentence: 'module: bread ambient group: bread ambient supergroup: food ambient |
|
example descriptions: 1 war 3 toastie 400 g cc 90 varburtons bread tovis snelwrspmpkin |
|
800 g warbutons medium bread spk giant crumpets z hovis med wht 600 g sandwich |
|
thins 5 pk warb pk crumpets mission plain tortilla 25 cm warburtons 4 protein |
|
thin bagels hovis soft wet med hovis wholemefl pataks pappadums 6 pk warb so bth |
|
disc pappajuns' |
|
sentences: |
|
- 'retailer: greenly description: pomodoro sauce' |
|
- 'retailer: crispcorner description: kingsmill 5050 medius bread 800 g' |
|
- 'retailer: vitalveg description: ready to eat prun' |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: sentence transformers/all mpnet base v2 |
|
type: sentence-transformers/all-mpnet-base-v2 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.498812351543943 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.6342042755344418 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.7102137767220903 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.7838479809976246 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.498812351543943 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.21140142517814728 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.14204275534441804 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.07838479809976245 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.498812351543943 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.6342042755344418 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.7102137767220903 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.7838479809976246 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.6324346540369431 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.5850111224220487 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.5910447073012788 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) <!-- at revision f1b1b820e405bb8644f5e8d9a3b98f9c9e0a3c58 --> |
|
- **Maximum Sequence Length:** 384 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- csv |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("carnival13/all-mpnet-base-v2-modulepred") |
|
# Run inference |
|
sentences = [ |
|
'module: bread ambient group: bread ambient supergroup: food ambient example descriptions: 1 war 3 toastie 400 g cc 90 varburtons bread tovis snelwrspmpkin 800 g warbutons medium bread spk giant crumpets z hovis med wht 600 g sandwich thins 5 pk warb pk crumpets mission plain tortilla 25 cm warburtons 4 protein thin bagels hovis soft wet med hovis wholemefl pataks pappadums 6 pk warb so bth disc pappajuns', |
|
'retailer: crispcorner description: kingsmill 5050 medius bread 800 g', |
|
'retailer: vitalveg description: ready to eat prun', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `sentence-transformers/all-mpnet-base-v2` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| cosine_accuracy@1 | 0.4988 | |
|
| cosine_accuracy@3 | 0.6342 | |
|
| cosine_accuracy@5 | 0.7102 | |
|
| cosine_accuracy@10 | 0.7838 | |
|
| cosine_precision@1 | 0.4988 | |
|
| cosine_precision@3 | 0.2114 | |
|
| cosine_precision@5 | 0.142 | |
|
| cosine_precision@10 | 0.0784 | |
|
| cosine_recall@1 | 0.4988 | |
|
| cosine_recall@3 | 0.6342 | |
|
| cosine_recall@5 | 0.7102 | |
|
| cosine_recall@10 | 0.7838 | |
|
| cosine_ndcg@10 | 0.6324 | |
|
| cosine_mrr@10 | 0.585 | |
|
| **cosine_map@100** | **0.591** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### csv |
|
|
|
* Dataset: csv |
|
* Size: 505,654 training samples |
|
* Columns: <code>query</code> and <code>full_doc</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | full_doc | |
|
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 10 tokens</li><li>mean: 14.8 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 83 tokens</li><li>mean: 115.71 tokens</li><li>max: 176 tokens</li></ul> | |
|
* Samples: |
|
| query | full_doc | |
|
|:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>retailer: vitalveg description: twin xira</code> | <code>module: chocolate single variety group: chocolate chocolate substitutes supergroup: biscuits & confectionery & snacks example descriptions: milky way twin 43 crml prtzlarum rai galaxy mnstr pipnut 34 g dark pb cup nest mnch foge p nestle smarties shar dark choc chun x 10 pk kinder bueno 1 dr oetker 72 da poppets choc offee pouch yorkie biscuit zpk haltesers truffles bog cadbury mini snowballs p terrys choc orange 3435 g galaxy fusion dark 704 100 g</code> | |
|
| <code>retailer: freshnosh description: mab pop sockt</code> | <code>module: clothing & personal accessories group: clothing & personal accessories supergroup: clothing & personal accessories example descriptions: pk blue trad ging 40 d 3 pk opaque tight t 74 green cali jogger ss animal swing yb denim stripe pump aw 21 ff vest aw 21 girls 5 pk lounge toplo sku 1 pk fleecy tight knitted pom hat pk briefs timeless double pom pomkids hat cute face twosie sku coral jersey str pun faded petrol t 32 seamfree waist c</code> | |
|
| <code>retailer: nourify description: bts prwn ckt swch</code> | <code>module: bread sandwiches filled rolls wraps group: bread fresh fixed weight supergroup: food perishable example descriptions: us chicken may hamche sw jo dbs allbtr pp st 4 js baconfree ran posh cheesy bea naturify cb swich sp eggcress f cpdfeggbacon js cheeseonion sv duck wrap reduced price takeout egg mayo sandwich 7 takeout cheeseonion s wich 2 ad leicester plough bts cheese pman 2 1 cp bacon chese s</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 4 |
|
- `per_device_eval_batch_size`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 4 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | sentence-transformers/all-mpnet-base-v2_cosine_map@100 | |
|
|:------:|:----:|:-------------:|:------------------------------------------------------:| |
|
| 0.0016 | 100 | 1.6195 | 0.2567 | |
|
| 0.0032 | 200 | 1.47 | 0.3166 | |
|
| 0.0047 | 300 | 1.2703 | 0.3814 | |
|
| 0.0063 | 400 | 1.1335 | 0.4495 | |
|
| 0.0079 | 500 | 0.9942 | 0.4827 | |
|
| 0.0095 | 600 | 0.9004 | 0.5058 | |
|
| 0.0111 | 700 | 0.8838 | 0.5069 | |
|
| 0.0016 | 100 | 0.951 | 0.5197 | |
|
| 0.0032 | 200 | 0.9597 | 0.5323 | |
|
| 0.0047 | 300 | 0.9241 | 0.5406 | |
|
| 0.0063 | 400 | 0.8225 | 0.5484 | |
|
| 0.0079 | 500 | 0.7961 | 0.5568 | |
|
| 0.0095 | 600 | 0.7536 | 0.5621 | |
|
| 0.0111 | 700 | 0.7387 | 0.5623 | |
|
| 0.0127 | 800 | 0.7716 | 0.5746 | |
|
| 0.0142 | 900 | 0.7921 | 0.5651 | |
|
| 0.0158 | 1000 | 0.7744 | 0.5707 | |
|
| 0.0174 | 1100 | 0.8021 | 0.5770 | |
|
| 0.0190 | 1200 | 0.732 | 0.5756 | |
|
| 0.0206 | 1300 | 0.764 | 0.5798 | |
|
| 0.0221 | 1400 | 0.7726 | 0.5873 | |
|
| 0.0237 | 1500 | 0.6676 | 0.5921 | |
|
| 0.0253 | 1600 | 0.6851 | 0.5841 | |
|
| 0.0269 | 1700 | 0.7404 | 0.5964 | |
|
| 0.0285 | 1800 | 0.6798 | 0.5928 | |
|
| 0.0301 | 1900 | 0.6485 | 0.5753 | |
|
| 0.0316 | 2000 | 0.649 | 0.5839 | |
|
| 0.0332 | 2100 | 0.6739 | 0.5891 | |
|
| 0.0348 | 2200 | 0.6616 | 0.6045 | |
|
| 0.0364 | 2300 | 0.6287 | 0.5863 | |
|
| 0.0380 | 2400 | 0.6602 | 0.5898 | |
|
| 0.0396 | 2500 | 0.5667 | 0.5910 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.14 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.4.0+cu124 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |